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1. Introduction

The concept of multisensor data fusion is the combination
of data generated by a number of sensors in order to obtain
more valuable data and perform inferences that may not be
possible from a single sensor alone. This process has attracted
growing interest for its potential applications in areas such as
robotics, aerospace, and environmental monitoring, among
others [1, 2].

In general, there are two fusion estimation methods
commonly used to process the measured sensor data [3, 4].
If a central processor directly receives the measurement data
of all local sensors and processes them in real time, the
correlative result is known as the centralized estimation.
However, this approach has some serious disadvantages,
including bad reliability and survivability, as well as heavy
communication and computational burdens.

The second method is called distributed estimation
fusion, in which every local sensor is attached to a local
processor. In this method, the processor optimally estimates
a parameter or state of a system based on its own local
measurements and transmits its local estimate to the fusion
center where the received information is suitably associated
to yield the global inference. The advantage of this approach

is that the parallel structures would cause enlarge the input
data rates and make easy fault detection and isolation
[1–5]. Recently, various distributed and parallel versions
of standard Kalman filters have been reported for linear
dynamic systems within a multisensor environment [6–10].

To achieve a robust and accurate estimate of the state of a
system under potential uncertainty, various techniques have
been previously introduced and discussed. Among them,
the receding horizon technique is popular and successful,
due to its robustness against temporal uncertainty, and has
been rigorously investigated. The receding horizon strategy
was first introduced by Jazwinski, who labeled it as limited
memory filtering [11]. The dynamic system without the
process noise is believed to describe the efficiency of the idea
through the maximum likelihood estimation scheme [11].
Following this, the optimal FIR filter for time-varying state-
space models was suggested by W. H. Kwon et al. [12]. FIR
filters make use of finite input and output measurements on
the most recent time interval, called the receding horizon, or
a horizon which is a moving, fixed-size estimation window.
Because of the complicated structure of the FIR filter, a
modified receding horizon Kalman FIR filter for linear
continuous-time systems was proposed in [13]. As a general
rule, the local receding horizon Kalman filters (LRHKFs) are
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typically more robust against dynamic model uncertainties
and numerical errors than standard local Kalman filters,
which utilize all measurements [14–17].

Distributed receding horizon fusion filtering for multiple
sensors with equal horizon time intervals (horizon lengths)
has also been proposed in [16]. In this case, all LRHKFs with
the same horizon time interval, which are fused, utilize finite
measurements over the most recent time interval [12–16].

In this paper, we consider the generalization of [16] for
arbitrary, nonequal horizon lengths. Design of distributed
filters for sensor measurements with nonequal horizon
lengths is generally more complicated than for equal lengths
due to a lack of common time intervals that contain all sensor
data, making it impossible to design a centralized filtering
algorithm. We propose using a distributed receding horizon
filter for a set of local sensors with nonequal horizon lengths.
Also, we derive the key differential equations for error
cross-covariances between LRHKFs using different horizon
lengths.

The remainder of this paper is organized as follows. The
problem setting is described in Section 2. In Section 3, we
present the main results pertaining to the distributed reced-
ing horizon filtering for a multisensor environment. Here,
the key equations for cross-covariances between the local
receding horizon filtering errors are derived. In Section 4,
two examples for continuous-time dynamic systems within
a multisensor environment illustrate the main results, and
concluding remarks are then given in Section 5.

2. Problem Setting

Consider the linear continuous-time dynamic system with N
sensors:

ẋt = Ftxt + Gtvt, x0 = xt0 , t ≥ t0, (1)

y(i)
t = H(i)

t xt + w(i)
t , i = 1, . . . ,N , (2)

where xt ∈ Rn is the state, y(i)
t ∈ Rmi is the measurement,

the system noise vt ∈ Rr and the measurement noises

w(i)
t ∈ Rmi , i = 1, . . . ,N are uncorrelated white Gaussian

noises with zero mean and intensity matrices Qt and

R(i)
t , respectively, and Ft, Gt, and H(i)

t are matrices with
compatible dimensions. Also, the superscript (i) denotes the
ith sensor, and N is the total number of sensors.

The initial state x0 ∼ N(m0;P0), m0 = E(x0), P0 =
cov{x0, x0} is assumed to be Gaussian and uncorrelated with

vt and w(i)
t , i = 1, . . . ,N.

Our purpose, then, is to find the distributed fusion
estimate of the state xt based on the overall horizon sensor
measurements Yt with different horizon time intervals Δi,
i = 1, . . . ,N , such that

Yt =
{
Y (1)
t , . . . ,Y (N)

t

}
,

Y (i)
t =

{
y(i)
s : t − Δi ≤ s ≤ t

}
, i = 1, . . . ,N .

(3)

3. Distributed Fusion Receding Horizon Filter

Now, we will show that the fusion formula (FF) [10, 17]
is able to serve as the basis for designing a distributed
fusion filter. A new distributed fusion receding horizon filter
with nonequal horizon lengths (NE-DFRHF) includes two

stages. In the first stage, LRHKFs (estimates) x̂(1)
t , . . . , x̂(N)

t are
computed and then linearly fused at the second stage based
on the FF.

First step (Calculation of LRHKFs). According to (1) and (2),
we have N local dynamic subsystems with the state vector xt
and local (individual) sensor measurement y(i)

t :

ẋt = Ftxt + Gtvt, x0 = xt0 ,

y(i)
t = H(i)

t xt + w(i)
t ,

(4)

where the number i of a local subsystem is fixed.
Next, let us denote the local receding horizon estimate

of the state xt based on the individual sensor measurements
Y (i)
t = {y(i)

s : t − Δi ≤ s ≤ t} by x̂(i)
t . To determine x̂(i)

t

we can apply the optimal receding horizon Kalman filter to
subsystem (4) [12–15] to obtain the following differential
equations:

˙̂x
(i)
s = Fsx̂

(i)
s + K (i)

s

[
y(i)
s −H(i)

s x̂(i)
s

]
,

Ṗ(ii)
s = FsP

(ii)
s + P(ii)

s FT
s − P(ii)

s H(i)T
s R(i)−1

s H(i)
s P(ii)

s + Q̃s,

K (i)
s = P(ii)

s H(i)T
s R(i)−1

s , Q̃s = GsQsG
T
s ,

P(ii)
s = cov

{
e(i)
s , e(i)

s

}
, e(i)

s = xs − x̂(i)
s ,

t − Δi ≤ s ≤ t, i = 1, . . . ,N

(5)

with the horizon initial conditions:

x̂(i)
s=t−Δi

= mt−Δi = E
(
xt−Δi

)
,

P(ii)
s=t−Δi

= Pt−Δi = cov
{
xt−Δi , xt−Δi

} (6)

determined by the Lyapunov equations [15] on the interval
τ ∈ [t0, t − Δi]:

ṁτ = Fτmτ , t0 ≤ τ ≤ t − Δi, mt0 = m0,

Ṗτ = FτPτ + PτF
T
τ + Q̃τ , Pt0 = P0.

(7)

Thus, we obtain the N LRHKFs x̂(1)
t , . . . , x̂(N)

t with the
corresponding local error covariances P(11)

t , . . . ,P(NN)
t .

Second step (Fusion of LRHKFs). To express the final NE-
DFRHF (estimate) x̂fus

t for the state xt in terms of the
LRHKFs x̂(1)

t , . . . , x̂(N)
t , we use the FF. In this case,

x̂fus
t =

N∑

i=1

c(i)
t x̂(i)

t ,
N∑

i=1

c(i)
t = In, (8)

where In is the identity matrix, and c(1)
t , . . . , c(N)

t are the time-
varying weighted matrices determined by the mean square
criterion.
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Theorem 1 (see [10, 17]). (a) The optimal weights c(1)
t , . . . ,

c(N)
t satisfy the following linear algebraic equations:

N∑

i=1

c(i)
t

[
P

(i j)
t − P(iN)

t

]
= 0,

N∑

i=1

c(i)
t = In, j = 1, . . . ,N − 1,

(9)

and they can be explicitly written in the following form:

c(i)
t =

N∑

j=1

W
(i j)
t

⎛
⎝

N∑

l,h=1

W (lh)
t

⎞
⎠
−1

, i = 1, . . . ,N , (10)

where W
(i j)
t is the (i j)th (n × n) submatrix of the (nN × nN)

block matrix P−1
t , Pt = [P

(i j)
t ]

N

i, j=1.

(b) The fusion error covariance Pfus
t = cov{efus

t , efus
t },

efus
t = xt − x̂fus

t is given by

Pfus
t =

N∑

i, j=1

c(i)
t P

(i j)
t c

( j)T

t . (11)

Therefore, (9)–(11), defining the unknown weights c(i)
t and

fusion error covariance Pfus
t , depend on the local covariances

P(ii)
t , determined by (5), and the local cross-covariances

P
(i j)
t = cov

{
e(i)
t , e

( j)
t

}
, i, j = 1, . . . ,N , i /= j, (12)

given in Theorem 2.

Theorem 2. Without losing generality, let one assume that
Δi < Δ j or t − Δi > t − Δ j . (a) The local cross-covariances
(12) satisfy the following differential equations:

Ṗ
(i j)
s = F̃(i)

s P
(i j)
s + P

(i j)
s F̃

( j)T

s + Qs, s ∈ [t − Δi, t],

F̃(i)
s = Fs − K (i)

s H(i)
s , i, j = 1, . . . ,N , i /= j

(13)

with the horizon initial conditions:

P
(i j)
s=t−Δi

(6)= Pt−Δi − cov
{
xt−Δi , x̂

( j)
t−Δi

}
. (14)

(b) The covariance cov{xt−Δi , x̂
( j)
t−Δi
} in (14) represents the

nondiagonal element of the block covariance-matrix D
( j)
τ :

D
( j)
τ =

⎡
⎢⎣

cov{xτ , xτ} cov
{
xτ , x̂

( j)
τ

}

cov
{
x̂

( j)
τ , xτ

}
cov
{
x̂

( j)
τ , x̂

( j)
τ

}

⎤
⎥⎦ (15)

at τ = t − Δi, described by the Lyapunov equation:

Ḋ
( j)
τ = A

( j)
τ D

( j)
τ + D

( j)
τ A

( j)T

τ + B
( j)
τ Q

( j)
τ B

( j)T

τ ,

A
( j)
τ =

⎡
⎣

Fτ 0

K
( j)
τ H

( j)
τ F̃

( j)
τ

⎤
⎦, B

( j)
τ =

⎡
⎣
Gτ 0

0 K
( j)
τ

⎤
⎦,

Q
( j)
τ =

⎡
⎣
Qτ 0

0 R
( j)
τ

⎤
⎦, τ ∈

[
t − Δ j ; t − Δi

]

(16)

with the initial condition:

D
( j)
τ=t−Δ j

=
⎡
⎣cov

(
xt−Δ j , xt−Δ j

)
0

0 0

⎤
⎦ =

⎡
⎣Pt−Δ j 0

0 0

⎤
⎦, (17)

determined by (7).

The derivations of (13)–(17) are given in the appendix.
Thus, (5)–(17) completely define NE-DFRHF.
In the particular case of equal horizon lengths (Δi = Δ,

i = 1, . . . ,N), the local cross-covariances (12) satisfy the
following differential equations:

Ṗ
(i j)
s = F̃(i)

s P
(i j)
s + P

(i j)
s F̃

( j)T

s + Q̃s, t − Δ ≤ s ≤ t,

F̃(i)
s = Fs − K (i)

s H(i)
s , i, j = 1, . . . ,N , i /= j

(18)

with the horizon initial conditions P
(i j)
t−Δ = Pt−Δ and gains

K (i)
s determined by (5)–(7), respectively.

Remark 3. The LRHKFs x̂(i)
t , i = 1, . . . ,N can be separated

for different types of sensors. In other words, each local

estimate x̂(i)
t can be found independently of the other esti-

mates. Therefore, LRHKFs can be implemented in parallel
for different sensors (2).

Remark 4. Note, however, that the local error covariances
P

(i j)
t , i, j = 1, . . . N and the weights c(i)

t may be precomputed,
since they do not depend on the sensor measurements

(3), but rather on the noise statistics Qt and R(i)
t and the

system matrices Ft, Gt, and H(i)
t , which are the part of

the system model (1), (2). Thus, once the measurement
schedule has been settled, the real-time implementation of
NE-DFRHF requires only the computation of the LRHKFs

x̂(i)
t , i = 1, . . . ,N and the final distributed fusion estimate
x̂fus
t .

4. Numerical Examples

In this section, two examples of continuous-time dynamic
system with parametric model uncertainty δt are presented.

In both cases, the local x̂(i)
t and final fusion x̂fus

t estimates
are biased. Nevertheless, these examples demonstrate the
robustness of the proposed filter in terms of mean square
error (MSE). The first example demonstrates the effective-
ness of the distributed fusion receding horizon filter for
different values of horizon lengths, and the second provides
a comparison of the proposed filter with its nonreceding
horizon version [17].

Example 5 (aircraft engine model). Here, we verify NE-
DFRHFs using a linearized model of an aircraft engine taken
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from [13]. The corresponding dynamic model is written as

ẋt =

⎡
⎢⎢⎢⎣

−1.46 0 2.428

0.1643 + 0.5δt −0.4 + δt −0.3788

0.3107 0 −2.23

⎤
⎥⎥⎥⎦xt

+

⎡
⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎦vt, t ≥ 0,

(19)

where δt is an uncertain model parameter, and vt is a white
Gaussian noise. The initial values are x0 ∼ N(x0,P0), x0 =
[0 0 0 ]T and P0 = diag[0.01 0.01 0.01] . The system
noise intensity Qt is 0.012 and the uncertainty is δt = 1 for
the interval t ∈ T = [2, 12].

The second coordinate x2,t, related to the aircraft engine
turbine temperature, is observable through a measurement
model having three identical local sensors, one of which is
the main sensor, while the others are reserve sensors. We have

y(i)
t = H(i)xt + w(i)

t , H(i) =
[

0 1 0
]T

, i = 1, 2, 3,

(20)

where w(i)
t , i = 1, 2, 3 are white Gaussian noises with

intensities R(i)
t = 0.012, i = 1, 2, 3.

The LRHKFs are designed for different receding horizon
lengths of Δ1 = 0.4, Δ2 = 0.8, and Δ3 = 1.2. The
simulation results of the distributed fusion receding horizon
filters with nonequal (NE-DFRHF) and equal (EQ-DFRHF)
horizon lengths and LRHKF (LKF) are illustrated in Figures
1–4. All simulations were evaluated in terms of MSEs of 1000
Monte Carlo runs. Specifically, we focused on comparing the
MSEs for the turbine temperature of the aircraft engine x2,t

that directly contain the uncertainty δt in (19), such that

P22,t = E
(
x2,t − x̂2,t

)2, (21)

where x̂2,t = x̂NE-DFRHF
t , x̂EQ-DFRHF

t or x̂LKF
t .

Our point of interest is the behavior of the aforemen-
tioned filters, both inside and outside of the uncertainty
interval T = [2, 12]. Since the uncertainty δt has little effect
on the behavior of the filters (estimates) after the extremity
of interval t = 12, for convenience of the MSE analysis,
we introduce the extended time-interval TEUI = [2, 12 +
ε], referred to as the Extended Uncertainty Interval (EUI).
According to the simulation results, ε = 8 and TEUI = [2, 20].

Figure 1 compares the MSEs of NE-DFRHF (“NE”) with
three EQ-DFRHFs (“EQ”) with common horizon lengths
Δ = Δi, i = 1, 2, 3.

From Figure 1 we can observe that inside the EUI, the
NE-DFRHF is more accurate than the two EQ-DFRHFs with
horizon lengths Δ2 = 0.8 and Δ3 = 1.2. However, the NE-
DFRHF is slightly worse than the EQ-DFRHF with horizon
length Δ1 = 0.4, that is,

PEQ
22,t(Δ1) < PNE

22,t < PEQ
22,t(Δ2) < PEQ

22,t(Δ3), t ∈ TEUI. (22)

Model with uncertainty, δt , 2 ≤ t ≤ 12
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Figure 1: MSEs comparison between NE-DFRHF and three EQ-
DFRHFs inside the EUI.

The reason for such a robust property (22) is to
compensate for the given uncertainty δt, as the common
horizon length Δcom for all local sensors (common memory
of LRHKFs) should be minimal. In this case, it is equal, as
Δcom = Δ1 = 0.4.

Figure 2, on the other hand, shows that outside the EUI,
the differences between the EQ-DFRHFs and NE-DFRHF are
negligible. In this case, the EQ-DFRHF with the maximum
common horizon length Δcom = Δ3 = 1.2 is more accurate
than the NE-DFRHF, that is,

PEQ
22,t(Δ3) < PNE

22,t < PEQ
22,t(Δ2) < PEQ

22,t(Δ1), t /∈TEUI. (23)

Figure 3 illustrates the time histories of the MSEs for
NE-DFRHF and the LRHKFs (LKF). This figure shows that
inside the EUI, the MSE of NE-DFRHF is better than that of
LRHKFs with the horizon lengths Δ2 = 0.8 and Δ3 = 1.2, but
it is worse than the LRHKF with Δ1 = 0.4, that is,

PLKF
22,t (Δ1) < PNE

22,t < PLKF
22,t (Δ2) < PLKF

22,t (Δ3), t ∈ TEUI.
(24)

Note, however, that outside the EUI the NE-DFRHF is better
than all LRHKFs, as shown in Figure 4, that is,

PNE
22,t < PLKF

22,t (Δ3) < PLKF
22,t (Δ2) < PLKF

22,t (Δ1), t /∈TEUI.
(25)

It should also be noted that the reduction of the horizon
length to zero (Δi → 0) inside the uncertainty interval is
impossible due to the loss of sensor measurements (3). The
problem in finding the optimal horizon length Δi for each
individual LRHKFs is quite complex.

Summarizing the simulation results provided in Figures
1–4, and using (22)–(25), we can conclude the following
relations between MSEs inside/outside of the EUI:

PEQ
22,t(Δ1)<PLKF

22,t (Δ1)<PNE
22,t <P

EQ
22,t(Δ2)<PLKF

22,t (Δ2), t ∈ TEUI,

PEQ
22,t(Δ3)<PNE

22,t <P
EQ
22,t(Δ2)<PLKF

22,t (Δ3)<PLKF
22,t (Δ1), t /∈TEUI.

(26)
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Model with uncertainty, δt , 2 ≤ t ≤ 12
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Figure 2: MSEs comparison between NE-DFRHF and three EQ-DFRHFs before and after EUI.
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Figure 3: MSEs comparison between NE-DFRHF and three
LRHKFs inside the EUI.

Since, in actual situations, the uncertainty interval T =
[a, b] is unknown in advance, the MSEs relation (26) proves
NE-DFRHF to be the best choice among the other filters.

Example 6 (water tank mixing system). Consider a water
tank system that accepts two different water temperatures,
while simultaneously throws off the mixed water [18]. This
system is described by

ẋt =

⎡
⎢⎢⎢⎣

−0.0139 0 0

0 −0.0277 0

0 0.1667 −0.1667 + 0.1δt

⎤
⎥⎥⎥⎦xt

+

⎡
⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎦vt, t ≥ 0,

(27)

where xt = [x1,t x2,t x3,t]
T , x1,t is the water level, x2,t is

the water temperature, x3,t is the temperature of the sensor,
and vt is a white Gaussian noise. The initial values are x0 ∼
N(x0,P0), x0 = [10 38 35]T and P0 = diag[0.02 0.02 0.02].

Here, the system noise intensity Qt is 0.022 and the time-
varying uncertain model parameter is δt = sin(t) on the
interval 1 ≤ t ≤ 3:

δt =
⎧⎨
⎩

sin(t), 1 ≤ t ≤ 3,

0, otherwise.
(28)

The third coordinate x3,t, related to the sensor’s tempera-
ture of the water tank, is observable through a measurement
model containing three identical local sensors: one primary
sensor, with two reserves. In this case, we have

y(i)
t = H(i)xt + w(i)

t , H(i) =
[

0 0 1
]T

, i = 1, 2, 3,

(29)

where w(i)
t , i = 1, 2, 3, are white Gaussian noises with

intensities R(i)
t = 0.012, i = 1, 2, 3.

We now present a model to show the robustness of
the receding horizon filter against uncertainty [13]. In this
example, we demonstrate the advantage of the receding
horizon strategy using two filters: a distributed fusion
receding horizon filter (see Section 3) and a distributed
nonreceding horizon fusion filter (DNF) [17]. Three EQ-
DFRHFs were designed for the different common horizon
lengths Δ = 0.4, 0.5, and 0.6. We focus on the MSEs of the
third coordinate x3,t, called the sensor temperature, because
the time-varying uncertainty δt from (27) appears only in
this coordinate:

P33,t = E
(
x3,t − x̂3,t

)2, (30)

where x̂3,t = x̂EQ-DFRHF
t or x̂DNF

t .
Figure 5 compares the MSEs of the EQ-DFRHFs (“EQ”)

for the horizon lengths of Δ = 0.4, 0.5 and 0.6. As can
be observed in this figure, inside the time-interval TUI =
[1, 3], referred to as the Uncertainty Interval (UI), all EQ-
DFRHFs demonstrate better performance than DNF; this
is in general agreement with the robustness of the receding
horizon strategy. The MSEs of the nonreceding horizon filter
DNF are remarkably larger than other EQ-DFRHFs. Also, the
EQ-DFRHF with a horizon length Δ1 = 0.4 is more accurate
than the EQ-DFRHFs with horizon lengths Δ2 = 0.5 and
Δ3 = 0.6, that is,

PEQ
33,t(Δ1) < PEQ

33,t(Δ2) < PEQ
33,t(Δ3), t ∈ TUI. (31)
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Figure 4: MSEs comparison between NE-DFRHF and three LRHKFs before and after EUI.
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Figure 5: MSEs comparison between DNF and three EQ-DFRHFs.

On the other hand, outside the UI the differences
between the EQ-DFRHFs are negligible, though the EQ-
DFRHF with a maximum common horizon length of Δcom =
Δ3 = 0.6 is more accurate than other EQ-DFRHFs, that is,

PEQ
33,t(Δ3) < PEQ

33,t(Δ2) < PEQ
33,t(Δ1), t /∈TUI. (32)

Summarizing the simulation results in Figure 5, EQ-
DFRHF has a parallel structure and allows parallel processing
of observations, thereby making it more reliable than the
others since the remaining faultless sensors can continue the
fusion estimation if some sensors become faulty. Moreover,
EQ-DFRHF can produce high-quality results in a real-time
processing environment.

5. Conclusions

In this paper, we proposed a new distributed receding
horizon filter for a set of local sensors with nonequal horizon
lengths. Also, we derived the key differential equations for
determining the local cross-covariances between LRHKFs
with the different horizon lengths.

Furthermore, it was found that NE-DFRHF can com-
plement for robustness and accuracy when a common time
interval containing all sensor data is lacking. Subsequent

simulation results and comparisons between NE-DFRHF
and other EQ-DFRHFs and LRHKFs verify the estimation
accuracy and robustness of the proposed filter.

Appendix

Derivation of (13)–(17)

Local filtering errors e(i)
s and e

( j)
s , i /= j satisfy the following

equations:

ė(i)
s = F̃(i)

s e(i)
s − K (i)

s w(i)
s + Gsvs, s ∈ [t − Δi, t],

ė
( j)
s = F̃

( j)
s e

( j)
s − K

( j)
s w

( j)
s + Gsvs, s ∈

[
t − Δ j , t

]
.

(A.1)

Next, without losing generality, let us assume that

Δi < Δ j or t − Δi > t − Δ j . (A.2)

Then, on the common time-interval s ∈ [t−Δi, t], (A.1) can
be rewritten in the following form:

Ė
(i j)
s

def=
⎡
⎣ ė

(i)
s

ė
( j)
s

⎤
⎦ = A

(i j)
s E

(i j)
s + B

(i j)
s η

(i j)
s , s ∈ [t − Δi, t],

A
(i j)
s =

⎡
⎣F̃

(i)
s 0

0 F̃
( j)
s

⎤
⎦ , B

(i j)
s =

⎡
⎣−K

(i)
s Gs 0

0 Gs −K ( j)
s

⎤
⎦,

η
(i j)
s =

[
w(i)T
s vTs w

( j)T

s

]T
, η

(i j)
s ∼ N

(
0,Q

(η)
s

)
,

Q
(η)
s = diag

[
R(i)
s Qs R

( j)
s

]

(A.3)

with the special horizon initial conditions:

E
(i j)
s=t−Δi

=

⎡
⎢⎣
e(i)
s=t−Δi

e
( j)
s=t−Δ j

⎤
⎥⎦ =

⎡
⎣xt−Δi − x̂(i)

t−Δi

xt−Δi − x̂
( j)
t−Δi

⎤
⎦ (6)=

⎡
⎣
xt−Δi −mt−Δi

xt−Δi − x̂
( j)
t−Δi

⎤
⎦,

mt−Δ j = E
(
xt−Δ j

)
.

(A.4)
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Application of the Lyapunov equation to the model
(A.3) yields the following differential equation for the cross-

covariance C
(i j)
s = cov{E(i j)

s ,E
(i j)
s } on the common time-

interval:

Ċ
(i j)
s = A

(i j)
s C

(i j)
s + C

(i j)
s A

(i j)T

s + B
(i j)
s Q

(η)
s B

(i j)T

s ,

C
(i j)
s =

⎡
⎢⎣

cov
{
e(i)
s , e(i)

s

}
cov
{
e(i)
s , e

( j)
s

}

cov
{
e

( j)
s , e

( j)
s

}
cov
{
e

( j)
s , e

( j)
s

}

⎤
⎥⎦

=

⎡
⎢⎣
P(ii)
s P

(i j)
s

P
(i j)T

s P
( j j)
s

⎤
⎥⎦ .

(A.5)

Substituting the matrices A
(i j)
s , B

(i j)
s , and Q

(η)
s into (A.5),

we obtain the following equation for the cross-covariance

P
(i j)
s :

Ṗ
(i j)
s = F̃(i)

s P
(i j)
s + P

(i j)
s F̃

( j)T

s + GsQsG
T
s , s ∈ [t − Δi, t]

(A.6)

with the initial condition:

P
(i j)
s=t−Δi

= cov
{
e(i)
t−Δi

, e
( j)
t−Δi

}
(A.4)= Pt−Δi − cov

{
xt−Δi , x̂

( j)
t−Δi

}
.

(A.7)

To determine the covariance cov{xt−Δi , x̂
( j)
t−Δi
} in (A.7), let

us consider a set of stochastic equations for the state xτ and its

estimate x̂
( j)
τ on the remain time-interval τ ∈ [t − Δ j , t − Δi].

From (1) and (5) we obtain

Ż
( j)
τ

def=
⎡
⎣

ẋτ

˙̂x
( j)
τ

⎤
⎦=A

( j)
τ Z

( j)
τ + B

( j)
τ ξ

( j)
τ , τ ∈

[
t − Δ j , t − Δi

]

(A.8)

with the initial condition:

Z
( j)
τ=t−Δ j

=
⎡
⎣
xt−Δ j

x̂
( j)
t−Δ j

⎤
⎦ (A.4)=

⎡
⎣ xt−Δ j

mt−Δ j

⎤
⎦, (A.9)

where ξ
( j)
τ = [vTτ w

( j)T

τ ]
T

is a white Gaussian noise with

intensity matrix Q
( j)
τ = diag[Qτ R

( j)
τ ].

Then, the covariance of vector Z
( j)
τ

D
( j)
τ

def= cov
{
Z

( j)
τ ,Z

( j)
τ

}

=

⎡
⎢⎣

cov{xτ , xτ} cov
{
xτ , x̂

( j)
τ

}

cov
{
x̂

( j)
τ , xτ

}
cov
{
x̂

( j)
τ , x̂

( j)
τ

}

⎤
⎥⎦,

τ ∈
[
t − Δ j , t − Δi

]

(A.10)

is described by the Lyapunov equation for the model (A.8):

Ḋ
( j)
τ = A

( j)
τ D

( j)
τ + D

( j)
τ A

( j)T

τ + B
( j)
τ Q

( j)
τ B

( j)T

τ ,

τ ∈
[
t − Δ j , t − Δi

]
.

(A.11)

Since the second component of the initial vector Z
( j)
τ=t−Δ j

is nonrandom (x̂
( j)
t−Δ j

= mt−Δ j ), the structure of the initial

covariance D
( j)
τ=t−Δ j

can then take the special form:

D
( j)
τ=t−Δ j

=
⎡
⎣cov

(
xt−Δ j , xt−Δ j

)
0

0 0

⎤
⎦ =

⎡
⎣Pt−Δ j 0

0 0

⎤
⎦, (A.12)

where the nonzero element Pt−Δ j in (A.7) and (A.12) repre-
sents the covariance of the state xt−Δ j , which is determined
by the Lyapunov equation (7).

This completes the proof of Theorem 2.
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