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A graphical environment for CNN algorithm development is presented. The new generation of graphical cards with many
general purpose processing units introduces the massively parallel computing into PC environment. Universal Machine on Flows-
(UMF) like notation, highlighting image flows and operations, is a useful tool to describe image processing algorithms. This
documentation step can be turned into modeling using our framework backed with MATLAB Simulink and the power of a video
card. This latter relatively cheap extension enables a convenient and fast analysis of CNN dynamics and complex algorithms.
Comparison with other PC solutions is also presented. For single template execution, our approach yields run times 40x faster
than that of the widely used Candy simulator. In the case of simpler algorithms, real-time execution is also possible.
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1. Introduction

Nowadays there are many hardware implementations of the
Cellular Neural Network Universal Machine (CNN-UM)
[1] that can be divided into three major categories. The
first and usually the most powerful is the mixed-mode
(analog and digital) VLSI implementation like the Acel6K
[2], the SCAMP chip [3], and the eye-RIS chip [4]. They
are also referred to as focal plane processors since they
have direct optical input. These architectures employ one-to-
one mapping between pixels and processors. Vision Systems
are created based on them like the Bi-i system [5] or the
eye-RIS system [4] designed for industrial purposes. The
second is the emulated digital class that splits into two
subcategories. The first is the pipelined version such as the
FALCON [6] architectures implemented on DSPs or FPGAs
while the other is the coarse grained processor array (e.g.,
Xenon [7]) where n pixels are mapped to m processors
(usually n being much higher than m). The third category
is the optical implementations like POAC [8] which has the
advantage of the massive parallelism. These implementations

give researchers a handful of tools for processing two or three
dimensional sensory data flows which are received usually
from visual or tactile sources. Manipulations of data flows
need a special programming environment. Describing these
kinds of algorithms can be effectively done by using a high-
level Universal Machine on Flows (UMF) [9] flow-chart
model and its UMF diagrams.

The advantage of our simulator system is that it combines
functionality with clarity of UMF diagrams for description,
since these graphically represented data flow algorithms
can be run directly without the need for further coding.
Furthermore, these diagrams can easily be drawn only
using a simple drag-and-drop technique. This feature is
very helpful in algorithmic development by speeding up
the drawing process. The modeling environment gives fast
test results before optimizing the algorithm for any specific
hardware.

Our simulator environment is embedded into MATLAB
Simulink from MathWorks Inc. [10]. The aim was to exploit
its simulation ability for continuous time dynamic systems
and utilize its construction method of simple additional



Blocks (basic functional units). For referring to this concept,
capital letter is used to distinguish it from the one appearing
in Section 3. We have created a high level Blockset for the
CNN-UM programming structure including easy access to
the linear-type, one-layer subset of the CNN template library
[13]. The first version of our Blockset used the built-in
partial differential equation solver of Simulink. Despite of its
relatively slow speed it can be used efficiently for educational
purposes.

By deploying the execution of the most computation
expensive part to a fast external hardware component, we
obtain a powerful development environment that combines
the relatively high simulation speed with the advantages
of convenient UMF modeling. The mostly data parallel
structure of CNN tasks can be exploited by using hardware
accelerators, either multicored CPUs or the Graphical Pro-
cessing Units (GPUs) of graphical cards. We have chosen
the GPU for our purposes, because these extremely fast
developing systems have high performance and it is easily
incorporated into common PCs. There are other research
groups working on the development of the GPU powered
acceleration of CNN template running [11], which under-
lines its significance.

The structure of this paper is as follows: after the intro-
duction, Section 2 describes our graphical programming
interface, SIMCNN in detail. Section 3 gives an overview
of the architecture of the recent generation of NVIDIA
graphics cards that clarifies the reasons for our choice.
Section 4 describes the hardware mapping of the dynamic
CNN equations. In Section 5 a complex algorithmic example
is presented. Finally, performance comparison with other
simulating platforms is given.

Since the first publication [12], our framework has been
improved in two regards: (i) we have added a special function
for uncoupled templates, (ii) and improved the interfacing
Blocks for data transfer between the memory units of the PC
and that of the GPU. Thus the possible iteration number that
can be calculated for a single template with 25 frames per
second has increased from 80 to 90 with the same hardware
configuration.

2. SimCNN and Its Graphical
Flow-Based Programmability

2.1. The Software Framework. The simulator is based on
Simulink from MathWorks Inc., which is a widely used
software that has support for nearly any operating systems.
Graphical flow-based programmability has many advantages
compared to the standard imperative command-based ways.
Algorithms are mapped to transformations realized by Blocks
and links between them. Source Blocks are emitting signals
that are transferred by the links, processed by numerous
transformations, and finally stored or displayed by sinks.
Blocks can handle multiple inputs or outputs connected
to their ports. Simulink has built-in Blocks for realizing
specific data flow structures, like parallel or conditional
execution and signal routing. Simulation can be done for
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models with continuous states using differential updates,
integrator Blocks, and feedbacks. Alternatively, discrete time
models can be designed with memory and delay elements
based on larger fix time-steps. Built-in solvers exist for both
approaches.

In the first version of our SIMCNN blockset we used
built-in continuous time solvers. In this way multilayer
CNNs can be covered, and the dynamics of the system
can be visualized easily. In order to increase simulation
speed we decided to use hardware acceleration. The current
model works as follows: discrete time simulation is used
in the top level and all templates are executed atomically,
while the dynamic of a single template is handled by our
algorithm running on the video card. After the evolution
is calculated, the result is passed onto the connecting
transformations, and the Simulink scheduler selects the new
Block to evaluate. This method is closer to real CNN-UM
hardware realizations.

In the SimCNN Blockset, we defined necessary exten-
sions for accessing the video card and to run templates
on it (Figure 1). We also created a small user interface to
template Blocks for browsing the linear one-layered subset
of the template library. However, custom templates are also
supported. The Blocks are implemented using the s-function
extension interface. The Video and Image Processing Blockset
covers common image processing tasks although in our case
only I/O Blocks are used since algorithmic tasks are solved by
CNN templates.

In all time instances, signals are scalars or matrices in the
case of images. The memory space of the video card and the
host computer are separate. The core algorithm of Simulink
containing the scheduling and execution of Blocks and data
transfer are running on the CPU. Template execution has a
layer of code running on the CPU, invoking the layer running
on the GPU. Once an image is uploaded to the memory of
the device using the <Upload to GPU>> Block, we can refer
to it using a real value as ID, similar to pointers used in C
language. Image data are handled on the video card, and only
the IDs are transferred by the host from one template Block
to another. The final results are loaded back to the CPU using
the <Download from GPU>> Block. For the first execution
time instance, the structure is initialized using the parameters
of the surrounding Blocks to determine image dimensions
and memory requirements. After the initialization phase,
template execution will be performed. Simulink calls event
handler functions of each Block one by one in a good
serialized order.

2.2. UMF Description. The UMEF library [13] contains the
basic image processing algorithms and numerous powerful
ones like the CenterPointDetector or the GlobalConnec-
tivityDetection. This library is an excellent starting point
for developers to create their own programs. In the next
paragraphs, mapping between UMF notations and Simulink
elements marked with <symbol> are given for most
important functionalities. Our aim was to implement the
most important subset of the library to cover algorithms
using one-layer linear CNN templates.
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FiGure 1: Basic Blockset of SimCNN. Interfacing Blocks (a, b) are required to transfer data to the graphical hardware. The dynamics of each
template are calculated on the hardware in one atomic step. Template values, boundary condition, and simulation parameters like time step
and running time can be set using a dialog box (d) for each template Block (e). A subset of the template library is also included and can
be selected from a drop-down box. A special Block is also added with null transform to delay image flow with one step (c). The Blocks are

implemented using C language.

(1) Elementary instruction: is the basic template execu-
tion that is realized by the Block «<GPU Template>>.
The parameters can be set using the user interface.
The Block displays the execution time and also the
name of the template if it is from the library otherwise
labels it as “USER DEFINED.”

(2) Signals, variables: simulink supports naming of sig-
nals directly. Variables can be created by the «<GPU
Delay>> Block.

(3) Boundary conditions: can be set on the user interface
of the corresponding template.

(4) Continuous delay: is out of scope since simulation is
in discrete time.

(5) Step delay: can be realized with <GPU Delay>, or
they can be joined together to form longer delay line.

(6) Parametric templates: on the user interface of the
templates external input can be selected for external
parameters.

(7) Algorithmic structures: for creating the data path,
basic Simulink knowledge is needed. Fortunately
MATLAB Help is rather detailed and has good
tutorials for learning. To realize “Triggers” < Unit
Delay Enabled>> Blocks can be applied. The input
flow is blocked if the condition is not satisfied.
Complex flow structures like conditional loops can
be joined together using «MUX>> (multiplexer) or
< Switch>> Blocks.

(8) Decisions: decisions on scalar values can be done
using <Logic and Bit Operations>>, and scalars
can be derived from images (like average or min,
max) using the < Math Operations>> Blockset after
downloading the image to the host.

(9) Operators: various operators are supported by
Simulink but only for data in the host memory space.

However, implementation of most important global
operators can be expected in the near future.

(10) Subroutines: are element of the Simulink environ-
ment as well.

(11) Triggers, Cycles: <Enabled Subsystems> combined
with «If>> or «Switch> Blocks can be used for
UME-like branching, or «Iterator Subsystem>> can
be used for a slightly more readable notation.

In the following example the Center Point Detection
algorithm from the UMF library is presented. This is an
iterative method to detect mass center of objects in a binary
image using series of erosions. Objects are shrinking around
their perimeter one pixel in a specific direction in each step.
Directions are repeated in clockwise order to slim patches
symmetrically. The final result is a single pixel close to the
original mass center. Figure 2 shows both UMF description
and SimCNN model, and the evolution of the image. In
Simulink a «Unit Delay>> Block is needed to avoid direct
loops. The < Switch>> Block selects input image or the result
from a previous iteration for further processing. For the used
morphological templates 2 tau running time with 1 tau time-
step is reliable for convergence (DT CNN model).

Figure 3 shows a second example. A basic algorithm
was designed to help counting worms in blood samples.
Video flows were captured by a camera mounted to a
microscope. The specimens are not thin enough to fit into the
limited depth of field yielding partially blurred images. Blood
particles are relatively dark blobs, haemolyzed particles are
giving salt-and-pepper like noise factor. Worms are elongated
dark structures. With thresholding, a binary image can be
extracted covering the whole worms but also the blood
particles. The parts of the worms in focus are black thus
a stronger threshold value can be used to select them. The
remaining tiny particles can be removed by a Small Object
Killer template. A Recall wave can now be started from the
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F1GURE 2: Center Point Detection algorithm. The UMF model (a) and the corresponding SimCNN representation (b) are given alongside the
result for a 512 x 512512 x 512 image of an apple (c). The algorithm consists of iterating a sequence of eight erosion templates for all eight
direction. The SimCNN model comprises the < InputImage>> and <Display>> Blocks for reading the image file and displaying the result,
the «<Upload>» and <«Download>> Blocks to transfer images to and from the graphic card, and the eight <« GPUTemplate>> Blocks. To
realize the feedback a <« Switch>> Block can be used to select from the original or the updated image. The < Step> Block provides control

signal for the first time instances to send the input into the loop.

cleaned mask to reconstruct worm bodies. The algorithm run
video real time.

2.3. Template Running: The Approximate Equation of the
CNN. CNN dynamics are encapsulated in subroutines run-
ning mostly on the graphical hardware.

Let us consider the standard CNN configuration with
space invariant templates, connection radius r, cloning
templates A ,q, Byq where p,g € {—r,...,r}, bias map z;; and
output characteristic function f [14]

dx,-- ~ -~
dtj = —xij + Aij () + Bij(u) + zij, (1)
B0 = S AEresa @
pqE{—rrr}
By = T Bukupp(® )
PgE{—tsr}
Yij = f(xij)’ @)
1
fl@) = J(la+1]~la-1)). (5)

The differential equation can be solved from a starting

point x?j iteratively with Euler formula, (1) turns to be

(6). More sophisticated solvers such as the Runge-Kutta

method could also be used. Discussion will be presented in
Section 4.2.

x,‘j(t-f-dt) =xij(t)+dt>l<x,7j. (6)

As the input picture does not change over the template

execution time, a cumulated bias map W;; can be precalcu-

lated. dt * A, can also be calculated and stored to speed up
calculation of the feedback part V;;:

X,‘j(f‘f’ dt) = (1 —dt) * xij(t) + Vij(x) + Wij, (7)

Vi) = > [dt*qu] * f[xi+p,j+q(t)]) (8)
pgEi—1,5r}

Wi]‘ = [ﬁij(u) +Z,'j] * dt. 9)

Altogether two 2D data sets: state matrix x;; and W;;
are needed together with the constant template values to
calculate the state update for the next iteration. The template
execution can be simulated with adequately small time step
for n iterations to achieve steady state (in most cases) or some
specific states for templates like heat-diffusion.

3. GPU as a Hardware Accelerator

3.1. CPU versus GPU Comparison. Nowadays more than a
billion of transistors [15] could be found on a single digital
chip. This is an outstanding opportunity for creating not only
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FIGURE 3: Worm detection algorithm, a realtime example. This figure shows the SImCNN model for the algorithm. It contains the UMF-like
diagram flow chart of a sample algorithm (b) that can be run video real-time. This is a worm detection application, for extracting elongated
structures from microscope images of blood samples. The upper first image on the upper panel (a) displays the input followed by the two
thresholded intermediates, the one after running the Small Object Killer template and finally, the reconstructed image using Recall template
that is the result of the algorithm. «Upload>> and «Download>> Blocks are used for interfacing the parts running on CPU and GPU,
while templates are running mostly on GPU, represented by <« GPUTemplate>> Blocks.

single but dual, quad or many cores on a single die. This
multicore tendency, however, had a higher impact on the
Graphics Processing Units than on the Central Processing
Units of PCs. This is confirmed by the fact that nowadays
GPUs with 128 processors are widely available, but only
dual- or quad-core CPUs are common on the market. Owens
et al. show in their survey [16] that more than five times
greater computational power can be achieved compared
to nowadays’ CPU used worldwide in personal computers.
The main significant difference is the amount of transistors
dedicated to the data processing elements versus the amount
used in local cache circuits. The high percentage of the
transistors in CPUs is responsible for flow control and for
caching. The GPU needs more effort from the programmer
to design efficient code with explicit care of data transfers but
offers more computational power on the other hand.

If consider other cheap, compact solutions for scientific
calculation than PCs, another possible solution is Sony
PlayStation III based on Cell processor technology from the
STT alliance (Sony, Toshiba, and IBM). This can be used with
Linux operating system but the small amount of memory
embarasses the use of graphical environments so this cannot
replace a PC in everyday use. Cell is a very powerful digital
processor but for some applications, GF8800GT overper-
forms it. While the Cell Broadband Engine Architecture with
8 Synergistic Processing Elements (SPEs) clocked at 3.2 Ghz

is capable of theoretical 208.4 Gflops [17], the 8800 GTX with
128 stream processors clocked at 1.35 Ghz reaches 520 Gflops
in peaks (above 300 Gflops in practice) [18] for nearly the
same price.

Therefore, we can state that today’s GPUs with their
high level of parallelism are cost-efficient processors for
performing the power resource extensive task of CNN
simulator, namely, template running.

3.2. Compute Unified Device Architecture (CUDA): NVIDIA’s
Newest Architecture. In order to realize a nongraphic oper-
ation like template running on the graphics card, there
must be a software and hardware solution to access the
high computational power of the GPU. This need is fulfilled
by NVIDIAs newest development, the Compute Unified
Device Architecture (CUDA). This novel approach code
can be built in C-like language without any knowledge
about graphical programming like DirectX or OpenGL. It is
available not only on the high-end category, but also on the
whole NVIDIA’s 8 series cards. The gaming market is huge,
driving production in enormous quantities compared to any
scientific equipment, making it available for a wide audience
in the near future to benefit from its advantages for a low
price. Before the technical implementation, we highlight the
major hardware parts of the GPU’s architecture.
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FIGURE 4: Hardware model of the GeForce 8 series cards [19]. It is a new unified hardware architecture with multiprocessors (MPs) that have
dedicated shared memory accessed by a few scalar-based processors replacing the separate vertex and pixel shaders. Processors work with
their own registers and are driven by a common Instruction Unit forming a single instruction multiple data architecture. Algorithms can run
on multiple MPs, although communication between MPs via the Device Memory is relatively slow. Data can be loaded from the read-only

Constant and Texture Cache as well.

In Figure 4 the hardware model of this architecture
is described briefly. One can realize that dedicated pixel
and vertex shaders were replaced with unified, scalar-based
processors. Eight of these processors are grouped with
an Instruction Unit to form a single-instruction-multiple-
data (SIMD) multiprocessor (MP). The number of MPs
varies from 1 to 16, yielding 8 to 128 parallel processors.
Global memories are much faster than those in use on
mainstream motherboards nevertheless, these would be still
too slow for supplying the data for all processors. Therefore,
three ways for caching were introduced. A 16 KB per MP
high-speed universal purpose shared memory is available
beside the constant (1D) and texture (2D) caching memory.
I/O instructions accessing device memory through cache
converges to 1-2 cycles while direct access costs 100-200
clock cycles.

CUDA supports implementing parallel algorithms with
topological processing, running the same code segment
on all nodes, which is similar to the CNN architecture.
Since the number of the physical computing elements
(processors) is typically less than the number of nodes for
one-to-one mapping, an automatic serialization is applied.
All processors run a thread at a given time, which is its
execution context. The atomic algorithm part covering an
execution of a subroutine on the nodes is called kernel.
Groups of topologically associated threads called blocks
(notation with small starting letter) are also arranged in a
grid topology (Figure 5). The low-level cluster is especially
important because all threads in a given block are executed
on the same MP, so they have a common high-speed,
low-latency (1-2 clock cycles) shared memory that can
be used for creating local interconnection. It is tempting
to group all nodes to a single block in order to form a
fully connected network, a block, however, can encapsulate

maximum 256 threads. Moreover, all threads need space
for storing their data, and the amount of memory available
for a block is only 8 Kbytes, therefore a hard limitation is
encountered. Since there are only eight processing elements
in a Multiprocessor unit, when large number of threads
are associated, frequent context switching also slows down
execution [19].

The communication between the threads can be realized
only through memory transfers. Synchronization is needed
in order to preserve checkpoints to avoid inconsistencies
in communication. We have to minimize data exchange
between threads that are mapped to distinct blocks, because
the only way to do that is accessing the high-latency (100-200
clock cycles) global memory. Since there is no support for the
synchronization outside the blocks, the whole kernel should
be finished to be sure that all the threads are ready. This
means splitting algorithms into smaller kernels. Programs
in the CUDA framework consist of kernels compiled into
binary code, executed on the graphic card and controlling
code running on the host computer.

4. Mapping

4.1. Input/Output Requirements. The actual topological
problem is the CNN dynamics equation. CNN cells are
arranged in topological grid. Similar configuration can be
created from threads. Analysing the state equations, one
could see that this problem is a memory intensive one.
To calculate the state update for a pixel, the constants
for the template values, the nine state variables from the
neighbourhood, and the nine values from the cumulated bias
map (x;j, Wj;) are needed. The memory fetch from global
memory can cost 100-200 machine cycles compared to 1-2
cycles needed for arithmetic calculations.
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low level threads are organized into blocks. This grouping is relevant because they mapped to a common MP. Threads run the same code but

different data can be referred using index parameters.

If all pixels are accessing their nine neighbors separately,
that will not be efficient. The 2D aware texture cache can
be applied to assist joint prefetch, but the cache hit rate
is less than 100%. Unnecessary redundant memory access
can be eliminated with direct copying of all referred states
for threads in a block into the shared memory. The small
amount of constant values can be fit into the constant cache.
After the reading commands, a checkpoint can be placed for
synchronization before starting the calculation.

4.2. Tiling. Rectangular parts of the image can be assigned
to a block and calculated by threads running on the
same Multiprocessor, so they can synchronize with each
other. After the state update, blocks should write results
to global memory to be accessible for neighbours and for
the host computer. To calculate derivatives, neighbouring
values are also needed, thus overlapped tiling is necessary
when covering the full image. The overlapping regions are
read from both tiles but only the nonoverlapped regions are
updated.

For the Euler method only the r direct neighbours are
needed for a state update step, while for 4th-order Runge-
Kutta (RK4) to calculate immediate substeps 4 X r cells are
needed to be read from x;; image in each direction along
the diameter. Mapping squared regions offer the best area
perimeter ratio.

Considering 16 x 16 pixel blocks and a template with r =
1 neighborhood, for Euler neighbor constraint rises (17 x
17 — 16 x 16) = 33 read overhead compared to 256 updated
cell (13 percent), while for RK4 (20 x 20 — 16 X 16) = 144
extraread is needed (56 percent).

The first version of our system relies on the built in
solvers of Simulink so we could test both methods. The
linear subset of the templates that can be used in present

hardware implementations consists of robust ones that
converge relatively fast even with large (0.5 tau, 0.6 tau) steps
or even 1 tau for binary templates. The RK method gives
more accurate solution, converges faster, and a larger time-
step can be used [20]. Although considering the penalty for
extra memory access, the advantage can be taken only for
more complicated dynamics like polynomial or multilayered
CNNG. The aim of this work was to give a tool for algorithmic
testing with many templates rather then to write a new high
precision solver. The Euler method and (7) will be used to
estimate the dynamics.

4.3. Grid Configuration. The CUDA gives support for four
element vectors beside the standard data types. If a thread
is responsible for more pixels, the outputs can be packed
using vector representations. On the other hand, simple
algorithms—minimizing the branching—are needed for
efficient parallel execution. Therefore, four pixels from a row
are associated to a thread. To minimize read overhead around
perimeters, squared image parts are required. Considering
the maximal 256 threads allowed in a block, 4 threads in a
row, and 16 rows configuration (4 X 16 = 64 threads) is used
for handling tiles with 16 X 16 pixel efficient regions.

4.4. Data Format. In Simulink the preferred data format
is double (double precision floating point represented on
64 bit) especially for «Video Display>> Block in [0, 1]
interval for images. To store data on the graphic card, short
(16 bit integer) format was selected. The signal range of
CNN [—-1,1] was mapped into [-2048 - - - 2047], allow-
ing [—8 --- 8] value to be represented in a short value
assigned to the state variable of a pixel, which is large enough
to cover cell dynamics and also a compact form to keep
memory consumption low. The arithmetic calculations are
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FIGURE 6: Implementation of a complex problem. UMF diagram of the Adaptive Background and Foreground Estimation subroutine (a) is
shown with the corresponding SImCNN model (b). The algorithm can process input flow captured with a web camera on the fly. The static
part of the input flow is estimated in a feedback loop (Background). Parts with significant difference in gray level are considered to be moving
objects (Foreground). Abs. differences and Threshold are implemented using two Thresholds <« GPUTemplates>> and Morphological
Filtering with a Diffusion and Threshold. During the experiment a person is coming into the screen from the left and stops in the middle.
Characteristic screenshots are shown on the upper panel (c). Foreground parts are overlapped to the input flow.

done in float (single precision floating point represented
on 32 bit) to fit hardware capabilities of the GPU. Format
conversion is done automatically during memory access.
Range conversion is handled by the interfacing Simulink
Blocks implemented by kernels running on GPU.

The execution of a template has two stages: calculating
the cumulated bias map (W;;) and iterating the state update
kernels. Between state updates handling of the boundary
condition is also needed. Three appropriate kernels were
created with a controlling host function. This function is
invoked by the <« GPUTemplate>> block.

The main objective was to handle coupled templates.
Uncoupled templates for thresholding, logic operations, and
for addition are also frequently used in algorithms, so
a special kernel with embedding host function was also
designed. This kernel can calculate the whole dynamic of
a cell since no synchronization is needed between blocks.
Using this method gives moderate speed-up, but this is not
extremely remarkable since templates from this class need
only a small number of iterations to converge (about 10) with

small execution time compared to the overhead of executing
a Block.

5. Complex Algorithm

To demonstrate the possibility of handling complex algo-
rithm in SImCNN the implementation of the Adaptive
Background and Foreground Estimation subroutine from
the UMF library is presented (Figure 6). The UMF diagram
refers to two input variables, namely, U for the actual
input image, and B; for the actual background image.
The background model is used from the previous time
instant (B;—;) that implies a feedback in the processing
and a Delay element. Starting value is needed (e.g., 0) in
the SIMCNN model for initializing B,. Image parts that
are significantly brighter in the input than the model are
increased, significantly darker regions are decreased in the
model image. In case of static scene the model converges.
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TasLE 1: Comparison of test results with other implementations.
T7200 CELL 8800GT Candy XC3S55000
Frequency (MHz) 2000 3200 1350 2130 150
No. of Processors 2 8 120 1(2) 34
M cell iteration 48 3627 590 15 1700
Power (W) 34 86 160 65 10
450 Experiments were conducted on 512 X 512 sized images.
- 4007 The simulation steps were as follows: image loading from
E 3501 Tl ~ 1291 +29.8 hard drive, Upload to GPU, a series of template operation
g ;gg: ‘ on GPU, Dpwnload frO.m .GPU, Visuaflizat'ion,.and fr.ame
bs rate estimation. The built-in profiler in Simulink reliably
= 200 t ~ 0.51n+23.3 . 1 .
% 150 - e measures in the millisecond range, so for fast running Blocks
g 1001 _____ -="7 fi ~0.25n+16.9 it is quite unreliable, but the averaged measurement for
Ao ot T~ 0251 4 0.53 large number of independent template executions can be
0 - . . . . . used (1000 inputs). It converges to 0.25 milliseconds for
0 50 100 150 200 250 300 350 a single Euler-iteration. This would allow for 4000 Euler-

Number of Euler iterations n

—— DPure template time

—— One template system (over all time)
--- Two template system (over all time)
'''''' Five template system (over all time)

Ficure 7: Execution speed of a series of template each running
for n iterations. The measured value for a single template running
influenced by all necessary interface Blocks is displayed with straight
thin line (#;) and its theoretical maximum without overhead with
straight bold line (#). Results for two and five serially joined
templates with overhead are indicated by striped (t,) and dotted
line (t5) , respectively.

The updated model is compared to the image again
in the detection part of the algorithm. Abs. Difference
and Thresholding are implemented with multiple Threshold
Blocks. Diffuse and a further Threshold Blocks are used to
form connected foreground mask. This result is similar in
functionality to a series of morphological operators but it is
more effective in SIMCNN due to the lover number of Blocks.

In the experiments the camera was inspecting our
laboratory. Person entering the static scene is detected
while he is moving. After he stops the background
model is shortly updated. Small changes are not
highlighted, like the slowly turning head. Sensitivity
can be tuned in the «<THRESHOLD_LOW_1>» and
<THRESHOLD_HIGH_1>> modules, the learning speed
for the model with the multiplication factors.

6. Experimental Results

The simulation platform for the SIimCNN toolkit was an
NVIDIA GeForce 8800 GT GPU connected to an Intel
Core-2 2 x 2.13GHz CPU (E6400) via PCI Express 16x.
Our applications were tested both in Linux and Windows
environments with NVIDIA driver version 169.07 (32bit)
and CUDA Tool kit 1.1. The embedding MATLAB version
was 2007 b with Simulink 7.0.

iterations per second (ips), but the execution of the interface
Blocks, and the embedding layer to Simulink environment
present significant additional load. In addition, Simulink
also introduces small overhead for joining the Blocks (i.e.,
communication). The turn around speed for evaluating a
single input image of this minialgorithm was also recorded
(in frames per second-fps) with the «Frame Rate Display>>
Block in the function of Euler-iteration numbers. It is an
overall speed indicator that includes the total overhead. For
comparison we evaluated networks with a single template,
two templates and five templates joined in a line (Figure 7).
Since the first report of our work small improvement has
been achieved in the interface Blocks. As a result, real-time
processing (25 input images in a second) can be achieved
with up to 90 iterations for a frame together with displaying
the outputs (590 mega cell iteration per second).
Furthermore, we have compared the results to other
simulator systems. For educational purposes, one of the most
common tools is Candy from Analogic Computers Inc. [21].
It also offers an algorithmic framework with the template
iteration time of 17.5 milliseconds for a 512512 sized image
running on a 2.13 Ghz Intel Core2 Duo (E6400 with 2 MB L2
cache) computer with 14.98 million cell iteration per second.
Since this software does not use multithread computing
there was no significant effect of the multicore architecture.
Measurement for 1.86 Ghz Intel Pentium 4 (M750 with 2 MB
L2 cache) gave 12.48 million cell iteration per second. Taken
everything together, almost 40x speed-up has been reached.
A comprehensive comparison can be found in [22] for
the actual CNN simulators and emulators that we extended
with the result of our measurements (Table 1). The first
column shows characteristic values for Intel Core Duo
(T7200 with 2 MB L2 cache) using the highly optimized Intel
Performance Library [23] to implement convolution. The
next column stands for the Cell Broadband Engine hosted
by a PlayStation III. The last column shows results for an
FPGA board with Xillinx Spartan3 chip (XC355000). Cell
processor gives the best performance but integration into our
desktop computer is not yet supported. In the Cell and FPGA
setups a variation of the Falcon architecture was used based
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on the Euler method. We can conclude that our solution
is twelve times faster than that of the CPU of cutting-edge
PCs.

The worm detection algorithm that was presented in
Section 2.2 consists of four templates, namely, two Threshold
templates, a Small object killer, and a Recall template. They
converge in 9 tau, 15 tau, and 27 tau, respectively, with 1 tau
step size. The complete algorithm consumes 60 iterations for
each input image, thus with about 25 milliseconds of total
overhead it runs with 25 fps.

The complex algorithmic example presented in Section 5
can run with 5fps. The online capturing and the large
number of connected templates give significant overhead.
The processing speed is low but still enough to catch moving
people in a live demonstration.

7. Conclusion

We have presented an algorithmic development framework
for designing and testing CNN algorithms using UMF
diagram-like notation. Simulink gives an environment for
handling various data streams and for creating complex
flow structures to build algorithms. With the additional
Simulink Blocks of SImCNN we can get an efficient CNN
simulator for an affordable price. We have stated our design
considerations for optimal mapping between the CNN and
the GPU architecture, resulting in a competitive speed that is
twelve times faster than the implementation using high-level
optimization on a cutting-edge CPU for a single template. To
apply for this SimCNN software package, visit [24].
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