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1. Introduction

In order to provide an efficient instantaneous frequency
estimation for nonstationary signals, the time-frequency
analysis has attracted the attention of many researchers.
Depending on the applications, various time-frequency
distributions have been proposed. Among them, commonly
used, are quadratic distributions from the Cohen class
[1, 2]. It is well known that the Wigner distribution, for
example, provides an ideal concentration along the linear
instantaneous frequency. However, it suffers from cross
terms in the case of multicomponent signals. Also, for
nonlinear instantaneous frequency, the inner interferences
appear. Thus, for the analysis of signals with varying
instantaneous frequency, higher-order distributions are used
[3–7]. Also, some interesting methods based on neural
networks [8, 9], sparsity constraint of energy distribution
[10], and autoregressive moving-average models [11] have
been recently introduced to improve the resolution in the
time-frequency domain.

In order to provide an accurate instantaneous frequency
estimation even when the signal phase varies significantly
within a few signal samples, the distributions with complex-
lag argument have been introduced [12–15]. However, it is

still difficult to deal with cross-terms in the case of mul-
ticomponent signals. The problem may also appear in the
numerical calculation of the analytic extension that is used
to obtain signal with complex-valued argument. It might
affect the precision of instantaneous frequency estimation.
A solution for multicomponent signals has been proposed
in [16]. Namely, the Nth order complex-lag distribution is
obtained by convolving the S-method with the concentration
function (of order N − 2) in the time-frequency plane. This
approach introduces significant approximations that cause
additional complexity in the numerical realization.

In this paper we propose a new class of time-frequency
distributions whose members can provide an efficient esti-
mation of fast varying instantaneous frequency for mul-
ticomponent signals. This concept is established in the
ambiguity domain, and it can be seen as a more effective
counterpart of the method in [16]. Starting from the
definition of the generalized complex-lag time-frequency
distribution [15], two ambiguity domain representations
are defined. The first one is related to the signal with
real-valued argument and corresponds to the standard
ambiguity function. The second one is related to the signal
terms with complex-valued argument. In order to obtain a
highly concentrated representation, free of cross-terms, inner
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interferences, and other disturbances, the two ambiguity
domain representations are filtered by using the suitable
kernel function. Afterwards, the resulting generalized ambi-
guity domain representation is obtained by performing 2D
convolution within the ambiguity domain. A new form
of the Nth order complex-lag time-frequency distribution
follows as a two-dimensional inverse Fourier transform
of the proposed ambiguity domain representation. More
generally, by considering various existing kernels, the entire
class of complex-lag distributions is defined. Thus, instead of
using the S-method as in [16], various distributions from the
Cohen class can be used. The theoretical considerations are
illustrated by the examples.

2. Theoretical Background—Complex-Lag
Time—Frequency Distribution

The distribution with complex-lag argument has been intro-
duced to provide a highly concentrated representation along
the instantaneous frequency for signals with fast varying
phase function. The complex time-frequency distribution
has been defined in the form [12]
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This distribution satisfies a number of important prop-
erties [12, 13]: it is real-valued (for x(t) = re jφ(t)),
time-shift, and frequency-shift covariant, satisfying marginal
properties, time-frequency scaling property, and so forth.
Also, it significantly reduces the spread factor compared to
the quadratic distributions [12] (meaning the concentration
improvement): Q(t, τ) = φ(5)(t)τ5/(445!) +φ(9)(t)τ9/(489!) +
· · · . Note that the dominant term within spread factor
Q(t, τ) is of the fifth order, while in the case of Wigner
distribution this term is of the third order.

The values of signal with complex-lag argument x(t+ jτ)
are calculated by using the analytic extension of x(t) as
follows:

x
(
t + jτ

) =
∫∞
−∞

X(ω)e−τωe jωtdω, (2)

where X(ω) is the spectrum of x(t).
Further improvement of the concentration in the time-

frequency domain is obtained by increasing the distribution
order. Therefore, the generalization of complex-lag distribu-
tion for signals with fast varying instantaneous frequency has
been introduced [15, 16]:
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The complex–lag signal moment Mc(t, τ) is defined as [16]
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where wN ,k = e j2πk/N defines the roots on the unit circle,
while N is an even number representing the distribution
order. Observe that the real-lag signal moment Mr(t, τ) =
x(t + τ/N)x∗(t − τ/N) leads to the Wigner distribution
(special case for N = 2), while the complex-lag moment
represents the concentration function whose number of
terms depends on the distribution order. Unlike the Wigner
distribution, the generalized complex-lag time-frequency
distribution of order N ≥ 4 provides an arbitrary high
concentration even when the variations of instantaneous
frequency are within a few samples. The spread factor is given
by

Q(t, τ) = φ(N+1)(t)τN+1

NN (N + 1)!
+
φ(2N+1)(t)τ2N+1

N2N (2N + 1)!
+ · · ·. (5)

Thus, the distribution spread factor can be arbitrarily
reduced by the appropriate choice of N .

Note that the generalized complex-lag time-frequency
distribution preserves the properties of the distribution
defined by (1), which is a special case for N = 4. In the case N
= 6, the complex roots wN ,k on the unit circle are defined as:
w6,1 =

√
3/2 + j(1/2),w6,2 =

√
3/2− j(1/2), and the following

form is obtained:
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Although the generalized complex-lag time-frequency
distribution represents an efficient tool for the instantaneous
frequency analysis, the presence of cross-terms in the case
of multicomponent signals is still a challenging problem. In
this case, the significant approximations are needed [16],
which consequently affect the properties of the distribution
(e.g., marginal properties are satisfied only when a single
component is observed). An additional problem appears
in the numerical realization, which is again especially
emphasized for multicomponent signals. Namely, in the
calculation of signal with complex-lag argument, the real
exponential function e−τω assumes large values as τ increases,
leading to the serious miscalculations due to the software
precision range. These calculation errors affect the accuracy
of the instantaneous frequency estimation, especially in the
case of rapid phase variations when larger N is preferred.

3. A Class of Complex-Lag
Time-Frequency Distributions

3.1. Ambiguity Domain Representations of Real and Complex-
LagMoment. In order to overcome the difficulties in the case
of multicomponent signals, the idea is to use the advantages
of the ambiguity domain, not only to provide cross-terms
free time-frequency representation, but also to efficiently
remove disturbances caused by the miscalculation of analytic
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extension. Moreover, the complex-lag distribution in [16]
will be extended to a class of complex-lag distributions.
In this sense, the proposed approach aims to keep good
properties of Cohen class distributions within a class of
complex-lag distributions.

The ambiguity function related to the real-lag moment
can be written as

AFrt(θ, τ) =
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−∞

Mr(t, τ)e− jθtdt

=
∫∞
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)
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(7)

It corresponds to the standard ambiguity function:
AFrt(θ, τ) = AF(θ, 2τ/N), with the autoterms located
around the origin, while the cross-terms, in the case of
multicomponent signals, are dislocated from the auto-terms.

In analogy with (7), we can also define the ambiguity
domain representation of the complex-lag moment Mc(t, τ)
as follows:
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The signal’s terms in (8) are obtained by using the
analytic extension of x(t). In the case of multicomponent
signals it can be calculated as follows:
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(9)

where M is the number of signal components, 2Wm

is the width of signal component, while ωm(t) =
arg{maxω STFT(t,ω)}. Note that during the computation
of the analytic extension, the miscalculations may appear
for large values of ωτ, that should be filtered within the
AFct(θ, τ).

In order to remove cross-terms and miscalculation
disturbances from the two proposed ambiguity domain
representations, a kernel function C(θ, τ) is considered. The
filtered ambiguity domain representations are obtained as:

AFc
rt(θ, τ) = C(θ, τ)AFrt(θ, τ),

AFc
ct(θ, τ) = C(θ, τ)AFct(θ, τ).

(10)

Table 1: Some of the commonly used kernels.

Choi-Williams kernel C(θ, τ) = e−θ
2τ2/σ , σ > 0

Born-Jordan kernel C(θ, τ) = sin(θτ/2)
θτ/2

Cone-kernel C(θ, τ) = e−ατ
2 sin(θτ/2)

θτ/2

Sinc kernel C(θ, τ) = rect(θτ,α)

Since AFrt(θ, τ) contains all information about signal’s
component, the kernel could be adjusted to the auto-terms
of AFrt(θ, τ), as in the case of Cohen class derivation [17,
18]. Some of the signal independent kernels are given in
Table 1. The commonly used fixed kernels have a number of
desirable properties. For example, time-shift and frequency-
shift properties are satisfied; the realness is satisfied if
C(θ, τ) = C∗(−θ,−τ), while the marginal properties: signal
instantaneous power and power density spectrum are satisi-
fied if C(θ, 0) = 1 and C(0, τ) = 1, respectively. One might
observe, for instance, that the Choi-Williams, Born-Jordan,
and Sinc kernel satisfy both marginal properties, unlike
the Cone-kernel that satisfies only the signal instantaneous
power. Generally, the properties of the distributions from the
proposed class will depend on the kernel, as in the case of
Cohen class distribution.

In many cases, the kernels show a preferred behavior
in the time and/or the frequency direction. The degree of
cross-terms reduction depends on the way in which the
Wigner distribution is oriented in the time-frequency plane.
Usually, there is a trade-off between cross-terms suppression
and auto-terms concentration [19, 20]. The cross-terms
attenuation in the case of multicomponent signals is highly
sensitive to the relative time-frequency location of interfering
signal components [21]. Namely, if signal components
occur either around the same time or around the same
frequency, the interference terms are located around τ or
θ axis. In this case, the shape of fixed kernels from Table 1
cannot provide removal of cross-terms without affecting the
auto-terms.

In the examples, we have also considered the fixed
Gaussian kernel: C(θ, τ) = e−(θ2+τ2)/2σ2

. It satisfies marginal
properties only when a single component is observed.
However, the shape of this kernel provides the efficient
removal of interference terms, without disturbing auto-
terms in the ambiguity domain, as it will be shown later.
Also, the disturbances caused by the miscalculations of the
analytic extension in AFct(θ, τ) are eliminated by using this
kernel.

Note that various adaptive and signal dependent kernels
could also be successfully used [20, 22–26], such as Radially
Gaussian kernel [22]. However, it is outside the scope of this
paper and could be a topic of the future work.

3.2. Generalized Ambiguity Domain Representation and the
Corresponding Class of Time-Frequency Distributions. As it
was discussed in the previous section, in the case of highly



4 EURASIP Journal on Advances in Signal Processing

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(a)

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(b)

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(c)

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(d)

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(e)

−40

0

40

Fr
eq

u
en

cy

−1 1

Time

(f)

Figure 1: (a) Wigner distribution, (b) Wigner distribution with Gaussian kernel, (c) GCDAF (N = 4) with Choi-Williams kernel, (d) GCDAF

(N = 4) with Born-Jordan kernel, (e) GCDAF (N = 4) with Sinc kernel, and (f) GCDAF (N = 4) with Gaussian kernel.

nonstationary signals, the concentration of the Wigner dis-
tribution is improved by the concentration function within
the complex-lag distribution. Similarly, in the ambiguity
domain, the AFc

ct(θ, τ) (based on the complex-lag moment)
acts as a correction term that improves the concentration
of auto-terms in AFc

rt(θ, τ). Thus, the resulting ambiguity
domain representation for highly nonstationary signals can
be obtained as a two-dimensional convolution of ambiguity
functions AFc

rt(θ, τ) and AFc
ct(θ, τ). However, when dealing

with multicomponent signals, it is necessary to introduce an
additional window function to avoid new cross-terms that
will appear due to convolution. Thus, following the analogy
from the time-frequency domain, where the concept of
windowing the product in convolution, has been introduced
to define the S-method, that is, cross-terms free WD [27]:

SM(t,ω) = 1
π

∫∞
−∞

P(λ)STFT(t,ω + λ)STFT(t,ω − λ)dλ,

(11)
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Figure 2: The complex time-frequency distributions from the proposed class for: (a) N = 2; (b) N = 4; (c) N = 6; (d) the exact instantaneous
frequency (blue line) and estimated instantaneous frequency from GCDAF, N = 6.

(P(λ) is a frequency domain window), the resulting cross
terms free ambiguity domain representation can be defined
as:

AFCTD(θ, τ) =
∫∫∫∞

−∞
P(ξ)e− jξτ1e jξ(τ−τ1)

× AFc
rt(θ1, τ1)AFc

ct(θ − θ1, τ − τ1)dτ1dθ1dξ.
(12)

The cross-terms will be completely avoided if the size
of the window P(ξ) is less than the minimal distance
between the auto-terms. The exponential functions in (12)
correspond to the frequency shift in time-frequency domain.
Based on the ambiguity domain representation, the new class
of complex-lag time-frequency distributions is defined as
follows:

GCDAF(t,ω) = 1
2π

∫∫∞
−∞

AFCTD(θ, τ)e jθt− jωτdτdθ. (13)

3.2.1. Calculation Complexity. Observe that the proposed
distribution for N = 2 corresponds to quadratic dis-
tributions from the Cohen class. For higher order N =
4, 6, . . . , the calculation complexity increases due to the com-
putation of complex-lag ambiguity function AFct(θ, τ) (of

order N−2). Comparing with the Cohen class distributions
(e.g., Choi-Williams distribution), additional computations
are related to AFct(θ, τ) and resulting ambiguity function
(12). The calculation of AFct(θ, τ) involves calculation of
signal with complex-lag argument (N−2 FFT routines
(O(Ns(N−2)log2Ns) operations for Ns samples within the
window), M(N−2) IFFT routines by using 2Wm sam-
ples (O(M(N−2)Wmlog22Wm) operations), and Ns com-
plex multiplications with exponential terms); calculation
of complex-lag signal moment ((N−3)Ns complex multi-
plications), and FFT routine to obtain ambiguity function
(O(Nslog2 Ns )). Hence, the calculation of AFct(θ, τ) function
is O((N−2)Nslog2Ns).

Filtering with kernel function: AFc
ct(θ, τ) = C(θ,

τ)AFct(θ, τ) requires the same number of arithmetic opera-
tions as AFc

rt(θ, τ) = C(θ, τ)AFrt(θ, τ), that is also used in the
Cohen class distributions (e.g., Choi-Williams distribution).
The resulting ambiguity function is obtained as a correlation
within the window of length 2L + 1 (Ns(2L + 2) complex
multiplications and L · Ns complex additions (O(Ns)).
Assuming that the same circuit could be used for filtering
of real and complex-lag ambiguity function, the proposed
distribution for N ≥ 4 results in O((N–2)Nslog2 Ns)
additional arithmetic operations compared to the Choi-
Williams distribution.
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3.3. Group Delay. For the purpose of group delay analysis,
the frequency domain form of time-frequency distributions
is used. Thus, in the sequel, the proposed class of time-
frequency distributions will be considered in frequency
domain, as well.

For a signal X(ω) = A(ω)e jϕ(ω), that represents the
Fourier transform of x(t), the real and complex-argument
moments are defined as follows:

Mr(ω, θ) = X
(
ω +

θ

N

)
X∗
(
ω− θ

N

)
,

Mc(ω, θ) =
N/2−1∏
k=1

Xw∗N ,k

(
ω +

wN ,k

N
θ
)
X−w

∗
N ,k

(
ω− wN ,k

N
θ
)
.

(14)

Note that the signal with complex argument is obtained as:

X
(
ω ± wN ,k

N
θ
)
= 1

2π

∫∞
−∞

x(t)e∓ jwN ,kt/Ne− jωtdt

= 1
2π

∫∞
−∞

x(t)e±bt/Ne− j(ω±a)tdt,

where wN ,k = a + jb.

(15)

The corresponding ambiguity functions related to the
real and complex-argument moment are given by:

AFrt(θ, τ) = 1
2π

∫∞
−∞

Mr(ω, θ)e jωτdω

AFct(θ, τ) = 1
2π

∫∞
−∞

Mc(ω, θ)e jωτdω.

(16)

The resulting ambiguity function AFCTD(θ, τ) and the
corresponding class of complex-argument time-frequency
distributions are of the same form given by (12) and (13),
respectively.

4. Examples

Depending on the rate of the instantaneous frequency
variations within the window, distributions of various orders
should be used. Namely, the spectrogram suffices for a
constant instantaneous frequency, while for a linear instan-
taneous frequency one should use quadratic distributions.
However, for faster variations of the instantaneous frequency
within the window such that the presence of its second
derivative, (i.e., third-phase derivative) is significant, one
should use the complex-lag distribution with N = 4. Further,
if the presence of the fifth-phase derivative is also significant,
the order N = 6 should be used, and so forth. Having in
mind physical properties of an observed signal generating
process, one may have a rough idea about the rate of the
IF variations, which may be used for the choice of an
appropriate distribution order.

In the following examples, we deal with highly non-
stationary multicomponent signals whose instantaneous
frequency varies significantly within a few samples. They are
periodically modulated and, in real cases, correspond to the
radar signals generated by nonuniform rotation of reflecting
point.

Table 2: MSE of the IF estimation.

Distribution MSE

Choi-Williams
distribution

47

GCDAF for N = 2, that is,
Wigner distr. smoothed
with Gaussian kernel

24

GCDAF for N = 4,
Choi-Williams kernel

11.9

GCDAF for N = 4, Sinc
kernel

12.3

GCDAF for N = 4,
Born-Jordan kernel

13.16

GCDAF for N = 4,
Gaussian kernel

9.5

Table 3: MSE of the IF estimation in the presense of noise.

Distribution SNR = 30 dB SNR = 20 dB SNR = 10 dB SNR = 5 dB

GCDAF(t,ω),
N= 4

10.49 13.01 18.15 29.75

Choi-
Williams
distr.

48.4 73.85 81.54 123.14

Example 1. Consider the multicomponent signal in the form

x(t) = exp
(
j ·
(

cos(4 · π · t) +
2 cos(6 · π · t)

3

+
cos(π · t)

2
+ 7.5 · π · t

))

+ exp
(
j · 2 ·

(
cos(π · t) +

cos(4 · π · t)
2

+
cos(2 · π · t)

4
− 9.5 · π · t

))
.

(17)

The time interval t ∈ [−1, 1] with the sampling rate Δt =
2/128 is used. Since the instantaneous frequency variations
are very fast, the quadratic distributions (N = 2) are useless
for its estimation. As an illustration, the Wigner distribution
is given in Figure 1(a), while its smoothed and filtered
version is given in Figure 1(b). Thus, in order to improve
the results, the fourth-order distributions from the proposed
class (GCDAF(t,ω) for N = 4) are considered. The results
obtained by using the Choi-Williams kernel, the Born-Jordan
kernel, Sinc kernel, and Gaussian kernel (σ = 10) are
shown in Figures 1(c)–1(f), respectively. Observe that the
Gaussian kernel provides the efficient preservation of auto-
terms concentration, in addition to cross-terms suppression,
and thus, provides slightly better results compared to other
cases.

Additionally, the mean square errors (MSEs) are calcu-
lated as a quantitative measure for comparison, as follows:

MSE = 1
N

N−1∑
n=0

{[
f (n)− f (n)

]2
}

, (18)
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Figure 3: (a) Choi-Williams distribution; (b) GCDAF,N = 2 (smoothed pseudo-Wigner distribution); (c) GCDAF,N = 4 with Choi-Williams
kernel; (d) GCDAF,N = 4 with Gaussian kernel.

where f (n) represents the true instantaneous frequency
while f (n) is the estimated instantaneous frequency by using
the time-frequency distributions (TFD):

f (n) = max
m

TFD(n,m). (19)

The MSEs of IF estimations are shown in Table 2 for the
following distributions: the Choi-Williams distribution, the
smoothed pseudo Wigner distribution (these are special
cases of GCDAF for N = 2), and GCDAF (N = 4) with:
Choi-Williams kernel, Sinc kernel, Born-Jordan kernel, and
Gaussian kernel. Note that the GCDAF (N = 4) with Gaussian
kernel provides the lowest MSE.

Furthermore, the considered signal x(t) is corrupted by
the white Gaussian noise, and the MSE of IF estimation is
calculated in the presence of noise, as well. Several signal-
to-noise ratios (SNRs) are considered: SNR = 30 dB, SNR =
20 dB, SNR = 10 dB, and SNR = 5 dB. The results are given
in Table 3, for GCDAF with N = 4 (Gaussian kernel), and
compared with the results for Choi-Williams distribution.

Observe that for SNR < 10 dB, the MSE for GCDAF(t,ω)
becomes significant.

Example 2. In order to illustrate the improvement of the
distribution concentration by increasing distribution order
N , we consider a multicomponent signal:

y(t)=exp
(
j·
(

3 cos(π · t)+
2 cos(7 · π · t)

3
+11.5 · π · t

))

+ exp
(

2 · j ·
(

cos(π · t) +
cos(2 · π · t)

4

+
cos(6 · π · t)

2
− 8.5 · π · t

))
.

(20)

The instantaneous frequency nonstationarity is enhanced
in comparison with the previous example. The quadratic
distribution (GCDAF for N = 2) obtained by using Gaussian
kernel is shown in Figure 2(a). The fourth- (N = 4) and
sixth- (N = 6) order distributions from the proposed class
are shown in Figures 2(b) and 2(c), respectively (the same
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Figure 4: (a) Wigner distribution with Gaussian kernel and its zoomed region; (b) GCDAF N = 4, and its zoomed region for a real flute
signal.

Gaussian kernel is used). It is obvious that the quadratic
distribution does not follow the variations of instantaneous
frequency. The results are quite improved for N = 4.
Further improvement is achieved by using the sixth order
distribution (GCDAF for N = 6), that provides a very good
representation of signal, producing higher concentration
compared to the case N = 4. Also, the inner interferences
disappear. The exact and estimated instantaneous frequency
(from GCDAF for N = 6) is given in Figure 2(d).

Example 3. In the previous examples, we have considered
signals whose components intersect in time domain. The
analysis within the time-frequency plane becomes more
complicated if signal components intersect in both time and
frequency directions. Let us consider one such signal given
by:

z(t)=cos
(
j ·
(

9 cos(π · t) 2 cos(3 · π · t)
3

+
5 cos(5 · π · t)

7

))

(21)

The Choi-Williams and Wigner distribution smoothed by
using Gaussian kernel are shown in Figures 3(a), and 3(b),
respectively. The fourth (GCDAF for N = 4) order distribu-
tions from the proposed class are calculated by using the
Choi-Williams kernel (Figure 3(c)) and the Gaussian kernel
(Figure 3(d)), respectively. Note that GCDAF for N= 4 with
Gaussian kernel performs better than the other considered
distributions. The only problem in the IF estimation may
appear at the cross-point of signal components.

Example 4. An additional test case is considered with
a real multicomponent flute signal composed of several

components, with nonlinear variations of the instantaneous
frequency within the window. The results for Wigner
distribution (N = 2) smoothed with Gaussian kernel and
GCDAF for N = 4 are presented in Figures 4(a) and 4(b),
respectively. Note that the GCDAF with N = 4 provides
significant improvements in the analysis of fast varying
signal harmonics. Note that for quasistationary signals (such
as speech), with minor variations of the instantaneous
frequency within the window, the quadratic distributions
provide sufficiently good results [28].

5. Conclusion

A class of time-frequency distributions with complex-lag
argument, that provides arbitrary high concentration for
multicomponent signals with fast varying instantaneous
frequency, is proposed. It is based on new general form of
ambiguity domain representation with complex-lag argu-
ment. Some of the existing fixed kernels are considered in
the examples. It has been shown that the Gaussian smoothing
kernel with low-pass characteristics provides very successful
results. Future work could include the use of adaptable and
signal-dependent kernels.
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