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1. Introduction

Estimating the order of a model is a central, yet commonly
overlooked, problem in parameter estimation, with the
majority of literature assuming prior knowledge of the
model order. In many cases, however, the order cannot
be known a priori and may change over time. This is
the case, for example, in speech and audio signals. Many
parameter estimation methods, like the maximum likelihood
and subspace methods, require that the order is known to
work properly. The consequence of choosing an erroneous
order, aside from the size of the parameter set being wrong,
is that the found parameters may be biased or suffer from
a huge variance. The most commonly used methods for
estimating the model order are perhaps the minimum
description length (MDL) [1, 2], the Akaike information
criterion (AIC) [3], and the maximum a posteriori (MAP)
rule of [4]. These methods are based on certain asymptotic
approximations and on statistical models of the observed
signal, like the noise being white and Gaussian distributed.
We refer the interested reader to [4, 5] for an overview
of such statistical methods. A notable feature of the MAP

rule of [4] is that it shows that linear and nonlinear
parameters should be penalized differently, something that
not recognized by many prior methods (on this topic, see also
[6]). In this paper, we are concerned with a more specific,
yet important, case, namely, that of finding the number of
complex sinusoids buried in noise. This problem is treated
in great detail from a statistical point of view in [4] and is
also exemplified in [5] and other notable approaches include
those of [7-13]. A different class of methods is subspace
methods, which is also the topic of interest here. In subspace
methods, the eigenvectors of the covariance matrix are
divided into a set that spans the space of the signal of interest,
called the signal subspace, and its orthogonal complement,
the noise subspace. These subspaces and their properties
can then be used for various estimation and identification
tasks. Subspace methods have a rich history in parameter
estimation and signal enhancement. Especially for the esti-
mation of sinusoidal frequencies and finding the direction
of arrival of sources in array processing, these methods have
proven successful during the past three decades. The most
common subspace methods for parameter estimation are
perhaps the MUSIC (MUItiple Slgnal Classification) method



[14, 15] and the ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques) method of [16] while
the earliest example of such methods is perhaps Pisarenko’s
method [17]. In the context of subspace methods, the
typical way of finding the dimensions of the signal and
noise subspaces is based on statistical principles where the
likelihood function of the observation vector is combined
with one of the aforementioned order selection rules with
the likelihood function depending on the ratio between the
arithmetic and geometric means of the eigenvalues [18, 19].
Recently, the underlying principles of ESPRIT and MUSIC
have been extended to the problem of order estimation by
exploiting the properties of the eigenvectors rather than the
eigenvalues. Compared to the order estimation techniques
based on the eigenvalues, one can interpret these methods
as being based on the geometry of the space rather than
the distribution of energy. Specifically, two related subspace
methods based on ESPRIT have been proposed, namely,
to the ESTimation ERror (ESTER) method [20] and the
Subspace-based Automatic Model Order Selection (SAMOS)
method [21]. Similarly, it was shown in [22] that the
orthogonality principle of MUSIC can be used for finding
the number of harmonics for a set of harmonically related
sinusoids when normalized appropriately. See also [23]
for a comparison of this method with the ESTER and
SAMOS methods. An attractive property of the subspace-
based order estimation criteria is that they do not require
prior knowledge of the probability density function (pdf) of
the observation noise but only a consistent covariance matrix
estimate. This means that the subspace methods will work in
situations where the statistical methods may fail due to the
assumed pdf not being a good approximation of the observed
data. Furthermore, it can be quite difficult to derive a method
like the MAP rule of [4] for complicated signal models.

Mathematically, the specific problem considered herein
can be stated as follows. A signal consisting of complex
sinusoids having frequencies {w;} is corrupted by additive
noise, €(n), forn =0,...,N — 1,

L
x(n) = > A/ 90 + €(n), (1)
=1

where A; > 0 and ¢; are the amplitude and the phase of
the Ith sinusoid. Here, €(n) is assumed to be white complex
symmetric zero-mean noise. The problem considered is then
how to estimate the model order L. The model in (1) may
seem a bit restrictive, but the proposed method can in fact
be used for more general problems. Firstly, the proposed
method is valid for a large class of signal models; however,
for the case of complex exponentials a computationally
efficient implementation of our method exists. This is also
the case for damped sinusoids where the principles of unitary
ESPRIT may be applied [24]. Secondly, for the case of colored
noise, the proposed method is also applicable by the use of
prewhitening.

In this paper, we study the problem of finding the model
order using the angles between a candidate signal subspace
and the signal subspace in depth. In the process of finding
the model order, nonlinear model parameters are also found.
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The concept of angles between subspaces has previously been
applied within the field of signal processing to, among other
things, analysis of subspace-based enhancement algorithms,
for example, [25, 26], and multipitch estimation [27]. For
complex sinusoids, the measure based on angles between
subspaces reduces to a normalization of the well-known
cost function first proposed for frequency and direction-of-
arrival estimation in [14] for a high number of observations.
We analyze, discuss, and compare the measure and its
properties to other commonly used measures of the angles
between subspaces and show that the proposed measure
provides an upper bound for some other more complicated
measures. These other measures turn out to be less useful
for our application, and, in simulations, we compare the
proposed method to other methods for finding the number
of complex sinusoids. Our results show that the method has
comparable performance to commonly used methods and is
generally best among the subspace-based methods. It is also
demonstrated, however, that the method is more robust to
model violations, like colored noise. As an aside, our results
also establish the MUSIC criterion for parameter estimation
[14] as an approximation to the angles between the noise and
candidate model subspaces.

The remaining part of this paper is organized as follows.
First, we recapitulate the covariance matrix model that forms
the basis for the subspace methods and briefly describe the
MUSIC method in Section 2. In Section 3, we then move
on to derive the new measure based on angles between
subspaces. We relate this measure to other similar measures
and proceed to discuss its properties and application to
the problem interest. The statistical performance of the
method is then evaluated in simulations studies in Section 4
and compared to a number of related parametric and
nonparametric methods and, in Section 5, the results are
discussed. Finally, we conclude on our work in Section 6.

2. Fundamentals

We start out this section by presenting some fundamental
definitions, relations, and results. First, we define x(n) as a
signal vector, referred to as a subvector, containing M < N
samples of the observed signal, that is,

x(n) = [x(n) x(n+1) -+ x(n+ M — 1)]T (2)

with (-)” denoting the transpose. Assuming that the phases
of the sinusoids are independent and uniformly distributed
on the interval (-, 7], the covariance matrix R € CM*M of
the signal in (1) can be written as [5]

R = E{x(nx(n)] = APAT + ¢’L, (3)

where E{-} and ()" denote the statistical expectation
and the conjugate transpose, respectively. We here require
that L < M. Moreover, we note that for the above to
hold, the noise need not be Gaussian. The matrix P is
diagonal and contains the squared amplitudes, that is,
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P = diag([ A} -+ A} ]),and A € CM*L is a Vander-
monde matrix defined as

A=a@) - aw)], @)

where a(w) = [ 1e/® - .. e/M-D ]T. Also, 0% denotes the
variance of the additive noise, €(n), and I, is the M X
M identity matrix. Assuming that the frequencies {w;} are
distinct, the columns of A are linearly independent and A
and APA¥ have rank L. Let

R = QAQ" (5)

be the eigenvalue decomposition (EVD) of the covariance
matrix. Then, Q contains the M orthonormal eigenvectors
of R, thatis,Q = [ q - qu | and A is a diagonal matrix
containing the corresponding eigenvalues, A, with
A]Z"'Z/\LZ/\L+1:"':)LM:02. (6)
The subspace-based methods are based on a partitioning of
the eigenvectors into a set belonging to the signal subspace
spanned by the columns of A and its orthogonal complement
known as the noise subspace. Let S be formed from
the eigenvectors corresponding to the L most significant
eigenvalues, that is,
s=[a - @ (7)
We denote the space spanned by the columns of S as R(S)
and henceforth refer to it as the signal subspace. Similarly,
let G be formed from the eigenvectors corresponding to the
M — L least significant eigenvalues, that is,

G=|am - aul, (8)
where R(G) is referred to as the noise subspace. Using the
EVD in (5), the covariance matrix model in (3) can now
be written as Q(A — ¢2I;)QY = APAF. Introducing Ag =
diag ([ M —0? - -+ Ap—0? ]), we can write this as

SAsS = APAY, (9)

From the last equation, it can be seen that the columns of A
span the same space as the columns of S and that A therefore
also must be orthogonal to G, that is,

AG=o0. (10)

In practice, the eigenvectors are of course unknown and are
replaced by estimates. Here, we will estimate the covariance
matrix as

1 N-M
D _ H
R= ;X(H)x (n), (11)

which is a consistent estimate for ergodic processes and
the maximum likelihood estimate for Gaussian noise. The
eigenvector estimates obtained from this matrix are then

also consistent and the covariance matrix model (3) and the
orthogonality property (10) therefore hold asymptotically.

Since the covariance matrix and eigenvectors are esti-
mated from a finite set of vectors, the orthogonality property
in (10) only holds approximately. In the MUSIC algorithm
[14, 15], the set of distinct frequencies {w;} are found by
minimizing the Frobenius norm, denoted || - ||, of (10), that
is,

{o} = argr{l}UiI?HAHGH; (12)

Since the squared Frobenius norm is additive over the
columns of A, we can find the individual sinusoidal frequen-
ciesforl =1,...,Las

0 = argrr(lviln‘’aH(wl)GHfE (13)

with the requirements that the frequencies are distinct and
fulfill the two following conditions:

. 2 (| H 2
ol[a" (@) G|l -0, M > 0. (14)
Jw; Jw;

The reciprocal form of the cost function in (13) is sometimes

referred to as spectral MUSIC and 1/||aH(w1)G||,2; as the
pseudospectrum from which the L frequencies are obtained
as the peaks. We mention in passing that it is possible to
solve (13) using numeric rooting methods [28] or FFTs.
Regarding the statistical properties of MUSIC, the effects of
order estimation errors, that is, the effect of choosing an
erroneous G in (13), on the parameter estimates obtained
using MUSIC have been studied in [29] in a slightly different
context and it was concluded that the MUSIC estimator is
more sensitive to underestimation of L than overestimation.
The more common case of L being known has been treated in
great detail, with the statistical properties of MUSIC having
been studied in [30-34].

3. Angles between Subspaces

3.1. Definition and Basic Results. The orthogonality property
states that for the true parameters, the matrix A is orthogonal
to the noise subspace eigenvectors in G. For estimation
purposes, we need a measure of this. The concept of
orthogonality is of course closely related to the concept of
angles, and how to define angles in multidimensional spaces
is what we will now investigate further.

The principal (nontrivial) angles {6} between the two
subspaces A = R(A) and § = R(G) are defined recursively
fork =1,...,K as (see, e.g., [35])

uflv

cos(0r) = max max £ uka. (15)

ueA veg [[ull2[v]

The quantity K is the minimal dimension of the two
subspaces, that is, K = min{L,M — L}, which is the
number of nontrivial angles between the two subspaces.
Moreover, the directions along which the angles are defined



Hy, = 0 and viv; = 0 fori =

are orthogonal, that is, u
L...,k—1.

We will now rewrite (15) into something more useful,
and in doing this, we will make extensive use of projection
matrices. The (orthogonal) projection matrix for a subspace

X spanned by the columns of a matrix X is defined as IIx =

X(XHX)™'XH_ Such projections matrices are Hermitian, that
is, II¥ = IIx and have the properties II¥ = Ilx for m =
1,2,...and ||IIx H,Z: = dim(X) where dim(-) is the dimension
of the subspace. Let II; be the projection matrix for subspace
g, and the II4 the projection matrix for subspace +. Using
the two projection matrices, we can write the vector u € 4
as Iy and v € § as Iz with y,z € CM. This allows us to
express (15) as

HY1, 11
cos(0r) = max maxyiAGZ
yeCM zeCM ||Y||z||2”2 (16)

A UH
— Yk

yi Hallgzy = o

for k = 1,...,K. Again, we require that yfy; = 0 and

zHz; = 0 fori = 1,...,k — 1, that is, that the vectors are

orthogonal. Futhermore, the denominator ensures that the

vectors have unit norm. It then follows that {ox} are the

singular values of the matrix product II4IIg, and that the

two sets of vectors {y} and {z} are the left and right singular

vectors, respectively. Regarding the mapping of the singular

values to actual angles, a difficult problem, we refer the
interested reader to [36] for a numerically stable algorithm.

The set of principal angles obey the following inequality:

s

05915---391(35. (17)

Next, the singular values are related to the Frobenius norm

of the product IT4I1; as

K
T TG II; = Tr{ll, Mg} = Z%f, (18)
k=1

and therefore also to the angles between the subspaces, that
is,

K
> cos?(6) = IITATgI5. (19)
k=1

3.2. A Simplified Measure. We will now show how the
concepts introduced in the previous section can be simplified
for use in estimation. The Frobenius norm of the product
IT4II; can be expressed as

IMATIG |7 = Tr{TLTIGIEY | = Tr{ILIE | (20)
- Tr{A(AHA)_lAHGGH}. (21)

This expression can be seen to be complicated since it
involves matrix inversion and it does not decouple the
problem of estimating the parameters of the column of A.
Additionally, it is not related to the MUSIC cost function in
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a simple way. It can, though, be simplified in the following
way. The columns of A consist of complex sinusoids, and
for any distinct set of frequencies these are asymptotically
orthogonal, meaning that

-1
lim MILy = lim MA(AA) A"
M — oo M — oo
(22)
= AAH,
We can now simplify (21) and manipulate it into a familiar
form, that is,
-1
Il = TrfA(A7A) 'A"GG" |
(23)

2
P

~ ﬁTr{AHGGHA} - ﬁHAHG‘

which, except for the scaling 1/M, is the reciprocal of the
original MUSIC cost function as introduced in [14]. From
(19) and (23), we get

L1anG]f ~ Seos(Bh). (24)
M g

This shows that the original MUSIC cost function can be
explained and understood in the context of angles between
subspaces. At this point, it must be emphasized that this
interpretation only holds for signal models consisting of
vectors that are orthogonal or asymptotically orthogonal.
Consequently, it holds for sinusoids, for example, but not for
damped sinusoids.

We now arrive at a convenient measure of the extent to
which the orthogonality property in (10) holds, which is the
average over all the principal (nontrivial) angles between 4

and §:
1 X , L X ! N
— N cos?(Br) = — > o2 ~ ——||AUG|| &) (25)
LS cortnr= LSt Lefwoo]

with K = min{L,M — L}. This measure is only zero when
all angles are 71/2, that is, when the subspaces 4 and 8B are
orthogonal in all directions. Additionally, the intersection
of the subspaces is the range of the set of principal vectors
for which cos(6;x) = 1. Due to the normalization 1/K, the
measure can be seen to be bounded as

K
0<L > cos?(6k) < L. (26)
Kk:l

This bound is also asymptotically valid for the right-
most expression in (25) and is otherwise an approximation
for finite lengths. To put the derived measure a bit into
perspective, it can, in fact, be brought into a form similar
as the aforementioned and well-known statistical methods
(MDL, AIC, etc.) by taking the logarithm of (25), that is,

InJ =1In HAHGH; ~ In(MK), (27)

which consists of two familiar terms: a “goodness of fit”
measure and an order-dependent penalty function, which in
this case is a nonlinear function of the model order, unlike,
for example, MDL and AIC.
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3.3. Relation to Other Measures. We will now proceed
to relate the derived measure to some other measures.
Interestingly, the Frobenius norm of the difference between
the two projection matrices can be expressed as

T[4 — Mgll3 = Trill, + Mg — 2T, G}
(28)
=M - 2||I,T0G |17,

which shows that minimizing (18) is the same as maximizing
the Frobenius norm of the difference between the two
projection matrices. This puts the original MUSIC cost
function into perspective, as it was originally motivated in
[14] as the distance between the subspaces.

In [22], it was proposed to measure the orthogonality
using the following normalized Frobenius norm of the
matrix product AFG:

2
A" G|

M- I)" 2

which was derived from the Cauchy-Schwarz inequality. A
new derivation of the measure in (29) is provided in the
appendix in which it is shown that this too can be interpreted
as an average over cosine to angles, more specifically, between
each vector pair. However, the definition of the angles differs
from that of the angles between subspaces, and, as a result,
the normalizations differ as well. Clearly, we have that

ML(M - L) > Mmin{L,M — L} (30)
and thus

AT G AT G
ML(M-L1) =~ Mmin{L,M - L}’

(31)

That the two approaches lead to different normalizations
may seem like a minor detail, but this is in fact also
the fundamental difference between the AIC, MDL, MAP,
and so forth, order selection rules. These all provide a
different order dependent scaling of the likelihood function.
At the very least, the new normalization is mathematically
more tractable than the old one. In Figurel, the two
normalizations, namely, ML(M — L) and M min{L, M — L},
are shown as a function of L for M = 50. Note that the
curves have been scaled by their respective maximum values.
Interestingly, both the measures defined in (29) and (25),
respectively, are consistent with finding the frequencies using
(13) in the sense that the frequencies that minimize (13) also
minimize either of these measures for a given order L.

The measure in (25) can also be related to some other
measures that have been defined in relation to angles between
subspaces, like the projection 2-norm [37]. The distance or
gap between subspaces, is defined for L = M/2 as [35-37]

dist(#4,4) = T4 — Hgll, (32)

and is related to the concept of angles between subspaces in
the sense that (see, e.g., [35])

dist(+, G) = sin(fx) = /1 — cos(Ox), (33)

09 f N

0.8} , .
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L

FiGURE 1: Normalization factors (scaled for convenience) as a
function of L for the measure in [22] (solid) and based on the theory
of angles between subspaces (dash-dotted).

which is given by the Kth singular value of the matrix
product 4Tl as Ok = arccos(og). Another measure
of interest is the minimum principal angle which by the
definition in (15) is a function of the maximum singular
value as 6, = arccos(ogy) and is given by the induced matrix
2-norm, that is,

T4 IG5 = o?. (34)

In the study of angles between subspaces, there has also been
some interest in a different definition of the angle between
two subspaces based on exterior algebra. Specifically, this so-
called higher dimensional angle 6 is related to the principal
angles as [38, 39]

K K
cos?(0) = [ [cos?(6k) = [ [of (35)
k=1 k=1

for p = 1,2,..., which for p = 1 can be interpreted as the
volume of a certain matrix [38]. In [40], 8 was shown to be
an angle in the usual Euclidean sense.

Equations (33), (34), and (35) are not very convenient
measures for our purpose since they cannot be calculated
from the individual columns of A but rather depend on all of
them. This means that optimization of any of these measures
would require multidimensional nonlinear optimization
over the frequencies {w}.

We will now investigate how the various measures relate
to each other, and in doing so, we will arrive at some
interesting bounds. First, we note that the arithmetic mean
of the singular values can be related to the geometric mean
and (35) as

LK © \UK
EZU,? > []et] =]]d% (36)
k=1 k=1

where the right-most expression follows from o < 1. We
can now establish the following set of inequalities that relate



the various measures based on angles between subspaces to
the Frobenius norm:

K
[Jot <ot <ot <
k=1

M=

of. (37)

k=1

It follows that the Frobenius norm can be seen as a
majorizing function for the other measures. Therefore,
finding the frequencies using (12) can be seen to minimize
the upper bound of the other measures. Similarly, we obtain
the following set of inequalities for the normalized measure
involving the average over the squared cosine terms in (19),
that is,

K LK
[o? < 0% < EZ(T}% < of. (38)

In this case, the normalized Frobenius norm is still an upper
bound for two of the measures, but it is lower than or equal
to the measure in (19). In this sense, the measure in (19) can
be seen as a majorizing function for the measures in (33) and
(35). It can be seen from (38) that the measures are identical
when all singular values {0y} are either one or zero, that is,
when the subspaces have a K dimensional intersection or are
orthogonal in all directions. The only measure, however, that
ensures orthogonality in all directions for a value of zero,
is the proposed measure in (25). Clearly, this is a desirable
property for our application.

3.4. Application to Sinusoidal Order Estimation. As can be
seen, (10) can only be expected to hold when the eigenvectors
of R are partitioned into a signal and a noise subspace such
that the rank of the signal subspace is equal to the true
number of sinusoids. Based on the proposed orthogonality
measure, the order is found by evaluating the measure for
various candidate orders 1 < L < M — 1 and then picking the
order for which the measure is minimized, that is,

2
1= arg min mlnH A"GlJy (39)
L {w} MK
H
= arg mlnz%%n% (40)

I=1

with K = min{L, M—L}. As before, the frequencies should be
distinct and satisfy (14). The set of candidate orders does not
include zero (as no angles can be measured then), meaning
that the measure cannot be used for determining whether
only noise is present. This is also the case for the related
ESTER and SAMOS methods.

3.4.1. Consistency. Regarding the consistency of the proposed
method, it can easily be verified that the covariance matrix
model and the orthogonality property hold for the noise-
free case. We will here make the following simple argument
for the consistency of the method for noisy signals based on
[31]: since a consistent estimate of the covariance matrix is
used, the eigenvector estimates are consistent too and the
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covariance matrix model in (3) holds asymptotically in N
and M (which is here assumed to be chosen proportional to
N) [31, 32]. Therefore, the orthogonality criterion in (10)
holds as N tends to infinity. Provided that the sinusoids
are linearly independent but not all orthogonal, (10) holds
only for the combination of the true set of frequencies
{w;} and order L. Regarding the finite length performance
of MUSIC, it is well known to perform well for high
SNR and N being consistent but suboptimal [31, 32] while
exhibiting thresholding behavior below certain SNR or
number of samples N. This thresholding behavior can largely
be attributed to the occurrence of “subspace swapping” [41,
42].

3.4.2. Computational Complexity. The major contributor to
the computational complexity of a direct implementation of
(40) is the EVD of the covariance matrix, and this is also
the case for the ESTER and SAMOS methods and [18, 19].
This can be lessened by the use of recursive computation of
the covariance matrix eigenvectors over time, also known as
subspace tracking. However, for our method and the ESTER
and SAMOS methods, it is critical that a subspace tracker is
chosen that tracks the eigenvectors and not just an arbitrary
basis of the subspace. The reasons is that a subpartitioning
of an arbitrary basis is not necessarily the same as a
subpartitioning of the eigenvectors and the methods may
therefore fail to provide accurate order estimates. Examples
of subspace trackers that are suited for this purpose are, for
example, [43-45] (see [46] for more on this). Aside from
the EVD, our method also requires nonlinear optimization
for finding the frequencies. This is by no means a particular
property of our methodl; indeed most other methods for
finding the order of the model in (1), including [4, 10—
13], require this as well, with the methods of [19, 20] being
notable exceptions. For (40), this can be done either by FFTs
(see [22, 46]) or by polynomial rooting methods [28]. In the
FFT-based implementation of [22], the Fourier transform
of the eigenvectors is calculated once per segment and this
information is simply reused in the subsequent optimization.
The complexity is therefore similar to that of spectral [14]
or root MUSIC [28], two methods that have a rich history
in spectral estimation and array processing. In practice, the
complexity can be reduced considerably by applying certain
approximations, that is, by either (1) using the min-norm
solution, which can be calculated recursively over the orders,
instead of the full noise subspace [5, 47], or by (2) finding
approximate solutions using a number of the least significant
eigenvectors that are known with certainty to belong to
the noise subspace (usually an upper bound on number of
possible sinusoids can be identified from the application).

3.4.3. Comparison to ESTER and SAMOS. There appears
to be a number of advantages to our method compared
to the related methods ESTER and SAMOS that are also
based on the eigenvectors. It can be seen from (40) that
the method can find orders in a wider range than both the
ESTER and SAMOS methods, with those methods being
able to find orders in the intervals 1 < L < M — 2 and
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1 < L < (M — 1)/2, respectively. The class of shift-invariant
signal models also includes damped sinusoids and the ESTER
and SAMOS methods hold also for this model and so does
the orthogonality property of MUSIC. At first sight it may
appear that an efficient implementation of the nonlinear
optimization in (40) does not exist. However, either the
rooting approach of [28] may be used or the principle
of unitary ESPRIT can be applied by using a forward-
backward estimate of the covariance matrix whereby the
FFT-based implementation is applicable (see [24]). We here
stress that an additional advantage of the MUSIC-based
method presented here is that it is more general than those
based on the shift-invariance property [20, 21]; that is, the
relation (10) can be used for a more general class of signal
models. It is, however, not certain that there exits an efficient
implementation of the nonlinear optimization required by
this approach.

4. Experimental Results

4.1. Details and Reference Methods. We now proceed to eval-
uate the performance of the proposed estimator (denoted
MUSIC (new) in the figures) under various conditions using
Monte Carlo simulations comparing to a number of other
methods that have appeared in literature. The reference
methods are listed in Table 1. It should be noted that the
model selection criteria of the MDL [13] and the MAP [4]
methods are in fact identical for this problem, although
derived from different perspectives. The difference between
these two methods is then, essentially, that one uses high-
resolution estimates of the frequencies while the other uses
the computationally simple periodogram. Note that it is
possible to refine the initial frequency estimates obtained
from the periodogram in several ways, for example, [48, 49],
but to retain the computational simplicity, we refrain from
doing this here.

In the experiments, signals are generated according to
the model in (1) with Gaussian noise. Furthermore, all
amplitudes are set to unity, that is, A; = 1 for all [
and the signal-to-noise ratio (SNR) is defined as SNR =
1010g10(zlL:1A12/02) [dB]. Note that similar results have
been obtained for other amplitude distributions. For exam-
ple, the general conclusions are the same for a Rayleigh pdf,
but in the interest of brevity we will focus on the simple case
of unit amplitudes. The sinusoidal phases and frequencies
are generated according to a uniform pdf in the interval
(—m, ] which will result in spectrally overlapping sinusoids
sometimes. For each combination of the parameters, 500
Monte Carlo simulations were run. Unless otherwise stated,
wewilluse L = 5and M = N/2.

4.2. Statistical Evaluation. First, we will evaluate the per-
formance in terms of the percentage of correctly estimated
orders under various conditions. We start out by varying
the number of observations N while keeping the SNR
fixed at 20 dB and then we will keep N fixed at 200 while
varying the SNR. The partitioning of the EVD into signal
and noise subspaces in (7) and (8) depends on the sorting
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FIGURE 2: Percentage of correctly estimated model orders as a
function of the number of observations for an SNR of 20 dB.
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FIGURE 3: Percentage of correctly estimated model orders versus the
SNR for N = 200.

of the eigenvalues resulting in the right ordering of the
eigenvectors. As a result, the performance of the methods
is expected to depend on the SNR. The results are shown
in Figures 2 and 3. Next, we evaluate the performance as a
function of the true model order for N = 100 and SNR =
20dB. Note that the choice of M also limits the number
of possible sinusoids that can be found using MUSIC since
M > L. The results are depicted in Figure 4. An experiment
to investigate the dependency of the performance on the
choice of M while keeping N = 100 constant has also been
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TaBLE 1: List of reference methods used in the experiments with short descriptions and references to literature.

Name Reference Description

ESTER [20] Subspace-based method based on the shift-invariance property of the signal model

ESPRIT+MAP  [4,16]  Frequencies estimated using ESPRIT, amplitudes using least-squares, model selection using the MAP criterion
EIG [19] Method based on the ratio between the arithmetic and geometric means of the eigenvalues

SAMOS [21] Same as ESTER except for measure

MUSIC (old)  [22,23]  Same as the proposed method except for the normalization

FFT+MDL [1,12,13] Statistical method based on MDL, with parameters estimated using the periodogram

Correct (%)

0 5 10 15 20 25

Model order
—— MUSIC (new) SAMOS
»- ESTER ¢+ MUSIC (old)
-e- ESPRIT+MAP -=*- FFT+MDL
EIG

FIGURE 4: Percentage of correctly estimated model orders as a
function of the true order with SNR = 20 dB and N = 100.

conducted with an SNR of 20dB. The results are shown
in Figure 5. The reason that the method of [19] fails here
is that the covariance matrix is rank deficient for M >
N/2. This can of course easily be fixed by modifying the
range over which the geometric and arithmetic means of
the eigenvalues are calculated. Since the gap between the
signal and noise subspace eigenvalues depends not only on
the SNR but also on how closely spaced the sinusoids are
in frequency, the importance of the difference in frequency
between the sinusoids will now be investigated. We do this
by distributing the frequencies evenly as 27Al and then
vary A for L = 5 sinusoids, N = 100, M = 25, and
an SNR of 20 dB. All other experimental conditions are as
described earlier. The results are shown in Figure 6. In a final
experiment, we illustrate the applicability of the estimators
in the presence of colored Gaussian noise. The percentages of
correctly estimated orders are shown in Figure 7 as a function
of the SNR. To generate the colored noise, a second-order
autoregressive process was used having the transfer function
H(z) = 1/(1 — 0.25z7! + 0.5z72). Other than the noise color,
the experimental conditions are the same as for Figure 3,
that is, with N = 200. Note that for a fair comparison, the
white noise model selection criterion has been used for all the
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FIGURE 5: Percentage of correctly estimated model orders as a
function of subvector length with SNR = 20 dB and N = 100.
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FIGURE 6: Percentage of correctly estimated model orders as a func-
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FIGURE 7: Percentage of correctly estimated model orders as a
function of the SNR for colored Gaussian noise for N = 200.

methods. In other words, this experiment can be seen as an
evaluation of the sensitivity to the white noise assumption.
It is of course possible to modify the methods to take the
colored noise into account in various ways, one way that can
be applied to all the methods being prewhitening [18], but all
such ways require that the statistics of the noise be known.

5. Discussion

From the experiments the following general observations
can be made. First of all, it can be observed that, with one
exception, all the methods exhibit the same dependencies on
the tested variables, although they sometimes exhibit quite
different thresholding behavior. The one exception is for
colored Gaussian noise. It can be seen from these figures
that the proposed estimator has the desirable properties that
the performance improves as the SNR and/or the number
of observations increases and that the model order can be
determined with high probability for a high SNR and/or
a high number of observations, and this is generally the
case of all the tested methods. MUSIC can also be observed
to consistently outperform the other subspace methods
based on the eigenvectors, namely, ESTER and SAMOS.
Curiously, the new MUSIC criterion performs similarly to
the old one in all the simulations, which indicates that the
orthogonality criterion does not depend strongly on the
normalization. The MAP criterion of [4] combined with
ESPRIT and the method based on the eigenvalues [19] can
be seen to generally perform the best, outperforming the
measure based on angles between subspaces when the noise
is white Gaussian. This is, most likely, due to these methods
making use of the assumption that the noise is not only
white but also Gaussian; this assumption is not used in
the proposed method. Despite their good performance for

white Gaussian noise, both aforementioned methods appear
to be rather sensitive to the white noise assumption and
their performance is rather poor for colored noise. The poor
performance of the eigenvalue-based method of [19] for
colored noise is no surprise. In fact, for colored noise, the
method of [19] can be shown to overestimate the model
order with probability 1 [50, 51]. That the MAP criterion
in combination with ESPRIT outperforms the method of
[13] can only be attributed to the former method resulting
in superior parameter estimates to the periodogram, which
will fail to resolve adjacent sinusoids for a low number of
samples. We observe from Figure 4 that the performance of
all the methods deteriorates as the number of parameters
approaches M. That the MAP-based method fails in this case
cannot be solely attributed to the MAP rule since it relies
on sinusoidal parameter estimates being accurate. However,
the MAP rule was derived in [4] based on the assumption
that the likelihood function is highly peaked around the
parameters estimates, which is usually the case when N is
high relative to the number of parameters. We have observed
from order estimation error histograms that while the orders
are not estimated correctly for high orders, the estimated
order is still generally close to the true one and may thus still
be useful. From Figure 5, it appears that the methods are not
very sensitive to the choice of M as long as it is not chosen
too low or too high, that is, not too close to either L or N.

6. Conclusion and Future Work

In this paper, we have considered the problem of finding
the number of complex sinusoids in white noise, and a new
measure for solving this problem has been derived based on
angles between the noise subspace and the candidate model.
The measure is essentially the mean of the cosine to all non-
trivial angle squared, which is asymptotically closely related
to the original MUSIC cost function as defined for direction-
of-arrival and frequency estimation. The derivations in this
paper put order estimation using the orthogonality property
of MUSIC on a firm mathematical ground. Numerical
simulations show that the correct order can be determined
for a high number of observations and/or a high signal-
to-noise ratio (SNR) with a high probability. Additionally,
experiments show that the performance of the proposed
method exhibits the same functional dependencies on the
SNR, the number of observations, and the model order
as statistical methods. The experiments showed that the
proposed method outperforms other previously published
subspace methods and that the method is more robust to
the noise being colored than all the other methods. Future
work includes a rigorous statistical analysis of the proposed
method along the lines of [33].

Appendix
Alternative Derivation of the Old Measure

We will now derive the normalized MUSIC cost function
first proposed in [22] for finding the number of sinusoids.
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Note that this derivation differs from the one in [22]. The
following can be established for the acute angle 0 < 0;,, <
71/2 between two vectors a(w;) and q,,:

H 2

08?0 = a(@)qm " (wlz)qm| 5. (A.1)
lla(w)13]|gm|]>
Averaging over cos?8y,, for all vector pairs, we get
1 L M
J= 72 Z cos? 01,
LM -1 73,50

(A.2)

- 41 i |aH(a)1)qm |2
LM -D) 5,5 lal) 3] |aml 3

Noting that all the columns of A and G have the same norms,
this can be written as

|a (w)qum |’
‘1 Llla(wn) [3(M — L)||qul[5

Il
M=
Mz

I=1m=L
(A.3)
2 2
_ lIA"Gll _ [|A"Gl[
IAIFIGIE  LM(M —L)’
and, clearly, we have the following inequalities:
H 2

T IMM-L1) " 7

which also follow from the Cauchy-Schwartz inequality. The
orthogonality measure in (A.3) has the desirable properties
that it facilitates optimization over the individual columns
of A and is invariant to the dimensions of the matrices.
This measure is different than the original measure proposed
in [14] due to the scaling of the cost function. Note that
the MUSIC cost function originally was introduced as the
reciprocal of the Euclidean distance between the signal model
vectors and the signal subspace.
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