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This paper presents a new user dependent approach in iris recognition systems. In the proposed method, consistent bits of iris
code are calculated, based on the user specifications, using the user’s mask. Another contribution of our work is in the iris
segmentation phase, where a new pointwise level set approach with area preserving has been used for determining inner and outer
iris boundaries, both exclusively performed in one step. Thanks to the special properties of this segmentation technique, there is
no constraint about angles of head tilt. Furthermore, we showed that this algorithm is robust in noisy situations and can locate
irises which are partly occluded by eyelid and eyelashes. Experimental results, on three renowned iris databases (CASIAIrisV3,
Bath, and Ubiris), show that our method outperforms some of the existing methods, both in terms of accuracy and response
time.
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1. Introduction

The demand for high-confidence authentication of human
identity has grown steadily since the beginning of organized
society. The identification systems using unique factors
of human irises play an important role in this field. In
comparison with other biometrics, iris recognition systems
have many advantages. Since the degree of freedom of iris
textures is extremely high, the probability of finding two
identical irises is close to zero; therefore, the iris recognition
systems are very reliable and could be used in most secure
places [1-3].

A regular iris recognition system consists of different
major steps, including image acquisition, iris localization,
feature extraction, and matching and classification. In this
paper, we have used standard iris datasets; therefore, we have
not focused on the image acquisition phase. Other parts of
an iris recognition system will be discussed later.

One of the most important steps in iris recognition
systems is iris localization, which is related to the detection of
the exact location and contour of iris in an image. Obviously,
the performance of the identification system is closely related
to the precision of the iris localization step [1, 2]. For

iris localization, existing methods mainly use circular edge
detectors or other standard image processing techniques, to
detect the iris location based on derivative operators, which
calculate the sum of gray level differences on the vertical arc.
It must be mentioned that, since the upper and lower parts
of the outer iris boundary are usually obstructed by eyelids,
it could be impossible to use a complete circle, instead of
two vertical arcs, to represent the iris boundaries. In these
methods, the result of localization algorithm depends on
the tilt angle of the iris and the quality of the boundaries
[1, 2, 4]. For example, if some parts of boundaries are
occluded by the eyelid and eyelashes, performance of these
algorithms reduces considerably and even in some cases, they
fail. Another source of error is the presence of other parts of
face in input image.

In [1], Daugman introduces a circular edge detection
operator for iris localization, which tries to find a circle
in the image with maximum gray level differences with its
neighbors. In its method, thanks to a significant contrast
between iris and purple regions, the inner boundary is
localized. Then, outer boundary is detected using the same
operator with different radii and parameters. In order to
remove eyelids, Daugman changes the curve of integral to



find an arc which accurately detects iris boundaries. As
features, he uses the sign of real and imaginary parts of
Gabor Wavelet coefficients of iris image. In matching phase,
Hamming distance between binary codes of the query iris
and irises in database is calculated. In his recent work [5],
Daugman proposed four modifications in his algorithm,
including (1) using active contour models (Snake model)
for iris localization, (2) handling off-axes gaze samples using
Fourier-based methods, (3) using statistical methods for
detecting eyelashes, and (4) score normalization in large
number databases.

An alternative for iris segmentation and localization has
been proposed by Camus and Wildes [3], which is based
on edge detection operator, followed by Hough transform.
This method has a high computational cost, since it searches
among all of the potential candidates. For eyelid detection,
Wildes uses some constrains to locate the true edge points.

Snake approach has been used for iris localization in [6].
Using this technique, the boundary of the irises is located
without any circularity constraint. In 7], an easy to difficult
method has been used for iris localization by, first, deter-
mining high-contrast parts of boundary, and then, detecting
outer boundary and eyelids. It is obvious that, because of
their lower SNR, each step is more challenging than previous
ones. For exact inner boundary detection, authors used Harr
Wavelet transform followed by modified Hough transform.
In the next step, outer boundary is localized with integral
differential operators. Since the search space for determining
the center and radius of inner boundaries could be limited,
the speed of the algorithm is considerably improved. In the
last step, for detecting eyelids in the image, a method is
utilized based on texture segmentation.

Sun et al. [8] proposed iris localization using texture seg-
mentation. First, they use the information of low frequency
of Wavelet transform of iris image for pupil segmentation
and also localize the iris with a different integral operator.
Then, they detect the upper eyelid next to eyelash segmen-
tation. Finally, the lower eyelid is localized using parabolic
curve fitting, based on gray level segmentation.

Huang et al. [9] used a new noise removing approach
based on the fusion of edge and region information. The
whole procedure includes three steps: rough localization
and normalization, edge information extraction based on
phase congruency, and the infusion of edge and region
information. They proceeded to iris segmentation by simple
filtering, edge detection, and Hough transform. This method
is specifically proposed for removing eyelash and pupil
noises. Boles and Boashah [10] and Lim et al. [11] mainly
focused on the iris image representation and feature match-
ing without introducing a new method for segmentation.

Tisse et al. [12] proposed a segmentation method based
on integro-differential operators with Hough transform.
This approach reduces the computation time and excludes
potential centers outside of the eye image. Eyelash and pupil
noise have not been considered in this method neither.

Kong and Zhang in [13] presented a method for eyelash
detection. Separable and multiple eyelashes are detected
using 1D Gabor filters and the variance of intensity, respec-
tively. In this work, specular reflection regions in the eye
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image are localized using a predetermined threshold value.
Thornton et al. [14] used a general probabilistic framework
for matching patterns of irises, which improves pattern
matching performance, when the iris tissue is subject to in-
plane wrapping.

Monro etal. in [15] present a novel iris coding algorithms
based on differences of Discrete Cosine Transform (DCT)
coefficients of overlapped angular patches with normalized
iris image. Iris localization is done using the circularity shape
of iris boundaries.

Other methods exist for iris localization, including [12,
16]. However the above mentioned techniques are much
more cited in literature. There are also a few papers which
survey literature in iris recognition subject; amongst them,
Bowyer et al. [2] is one of the best.

We have used active contour based-localization method
in [4]. In this paper, we improve our method and test its
performance on three famous databases, namely, CASIA-
IrisV3 [17], Bath [18], and Proen¢a and Alexandre [19].
The results show the superiority of our proposed method
in comparison with other methods, including the method
proposed in [6], which is also based on geodesic active
contour for iris localization. The details will be discussed in
Section 2.

In [19], new approaches for localization have been
introduced. In their paper, they use a dataset of irises with
heterogeneous characteristics, simulating the dynamics of a
noncooperative environment. Their method builds a feature
set from pixel position (x, y) and pixel intensity z. They
apply a fuzzy clustering algorithm to cluster the pixels. In
Section 4 we compare our proposed method to their results.

Considering the above mentioned methods, we can state
the following important remarks and drawbacks of existing
methods.

(1) Usually, the iris inner and outer boundaries are
detected using circle fitting techniques (except the
recent works of Daugman [5] and Ross and Shah [6]).
This is a source of error, since the iris boundaries are
not exactly circles.

(2) In almost all of these methods, inner and outer
boundaries, eyelashes, and eyelid are detected in
different steps, causing a considerable increase in
processing time of the system.

(3) The results of the circle fitting method are sensitive
to the image rotation, particularly if the angular
rotation of the input image is more than 10 degrees.

(4) In noisy situations, the outer boundary of iris does
not have sharp edges.

(5) After detecting iris boundaries, the resulted iris area
is mapped into a size independent rectangular shape
area.

(6) None of these methods take into account the user
specifications.

Considering these remarks, we propose a new user specific
iris recognition system with the following contributions.
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(i) We use a pointwise area preserving level set approach
for iris localization, which guarantees the correct
segmentation of iris, even in noisy environment and
regardless of the head tilt and occlusion. Although
active contours for localization have been also used
in [5, 6], our proposed method has many advantages
compared to those approaches (we will discuss these
advantages in details in Section 2).

(ii) We propose a new user dependent method which
improves the system recognition performance.

In [4], we explained how to use pointwise level set
with area preserving capability for iris localization purposes.
We have also introduced a method for mapping the initial
coordinates to polar space based on the estimated location
of the center of pupil. In this paper, in order to reduce the
complexity of the polar mapping calculations, we propose
the improved version of the above mentioned method, which
is based on the point trajectory of moving contours. We show
the results of the new method on CASIA-IrisV3, Bath, and
Ubiris datasets.

The rest of the paper is organized as follows. Section 2
briefly describes the theory of pointwise level set approach
with area preserving capability. Section 3 is dedicated to the
user dependency in iris recognition systems. Experimental
results are presented in Section 4 and Section 5 concludes the

paper.

2. Iris Localization with Pointwise
Level Set Approach

In this approach, the moving front is defined as a zero level of
a higher dimensional potential function [20]. Consequently,
the curve corresponding to the zero level set of this potential
function is enabled to handle topological changes, such as
splitting and merging. Furthermore, it is not necessary to
initialize the algorithm very close to the final contours, which
is the case of Snakes model. According to the level set model,
the initial curve is deformed using the following evolutionary
equation:
dcC -

T VN, (1)
where V is any intrinsic quantity and does not depend on
parameters, N is the normal vector, and C, as the implicit
representation of the curve, is defined as

C={(xy):9(xy)=0}:¢(xy):R>—R (2

A distance measure can be used for initializing the
potential function ¢. It means that each point of the
three-dimensional potential function is initialized with the
minimum distance of that point to the contours. More details
on this subject are available in [20]. The evolution of ¢ is such
that its zero levels movement corresponds to deformation
of the initial curve. This evolution may be described by the
following equation:

dy _
5 = VIvel 3)

This equation shows that the rate of changes of the
potential function ¢ in time depends on the speed parameter
V and the magnitude of the gradient of ¢. The speed
V has three components: balloon force (which cause all
part of contour to move), curvature-based speed, and
gradient-based speed [20]. Due to the high performance
of active contour-based models for localization purposes,
some references in literature are based on these models
[4-6]. As we mentioned briefly in Section 1, Daugman,
in [5], proposed a method for iris segmentation using
Snake model [21]. Despite of the Snakes advantages over
the traditional object recognition algorithms, it has some
important drawbacks, due to its Lagrangian-based formulas.
In Snake model, contour initialization is a crucial point;
thus, if the initial contour is far from the target, it may
not reach the target. Another important disadvantage of
this model is its performance reduction: due to point-based
structure of the contour, some unwanted pixels can cause
misjudgment of localization results. In order to solve these
drawbacks, new models have been introduced based on Euler
equations [20]. These models consider moving contours as
a level set of a higher dimensional function, which reshape
during the different iterations. Very briefly speaking, Euler
equations connect the differentiations in time and space
together [20]. Because of this capability, if noisy pixels cause
some parts of contour to stop, other moving parts prevent the
whole contour to stop. Another advantage of this approach
is its robustness to contour initialization. Because of the
combination of different forces, which cause movement in
this approach, almost all kinds of initialization, lead to the
same result (Figure 1).

Another related work is Ross and Shah in [6], who use
geodesic active contour models for iris segmentation. The
structures of geodesic active contour and level set methods
are similar; therefore, both can handle noisy situations
and initialization problems properly. The major difference
between Ross’s method and the method proposed in this
paper is as follows. Due to the geodesic active contour’s
structure, it lacks the point correspondence property. There-
fore, it is impossible to find the correspondent points in
initial and final contours. We used point correspondent level
set approach [22], which, in addition to level set’s regular
abilities, keeps point correspondence during the iterations
[4]. This ability enables us to perform both localization
and mapping to the dimensionless coordination phases in
a single phase, an interesting property which improves the
performance of the whole system. Another advantage of
our proposed method, in comparison with Ross’s work, is
that, here, we use an area preserving method [23] for our
level set methods, which make our method robust in case
of blurred images. If the boundaries of an iris image are
blurred, level set method is not able to determine the exact
location of blurred parts of the boundaries to stop moving;
whilst, in our proposed method, thanks to its area preserving
property, even if some parts of boundaries are blurred, the
whole contour prevents the unwanted local movement of
the contour in blurred image. This property leads us to
determine the exact target boundaries (Figure 2). This could
be done by defining the application specific normal motion,



140

EURASIP Journal on Advances in Signal Processing

FIGURE I: (a) Three-dimensional function of level set approach, (b) Result of application of the zero level set method to an iris image taken

from CASIA-IrisV3.

N
(a)

FIGURE 2: Iris segmentation with noisy samples (a) without and (b) with area preserving capability.
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FIGURE 3: Real and imaginary axes and related binary codes.

combining with adequate tangential speed. More details are
available in [23]
3. Template Generating with User Dependency

According to Hallingsworth et al. in [24], it is possible to use
weighted iris codes during the Hamming distance estimation
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FIGURE 4: Iris features in the real/imaginary plane. The features near
the axes are more inconsistent than others.

phase. This means that different bits in an iris code do not
have the same importance. Based on this idea, we propose
a new user dependent method for iris recognition. After
mapping the segmented area of the iris to the dimensionless
polar coordinates, as it has been explained in Section 2,
iris texture is transformed into a binary code, using the
sign of real and imaginary parts of log Gabor Wavelet



EURASIP Journal on Advances in Signal Processing

90

Genuine acceptance rate (%)

0.01 0.1 1 10 100

False acceptance rate (%)

—%— Consistent bits with threshold = 35%

Consistent bits with threshold = 20%
- Consistent bit with threshold = 30%
—-O- Considering all bits of iris codes

Figure 5: Comparison of ROC curves of our proposed method
using all bits of iris code and using only the consistent bits with
different thresholds. As it can be seen, the performance of system
considering consistent bits with threshold equal to 35% is the best.
(Tests using CASIA-IrisV3 dataset).
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FIGURE 6: Three samples of masks used for choosing consistent
bits in iris codes. Two upper masks are related to two subjects in
CASIA-IrisV3, and the last one corresponds to a subject in Bath iris
database.

coefficients of the iris image. As it can be seen in Figure 3,
considering the quarter of the log Gabor coefficient in the
real-imaginary axes, a two-bit binary code can be assigned to
each coefficient.

Gabor filters are traditional choices for obtaining local-
ized frequency information, and thanks to their similarity
to the human vision system [1], these filters are vastly used
in iris feature extraction phase. However, they suffer from
two major drawbacks: (1) the maximum bandwidth of a
Gabor filter is limited to approximately one octave, and (2)
Gabor filters are not optimal, if one is seeking broad spectral
information with maximal spatial localization. Considering
these points, we used log Gabor filters [25] for feature
extraction. Equation (4) shows this filter:

G(W) — e(—log(W/wo)z)/(l(log(k/wo)z))’ (4)

where wy is the filter’s center frequency. To obtain constant
shape ratio filters, the term k/wy must also be held constant
for different wys.

It must be mentioned that using these filters is not an
originality of this work (see [26]). Considering the real and
imaginary parts of filters, texture of iris could be mapped
to the iris codes, and as mentioned in [24], regarding to
the distance of bits from axes, it is possible to choose some
probability of bit consistency. For each user, the iris code of
different samples is calculated, and by comparing these iris
codes, the probability of changing each bit is determined. By
choosing a threshold, it could be possible to judge about the
consistency of each bit. Details about the consistency of bits
in the iris codes can be found in [27].

In [27], existence of fragile bits in iris code has been
theoretically proved, and the effect of applying filters, image
rotation, and iris alignment has been discussed in details. In
our work, we used their idea about the bit consistency in iris
code and developed an applied method for iris recognition
systems. In Figure 5, the performance of proposed method
has been shown with different thresholds for using only the
consistent bits in the iris code generation phase. As it can be
seen, the best results have been obtained with threshold T =
35%. In addition, the comparison between performances of
our system considering all bits of iris code with the same
systems considering only consistent bits shows the positive
effect of masking fragile bits. For each user the proper
rectangular calculated and features inside this rectangular are
eliminated from iris code generation process.

For being rotation invariant, in this phase, like Daug-
man’s method [4], the enrolled iris code will be compared
with different shifted test iris codes to find the best match.

Figure 6 shows the calculated masks for three persons
using samples in CASIA-IrisV3 and Bath iris databases. In
this figure, black and white points show consistent and
inconsistent bits, respectively.

4. Experimental Results

In our experimentations, we have used all samples of
three famous iris databases, that is, CASIA-IrisV3, Bath,
and Ubiris. CASIA-IrisV3 includes three subsets which
are labeled as CASIA-IrisV3-Interval, CASIA-IrisV3-Lamp,
and CASIA-IrisV3-Twins. CASIA-IrisV3 contains a total
of 22051 iris images from more than 700 subjects. All
iris images are 8-bit gray-level JPEG files, collected under
near infrared illumination. Almost all subjects are Chinese
except a few ones in CASIA-IrisV3-Interval. Since these three
datasets were collected in different times, CASIA-IrisV3-
Interval and CASIA-IrisV3-Lamp have a small overlap in
subjects. Some samples from this database have been shown
in Figure 7(a). Bath iris database includes 20 samples from
each eye of 25 subjects. The images are of a very high
quality taken with a professional machine vision camera with
infrared illumination. Some of these images have been shown
in Figure 7(b).

Ubiris iris database version 1 is composed of 1877
images collected from 241 subjects taken in two sessions
(Figure 7(c)). Unlike the CASIA-IrisV3 database, it includes
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FIGURE 7: Some samples taken from (a) CASIA-IrisV3 database, (b) Bath database, and (c) Ubiris Version 1 database.
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FIGURE 8: (a) Horizontal histogram, (b) Vertical Histogram, (c) Overall Histogram of the image, and (d) Estimated center.

FIGURE 9: Inner and outer boundaries detection using pointwise level set approach done in one step and related iris codes.
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(a)
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F1GURE 10: Performance of proposed algorithm in presence of Gaussian noise. For both images we have added a Gaussian white noise with

mean = 0 and variance = 0.007.

(a)

(®)

F1GURE 11: Performance of the proposed algorithm to iris images with (a) 10 percent and (b) 15 percent of salt and pepper noise.

images in different noisy situations, which permits to evalu-
ate the robustness of iris recognition methods in presence of
noise [19].

To evaluate the performance of our algorithm, we have
used the K-fold cross validation technique. For CASIA-
IrisV3 database, for each subject, three-iris samples have
been utilized, to extract the user dependent iris code, and the
rest of samples to test the algorithm. For Bath database, the
number of samples used to extract the code is five. We have
repeated this technique in a way that all of the iris images
have been used in K-fold cross validation strategy.

In this work, the precise location of an iris is determined
using pointwise level set approach with area preserving capa-
bility. Generally speaking, active contour models have been
used previously in iris recognition systems [6]. Although
active contour refers to a family of moving contour methods,
in some papers, it corresponds to the Snake techniques
[5]. In previous sections, we have described the drawbacks
of the Snake model. Geodesic active contours with point
correspondence have been used for iris segmentation in [4].
In this paper, we propose a method based on pointwise level
set approach with area preserving capability.

We calculate the approximate center of inner boundary
of irises using vertical and horizontal histograms (Figure 8).
Using this technique, the initial point of a contour is
determined, and the starting point for tracing the contour
is selected (for coordinate mapping to dimensionless polar
space).

The vertical histogram is calculated as follows: size of the
vertical histogram is equal to image’s height, and the value of

each histogram bin is equal to the sum of gray levels of a row
of the image. The minimum of this histogram corresponds
approximately to the vertical location of the center of inner
boundary circle (almost circle). Indeed, pixels located in
the pupil region are always dark; therefore, their values are
close to 0. Thus, the minimum of the histogram shows the
line that has the lowest number of dark pixels, that is, the
diameter of the inner boundary circle. The intersection of
this line with the output of the horizontal histogram shows
the approximate location of the center point (Figure 8). Our
experimental results show that we can locate the center of
pupil in a point inside the pupil, even for difficult samples
having other dark areas in the eye image. For image samples
of datasets used in this paper, all pupils are placed almost in
the center of the image.

In order to make the correct contour initialization
(X, Y), the estimated center of pupil (x, y) is determined
using (5) (Figure 9). In this equation, the contour starts to
evolve from this point and is expected to find the whole iris
location.

For calculating d from the approximate center, one
dimensional derivation in the right horizontal axes has been
calculated. d is equal to the length of line between the
approximate center and some pixels after the found edge
(in our experienced d could be an integer between 10 and
30):

X =x+d,

(5)
Y=y.
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TasLE 1: Comparing localization accuracy of different methods using Ubiris database. The whole table entries are taken from reference [19],
excluding the last row which contains the results obtained using our approach.

Methodology Parameters Session 1, % Session 2, % Degradation
Daugman Original methodo]ogy 95.22 + 0.015 88.23 + 0.032 6.99
Daugman Histogram equalization 95.79 + 0.028 91.10 + 0.028 4.69
preprocessing
Threshold preprocessing
Daugman (128) 96.54 + 0.013 95.32 + 0.021 1.22
Wildes Original methodology 98.68 + 0.008 96.68 + 0.017 2.00
Wildes Shen and Castan edge 96.29 + 0.013 95.47 + 0.020 0.82
detector
Wileds Zero crossing edge detector 94.64 + 0.016 92.76 + 0.025 1.88
Caumus and Wileds Original methodology, 96.78 = 0.013 89.29 + 0.030 7.49
number of directions = 8
Martin-Roche et al. Original methodology 77.18 + 0.030 71.19 + 0.045 5.99
Tuceryan Total clusters = 5 90.28 =+ 0.021 86.72 = 0.033 3.56
Proenca et al. Fuzzy K-means + (x, y) = 98.02 + 0.010 97.88 + 0.015 0.14
position, z = intensity
Pointwise level set
Our Proposed method approach with area 99.1 + 0.01 98.98 + 0.013 0.1

preserving capability

The proposed one step segmentation approach improves
the speed of the whole process in comparison with regular
two-step boundary detection methods.

This method is robust in noisy situations. A noisy pixel
causes a sudden variation in gray levels and can stop the
moving front. However, in this situation, other contour
points continue to move and avoid the curve to stop.
Figure 10 shows the results of applying our method to an
iris image with Gaussian white noise (despite that encoding
the iris texture is almost impossible in this image). During
the detection process, some parts of the iris boundaries may
have low gray level contrast, which may lead the algorithm to
inaccurate edge detection results. For solving this problem,
we have used a topology preserving algorithm [23], which
guarantees the correct iris segmentation. Figure 11 shows the
result of applying our algorithm to iris images with 10 and 15
percent salt and pepper noises.

In general, the effect of noncooperative iris images
causes serious performance degradation. We used Ubiris
iris database version 1 [28] for testing our localization
ability dealing with noncooperative iris images. Our exper-
imental results showed that our method is able to handle
blurred, occluded images, localizing iris boundaries properly
(Figure 12 and Table 1).

We tested our localization algorithm on Ubiris dataset
and compared the results with the results published in [19].
The results in [19] were obtained by visual inspection of
each segmented image. Although this is not the best for
meaningful comparison, we did the same for localization
evaluation in our system. Table 1 shows these results that are
the proof of performance of our algorithm even for poor
quality images. Indeed, in term of the degradation, the lowest
accuracy degradation in the presence of noise belongs to

our method, depicting low sensitivity of our approach to the
image condition.

4.1. Error Definition. In order to measure the error of our
method, we compared the points of the detected boundaries
with those of the real boundaries. First, the exact boundary
contours for inner and outer parts of irises are determined
point to point manually. Then, the sum of the distance
between the interface points and their nearest point in the
correct boundary is calculated. Total error of localization is
estimated using

ZI,LO min (dis(I,, C))

E = >
N

(6)

where C is the correct boundary, dis(I,, C) means the set
of distances between nth point of interface and all of the
points of correct curve, and N is the total number of interface
points. Although a global system performance measure such
as ROC curve could be a better measure of performance,
by introducing this error measure, we intend to evaluate
our segmentation module performance exclusively. Figure 13
shows the localization errors (according to (5)), for proposed
method and traditional circular based method, using some
samples of CASIA-IrisV3 and Bath iris databases, in noisy
situations.

4.2. Response Time. Figures 14 and 15 show the response
times of proposed method using CASIA-IrisV3 and Bath iris
databases. We implemented Daugman [5], Ma et al. [7], and
Monro et al. [15] methods for comparing their results with
the results of our proposed method. Our method’s average
response time in the same situation is less than others. In
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FiGurg 18: ROC curves of proposed method in comparison with (a) Boles and Boashash [10], Daugman [5], Ma et al. [7], and (b) Monro
et al. [15], Halligswroth et al. [27] methods using CASIA-IrisV3 iris database.
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F1Gure 19: ROC curves of proposed method in comparison with (a) Boles and Boashash [10], Daugman [5], Ma et al. [7], and (b) Monro

et al. [15], Halligswroth et al. [27] methods using Bath iris database.

addition, small standard deviation of our method is a proof
of its performance for real time applications.

4.3. Hamming Distance. After generating the iris code, the
result is compared with iris codes in databases using Ham-
ming distance operators. Depending on the user dependent
consistent bits, only the important bits of each iris code are
involved in the matching process. Figures 16 and 17 show the
calculated Hamming distances for Daugman’s [5], Ma et al.

[7], Monro et al. [15], and proposed methods, for CASIA-
IrisV3 interval and Bath iris datasetss, respectively.

4.4. ROC Curves. ROC curves of proposed method have
been compared with those of five different methods, tested
on CASIA-IrisV3 and Bath iris databases, respectively, in
Figures 18 and 19. The results show the superiority of our
method compared to other methods. Figure 20 shows the
performance of our method using the iris samples with
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F1Ggure 20: ROC curves of proposed method in comparison with best results of Boles and Boashash [10], Daugman [5], Ma et al. [7], Monro
etal. [15] and Sun et al. [29] methods with iris rotations (5, 15, and 25 degrees clockwise) using (a) CASIA-IrisV3 and (b) Bath iris database.

5, 15, and 25 degrees rotation, compared to Boles and
Boashash [10], Daugman [5], Ma et al. [7], Monro et
al. [15], and Sun et al. [29] methods, tested on CASIA-
IrisV3 and Bath iris databases. One of the curves belongs
to the proposed method, and in each of the other curves,
each point corresponds to the best result obtained from
these four methods, for 5, 15, and 25 degrees rotations,
respectively. Indeed, we showed only one curve for different
rotations applied to our proposed method, which is a proof
of robustness of this method against rotation. Concerning
the other three curves in Figure 20, as it has been mentioned,
each curve is a pointwise combination of the best of the four
other methods.

As it can be seen, our method is robust against rotation,
while rotation degrades the performance of other methods
considerably, due to their circular edge detection nature. In
general, circular edge detection process is based on determin-
ing the location of the circle with maximum differences of
pixel gray levels for two adjacent circular curves. In practice,
these differences are calculated using two arches, instead
of a whole circle. The performance of the iris localization
depends on the location and angle of these arches in relation
with the iris axis, and, as a consequence, rotating the image
degrades the results of circular edge detection, mainly due to
wrong arches used in the process and presence of eyelid and
eyelashes. In contrast with these conventional methods, the
iris localization in the proposed method is based on geodesic
active contour model, which calculates the iris boundaries
independently to any geometric shape, including circles and
arches; therefore, it is robust to the image rotation problem.

5. Conclusions

We have proposed a new user-dependent iris recognition
method. Using a specific mask for each user, inconsistent

bits of iris code are omitted during the Hamming distance
comparison phase. As the experimental results show, using
this approach, the performance of the whole system is
improved considerably. Another contribution of this paper
is the utilization of pointwise level set approach with area
preserving capability for iris segmentation and localization.
In this algorithm, the exact location of the iris can be detected
using an iterative algorithm based on the active contour
model. Comparing our algorithm with other methods, we
showed that the new approach is able to solve some of
the previous method’s drawbacks. For instance, using our
method, the iris location can be detected regardless to its
angular position and shape, and this is done in only one step.
Also, previous methods usually detect iris boundaries using
circular edge. One of the disadvantages of this approximation
is its sensitivity to the rotation of the iris images. In recent
years, active contour model have been used for iris detection
purposes. However, our method has some advantages over
other methods. Indeed, an area preserving algorithm is
used to compensate the problem of incorrect iris boundary
detection in presence of noise. Furthermore, even when
eyelids occlude some part of iris, our algorithm localizes iris
area properly [4]. The experimental results show that our
method outperforms the current methods both in terms of
accuracy and response time.
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