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This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic
classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists).
The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic
system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert
jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0–3000 Hz frequency band for the
classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and
more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led
to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated
by a preliminary statistical analysis.
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1. Introduction

Assessment of voice quality is a key point for establishing
telecommunication standards as well as for medical area
linked to speech and voice disorders. In the telecommunica-
tion field, voice quality assessment is mainly addressed at the
perceptual level using the Mean Opinion Score (MOS) scale
[1] standardized by the International Telecommunication
Union (ITU). The evaluation of voice quality is done
by a jury composed of nonspecialized listeners. Several
algorithms were proposed in order to move from this
human perception-based-measure to an automatic measure
to reduce costs as well as to move from a subjective
to an objective method. The most known algorithm is
the Perceptual Evaluation of Speech Quality (PESQ) [2]
also normalized by the ITU. The effectiveness of PESQ is
measured by the correlation of the MOS measures obtained
by a human jury and using the PESQ. If the PESQ (and its

extensions) is well suited for the telecommunication field,
it requires parallel audio records without and with noise
disturbance to evaluate voice quality. This constraint is of
course impossible to satisfy in the medical/pathological area.
However, independently of this difference it is interesting to
notice that the MOS/PESQ is estimated at the perceptual
level and that there is no analytical description of informa-
tion at the acoustic or phonetic field characterizing a given
level of quality. In fact, the human subjective perception is
used as a baseline (MOS) and an automatic approach (PESQ)
is used to match some signal differences with the MOS scale.

In the field of voice disorder assessment, a general
approach very similar to the one used in telecommunications
is followed. Human experts are committed to evaluating
quality of speech samples at the perceptual level, generally
implying approaches based on the expertise of researchers
and practitioners. Three main drawbacks of this scheme
could be highlighted: assessment remains subjective, costly
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(if an expert jury is involved), and not analytical, that is, the
judgment may be global or not based on a standardized set of
criteria. As opposed to the telecommunication area for which
a standard scale (MOS) is proposed, only very few assessment
scales [3–5] are to be found in the pathological field, which
are generally accepted but not really considered as a standard
due to the large diversity of pathological voice disorders and
to the intrinsic difficulty to characterize some pathologies.

This paper describes the three points highlighted pre-
viously, by proposing a general approach based on both
the human expertise and automatic voice classification
approach. The proposed scheme allows to automate the voice
quality estimate like PESQ, and to move from a subjective to
an objective approach. Moreover, the most interesting part is
to use the automatic approach in order to support the human
expertise by highlighting some specific acoustic aspects of
the addressed pathology or class of pathologies. Figure 1
presents the first part of the proposed scheme. The automatic
voice classification system is fed by the pathological voice
examples associated with the perceptual labels given by the
human experts. A feedback loop is proposed to assess the
ability of the automatic system in the classification task.
Of course, several iterations involving inputs of machine
learning experts are needed to obtain a satisfactory system.

Figure 2 illustrates the second part of the proposed
scheme. Here, the automatic voice classification system is
applied on a set of voice examples to produce analytical infor-
mation. This information is given to the experts through a
second feedback loop and associated with statistical measures
and voice excerpts. It allows experts to listen to and/or to
analyze manually small parts of a large speech database only
in order to assess the interest of one information. Depending
on the previous results, experts—with machine learning
specialists—could change the feature selection and allow the
system to output targeted information.

This scheme can be applied to any kind of pathology
under a couple of main constraints: (1) enough expert
knowledge is available (to seed the automatic classification
system), (2) a good/large enough corpus is available.

In this paper, we focus on dysphonia—an impairment
of the voice—for two main reasons. Firstly, dysphonia
respects the constraints reported previously. Secondly, even
if dysphonia is often considered as a “minor” trouble linked
to an esthetic point of view, this pathology has a drastic
impact on the patient’s quality of life. An explanation of this
subconsideration of dysphonia is that voice quality is gen-
erally described as a paralinguistic phenomenon with little
impact on communication. However, the social relevance
and economic impact of voice disorders are now obvious,
especially for school teachers or other professionals who
use their voice as a primary tool of trade. For instance, a
recent study [6] has revealed that 10.5% of the teachers
are clearly suffering from voice disorders, when several
enquiries [7] show that voice is the primary tool for about
25% to 33% of the working population. In addition to
medical and professional consequences, some voice disorders
have also severe consequences regarding social activities and
interaction with others. It is the reason why voice therapy is
an important issue in a social, economical, clinical contexts,

and among voice therapy activities, voice assessment is an
important part of this clinical and scientific challenge.

A large set of methods can be used to assess voice
disorders like discussion with the patient, endoscopic exam-
ination of the larynx, postural behavior of the patient [8],
psychological and behavioral profile [9], auto-evaluation as
Voice Handicap Index questionnaire [10], perceptual judg-
ment [11], or instrumental assessment [12]. It is preferable
to increase the fields of observation in order to take the
multidimensional aspect of the spoken communication into
account. Indeed, an assessment method taken individually
appears as a reduced view of the voice disorder and provides
only a part of the truth.

The perceptual dimension of voice is an essential aspect
for the vocal evaluation as speech and voice are produced
to be perceived. Evaluating voice without studying the
impact on listeners amounts to lose its “raison d’être”.
Moreover, the majority of dysphonic speakers decides to
consult a practitioner when their entourage hears changes
in their vocal production on perceptive feelings only. In the
same way, practitioners appreciate therapeutic results mainly
listening to the patients’ voice: auditory perception is the first
and the most accessible method to evaluate vocal quality.
Lastly, the human being and his/her perceptive system are
powerful to decode speech [12]. However, the perceptual
judgment remains a controversial method because of various
drawbacks, notably its subjectivity [13, 14].

The multiparametric instrumental analysis represents
an alternative solution to quantify vocal dysfunctions [15].
Methods can be based on acoustic measurements but also
on aerodynamic parameters or electrophysiological signals.
These measurements are carried out for vocal production
with sensors designed to record and compute multiple
parameters issued from the speech production. The major-
ity of studies in this domain outlines the necessity of
combining various complementary measures in order to
take the multidimensional properties of vocal production
into account [15–20]. In a recent study [21], we have
applied a perceptual assessment (GRBAS scale [3]) on 449
voice samples including 391 patients with a voice disorder
recorded in the ENT Department of the Timone University
Hospital Center in Marseille (France). Concurrently, on
the same cohort of patients, an instrumental voice analysis
was carried out using the EVA workstation (SQLab-LPL,
Aix-en-Provence, France). The subject was instructed to
pronounce three consecutive sustained vowels and several
consecutive/pa/. For more than 80% of this population, the
grade proposed by perceptual and instrumental assessment
was concordant, which was considered as an acceptable
result by our practitioners for a clinical use. It is important
to notice that the state of the art of such instrumental
approaches allows only nonnatural, noncontinuous speech
materials when studying the different phenomena on natural
continuous speech is of a large interest.

This limitation encourages the authors to get interest
to automatic speaker and speech recognition techniques
for dysphonic voice characterization. Indeed, in addition
to analytical instrumental assessment approaches, another
kind of methods, mainly drawing upon both automatic
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Figure 2: The “automatic system to human experts/knowledge” feedback loop.

speech processing and pattern recognition domains, has
been proposed in literature. Mostly dedicated to voice
disorder detection, these approaches rely on automatic
acoustic analyses such as spectral [22, 23], cepstral [24–
27], or multidimensional acoustic analysis inspired from
the analytic instrumental assessment (F0, jitter, shimmer,
or Harmonic Noise Ratio) [25, 28–30], combined with
automatic classifiers based on Linear Discriminant Analysis
(LDA) [28, 29], Hidden Markov Models (HMM) [24, 28],
Gaussian Mixture Models (GMM) [24, 26], Support Vector
Machines (SVM) [31], or Artificial Neural Networks (ANN)
[23, 24, 30].

Compared with the analytic instrumental assessment
methods described previously, originality and interest of
these automatic classification-based-assessment approaches
are: (1) the ability to analyze continuous speech near to
natural elocution, (2) the ability to process a large set of
data, authorizing studies on a large-scale and significant
statistical results, (3) a simple and automatic acoustic
analysis providing an easy-to-use and noninvasive tool for
clinical use.

In this paper, we present a complete approach based on
the “back-and-forth methodology” we have just presented.
Section 2 is dedicated to the dysphonic voice classification
system. Section 3 describes the experimental protocols as
well as an experimental validation of the first part of the
method: the objective assessment of dysphonic voices. The
next section presents the core of our method, which aims
to gather new knowledge about dysphonia. Finally, Section 5
concludes this paper and presents some future works.

2. Dysphonic Voice Classification System

The system presented below is part of the automatic system-
based assessment approaches previously defined and is
involved in the “back-and-forth” methodology. The prin-
ciple retained here is to adapt a state of the art speaker
recognition system to the dysphonic voice classification task.
A speaker recognition system can be seen as a supervised clas-
sification process able to differentiate speech signals between
classes. A class of signal generally belongs to a given speaker
and is modeled using a set of examples from the latter. In
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some cases, a composite class could be necessary (associated
with several speakers) and modeled by grouping several
classes modeled independently or by modeling a unique
composite class on all the signals of speakers belonging to this
class. Two adaptation levels are necessary to suit a speaker
recognition system to the dysphonic voice classification task.
Firstly, a class does not longer correspond to a given speaker
but to a specific pathology or a severity grade of this
pathology. The class is then modeled using data from a set of
speakers affected by the corresponding pathology or severity
grades. Obviously, voices used for training a pathological
class cannot be included in the set of tested voices in order to
differentiate pathology detection from speaker recognition.
The second adjustment to apply to the speaker recognition
system is the representation of speech data, which can be
optimized for the voice disorder classification task.

The speaker recognition technique used in this study is
based on the statistical Gaussian Mixture based modeling,
which remains one of the state of the art alternative solutions
for speaker recognition [32]. This approach consists in three
phases:

(i) a parameterization phase;
(ii) a modeling phase;

(iii) a decision/classification phase.

2.1. Parameterization Phase. The parameterization phase is
necessary to extract relevant information from the speech
signal. Here, it is based on a short-term spectral analysis
resulting on 24 frequency spectrum coefficients and per-
formed as follows. The speech signal, sampled at 16 kHz, is
first emphasized by applying a filter, which aims to enhance
the high frequencies of the spectrum generally reduced for
the speech production. This filter is defined as: x(t) = x(t)−
k · x(t − 1) with k fixed at 0.95 empirically. The speech
signal is then windowed by using a 20 millisecond Hamming
window, shifting at a 10 millisecond rate. The goal of the
Hamming window is to reduce the side effects. The latter
facilitates the application of a Fast Fourier Transform (FFT)
locally on each window (512 points) and the computation of
the FFT modulus leading to a power spectrum. This power
spectrum is multiplied by a filterbank (series of passband
frequency filters) in order to extract the envelope of the
spectrum. Here, 24 triangular filters are used. According to
experiments, they are either spaced linearly on the 8 kHz
frequency band (referred to as LFSC standing for Linear
Frequency Spectrum Coefficients in this paper), or spaced
according to a MEL scale (referred to as MFSC standing
for Mel Frequency Spectrum Coefficients), wellknown to be
closer to the frequency scale of the human ear.

The feature vectors issued from this analysis, at a
10 millisecond rate, are finally normalized to fit a 0-mean and
1-variance distribution, coefficient by coefficient (means and
variances are estimated on the non-silence signal portions).
Classically, this normalization is employed to reduce the
effect of recording channels and facilitates the following
statistical process.

The LFSC/MFSC computation is done by using the
(GPL) SPRO toolkit [33]. Finally, the feature vectors can

be augmented by adding dynamic information representing
the way these vectors vary in time. Here, first and second
derivatives of static coefficients are considered (also named
Δ and ΔΔ coefficients) resulting in 72 coefficients.

2.2. Modeling Phase. Classically, this phase aims to estimate
models of targeted classes like individual speakers in speaker
recognition. In this paper, models represent either a set of
pathological/normal voices or a set of voices related to a
specific severity grade.

Modeling relies on Gaussian Mixture Models (GMM)
and estimate techniques drawing upon the speaker recogni-
tion domain. In this context, a set of D-dimensional feature
vectors, denoted by X = x1, . . . , xT , is represented by a
weighted sum of M multidimensional Gaussian distribu-
tions. Each distribution is defined by a D × 1 mean vector
μi, a D × D covariance matrix Σi, and a weight wi of the
distribution inside the mixture. The set of distributions and
related parameters, also called the Gaussian Mixture Model,
is denoted λ = (wi,μi,Σi), i = (1, . . . ,M). The modeling
phase consists in estimating all these parameters according
to training data.

In speaker recognition, two-step modeling is typically
applied for the model parameter estimate to improve their
robustness, especially when a small amount of training data
is available for some specific classes, as follows.

(i) Parameters of a GMM model are first estimated on a
large amount of speech signal, issued from a generic
population of speakers. This generic speech model,
also called Universal Background Model (UBM),
tends to represent the speaker-independent space of
acoustic features. It is generally trained using the
iterative Expectation-Maximization (EM) algorithm
[34] associated with the Maximum Likelihood crite-
rion (ML).

(ii) A speaker model is then derived from this UBM
model by involving adaptation techniques like MAP
[35] and the small amount of training data avail-
able for the given speaker. In practice, only the
mean parameters are updated while covariance
matrices and distribution weights remain generally
unchanged, directly issued from the UBM model.
The mean adaptation relies on a combining function
involving mean values issued from both the UBM
models and the speaker training data.

In this paper, the same scheme is applied due to the small
amount of training data available for pathological and con-
trol speech (see Section 3.1 for more details on the corpus).
The UBM model parameters are estimated on a French read-
speech corpus composed of 76 female speech utterances of
2 minutes each. This female population is extracted from
the BREF corpus [36], which is entirely separate from the
dysphonic corpus and the targeted task. All the GMM models
are composed of 128 Gaussian components with diagonal
covariance matrices.

Regarding the dysphonic voice classification task, a GMM
model will be estimated per class of information targeted (for
instance, a GMM model per grade of dysphonia severity).
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2.3. Decision/Test Phase. During this phase, a set of new
feature vectors Y = y1, . . . , yT associated with an incoming
speech signal is presented to the system and compared with
one or several GMM models λ. This comparison consists
in computing the averaged frame-based likelihood, denoted
L(Y | λ), as follows:

L(Y | λ) = 1
T

T∑

t=1

L
(
yt | λ

)
(1)

with

L
(
yt | λ

) =
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i=1

wi · Li
(
yt
)
,

Li
(
yt
) = 1

(2π)D/2|Σi|1/2

× exp
{
−1

2

(
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)T(Σi)
−1(yt − μi

)}
,

(2)

where Li(yt) represents the likelihood of frame yt accord-
ing to the ith Gaussian distribution of the model λ =
(wi,μi,Σi), i = (1, . . . ,M).

In the context of the dysphonic voice classification, the
classification decision is made by selecting the GMM model
λ, and consequently, the class of information associated with
for which the largest likelihood measure is computed given
the incoming speech signal Y .

3. Experimental Protocol

Results provided in the rest of the paper are expressed
in terms of correct classification rates (named CCR).(In
tables, the number of well-classified voices is also provided
in brackets.) For indication, 95% confidence intervals are
provided for the overall CCR only, given the small number
of tests available from the corpus used and despite cautions
taken by the authors (see Sections 3.1 and 3.2). Finally, it has
to be pointed out that all these results are issued from the
GMM classifier and have to be interpreted from a statistical
viewpoint.

3.1. Corpus. The corpus, called DV , used in this study is
composed of read speech pronounced by a set of dysphonic
subjects, mostly affected by nodules, polyps, oedemas, and
cysts as well as a control group. The subjects’ voices are
classified according to the G criterion of the Hirano’s GRBAS
scale [3], where a normal voice is rated as grade 0, a slight
dysphonia as 1, a moderate dysphonia as 2 and finally, a
severe dysphonia as 3. The choice of the G criterion was
driven by two main reasons: (1) it refers to a global quality
judgment as opposed to the other criteria (RBAS), which is
more suitable regarding the type of parameterization used in
this work, (2) like the R and B criteria, it is more robust to
intra- and interlistener variability.

The corpus was supplied by the ENT Department of the
Timone University Hospital Center in Marseille (France). It
is composed of 80 voices of females aged 17 to 50 (mean:

32.2). The speech material is obtained by reading the same
short text (French), of which signal duration varies from
13.5 to 77.7 seconds (mean: 18.7 seconds). The 80 voices
are equally balanced in the four GRBAS perceptual grades
(20 voices per each), which were determined by a jury
composed of three expert listeners. This perceptual judgment
was carried out by consensus between the different jury
members as it is the usual way to assess voice quality by
our therapist partners. The judgment was done during one
session only.

This corpus is used for all the experiments presented in
this paper. Due to its small size, cautions have been made
to provide statistical significance of the results over all the
experiments by applying specific methods like the leave-one-
out technique.

3.2. Leave-One-Out Technique. As shown in Section 2.2,
training data used to learn models of pathological classes
have to be separated from testing. In other words, speakers
included in the training set should not be present in the
testing set. As the DV corpus is relatively small (80 voices),
it is not well suited to split it into two separate subsets.
Consequently, some special protocols have been designed
for different classification tasks (Task1 and Task2) in order
to respect this constraint while providing more statistically
significant results. These protocols rely on the leave-one-out
technique, which consists in discarding a speaker, noted x,
from the experimental set, in learning some models on the
remaining data and in testing data of speaker x using these
models. This scheme is repeated until reaching a sufficient
number of tests.

3.3. Task1-Protocol P1. Task1 consists in determining
whether a given voice is normal or dysphonic. Consequently,
two different GMM models have to be estimated: the λd
(normal) model trained on a subset of G0 voices and
λd (dysphonic) model trained on a voice subset equally-
balanced in G1, G2 and G3 grades.

In respect with the leave-one-out approach and this grade
balancing, various voice subsets excluding the testing voice,
composed of 18 voices each, are available to estimate both the
normal and dysphonic GMM models. In the dysphonic case,
these subsets are built randomly, including 6 voices per grade
under the constraint that all the voices are used at least once.

For testing, each individual voice available in the DV
corpus is first compared to all the normal voice models (from
which it has been discarded if it is normal), resulting in an
averaged normal voice likelihood L(Y | λd), and secondly
compared to all the dysphonic voice models (from which it
has been discarded if it is dysphonic), resulting in an averaged
dysphonic voice likelihood L(Y | λd). The decision per
individual voice relies on the maximum between the couple
of likelihoods.

3.4. Task2-Protocol P2. Task2 consists in assessing a given
voice according to the G criterion of the GRBAS scale. Four
classes and corresponding models (one per grade, λG0 , λG1 ,
λG2 and λG3 ) are in competition in the system. In this context,
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Figure 3: Number of voices correctly classified from the 4-G classification following 1000 Hz-width frequency subbands (24 LFSC).

the 20 normal voices (G0 rated voices) and the 60 dysphonic
ones (G1, G2 and G3 rated voices) available in the DV corpus
are used as follows.

(i) All the subsets of 19 voices among the G0 set are
used to estimate a model per each-λ−YG0

-with Y the
discarded voice. The same process is applied on the
set G1, G2 and G3. This results in 20 different models
available per grade.

(ii) When voice Y , labeled perceptually as grade i, is
tested, Y is first compared to model λ−YGi

leading
to the likelihood computation: L(Y | λ−YGi

). Then,
an averaged likelihood is computed for all the
other grades (different from i), by using the grade-
dependent model sets (average on 20 likelihoods per
grade).

(iii) The decision relies on the maximum of the four
likelihoods.

3.5. Validation. To evaluate quality of the classification
system, which next experimental results will depend on,
Tables 1 and 2 provide its intrinsic performance through
both protocols P1 and P2 respectively. In addition to the
24 LFSC-based parameterization, which will be used in the
next sections, performance of a second system configuration,
based on 72 MFSC is provided (see Section 2.1 for details
of these different parameterizations). This second configura-
tion aims to illustrate the potentiality of the automatic system
when more complex and relevant information, like the joint
use of static and dynamic features for instance, is extracted
from the speech signal.

As expected, the 72 MFSC-based configuration shows
the best classification performance independently of the
protocols used, taking benefit of the more complex informa-
tion. Focusing on the protocol P2, a large confusion can be
observed on both grades 1 and 2 whatever the configurations
used and the use of more relevant information involved in
the 72 MFSC. This confirms the requirement of a better
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Table 1: Performance of the normal and dysphonic voice classifica-
tion (Task1) expressed in terms of correct classification rate (CCR
in %) as well as the number of succeeded tests (in parentheses) on
the DV corpus according to two parameterization configurations
(24 LFSC and 72 MFSC). Confidence intervals (CIs) are provided
for the overall scores.

Correct classification rate (CCR in %)

(Succeeded Test Nb)

System Normal Dysphonic Overall ±CI

24 LFSC 95.0 (19) 66.7 (40) 73.8 (59) 9.7

72 MFSC 95.0 (19) 91.7 (55) 92.5 (74) 5.8

understanding of the acoustic phenomena related to dyspho-
nia and their different levels of severity.

4. Knowledge Gathering

The goal of this section is to describe how the automatic
classification results allow to gather relevant knowledge for
in-depth and refined the human expert analysis. In this way,
the automatic system will be first joined to a frequency
subband analysis. The aim of this subband-based analysis
is to study how the acoustic characteristics of phenomena
linked to dysphonia are spread out along different frequency
bands depending on the severity level; in other words:
“is a frequency subband more discriminant than another
for dysphonic voice classification?” In a second step, this
subband analysis will be coupled with a phonetic analysis to
help for refining observations.

All the experiments have been conducted following the
protocol P2. Despite its lower performance, the 24LFSC
based-parameterization was preferred to the 72 MFSC for all
the following experiments for two main reasons. Firstly, the
use of linear filters is more straightforward in this context
and facilitates the comparison between individual subbands.
Secondly, the goal of the following experiments is to examine
acoustic phenomena related to the dysphonia in the speech
signal through the classification task instead of improving
intrinsic performance of the automatic system.

4.1. Frequency Subband Analysis. The subband-based analy-
sis consists in cutting the frequency domain in subbands pro-
cessed independently. The main motivation of this approach
resides in the assumption that the relevance of frequency
information can be dependent on the band of frequencies
considered. For example, [37] shows that some subbands
seem to be more relevant to characterize speakers than some
others for the automatic speaker recognition task. In the
same way, subband architecture-based approaches have been
used for the automatic speech recognition task in adverse
conditions, since subbands may be affected differently by
noise [38].

In this context, the full frequency band 0–8000 Hz is
first split into individual fixed-width subbands (1000 Hz
width), which the automatic classification system (described

in Section 2) is applied on afterwards. According to perfor-
mance observed on individual subbands, larger subbands are
investigated.

4.1.1. 1000Hz Subband Performance. In this first experi-
ment, eight 1000 Hz-width subbands are processed indi-
vidually through the classification system. Classification
performance is presented per subband on Figure 3. Three
main trends can be pointed out.

(i) Frequency bands between 0 and 3000 Hz get the best
performance with an overall CCR varying from 55%
to 70%.

(ii) Frequencies between 3000 and 5000 Hz exhibit the
worse overall performance. Only the normal voices
(grade 0) get a satisfactory score of 65% CCR, despite
a loss of performance compared with the full band
(85% CCR). On the other side, a strong confusion
can be observed for the dysphonic voices leading to
very low scores (20% CCR).

(iii) Frequencies upper than 5000 Hz provide better over-
all performance compared with 3000 to 5000 Hz
subbands even though most of the classification
errors are scattered over the grades, still demonstrat-
ing a large confusion. On the contrary, it can be
observed that severe dysphonic voices (grade 3) are
well classified in both subbands between 5000 and
7000 Hz (70% CCR) and 7000–8000 Hz (80% CCR,
best score).

Therefore, considering 1000 Hz-width frequency bands indi-
vidually highlights (1) some difficulties to classify the grade
2 voices whatever the individual subband considered, (2)
the ability of low frequencies to discriminate most of the
voices, except for the grade 2 voices, (3) the “surprising”
performance of the grade 3 voices on high frequencies,
especially regarding the 7000–8000 Hz subband for which the
speech amount is very low.

4.1.2. Joint Frequency Band Performance. This section
focuses on the three frequency zones highlighted in the
previous section. The automatic classification is now per-
formed on the following frequency subbands: 0–3000 Hz,
3000–5400 Hz and 5400–8000 Hz, which aims to take benefit
of the complementarity of the 1000 Hz-width subbands.
Performance, reported in Table 3, shows that the behavior
observed on the individual 1000 Hz-width subbands is
emphasized here. Indeed, the 0–3000 Hz band (joining
the first three 1000 Hz-width subbands) remains the most
interesting frequency band, exhibiting an overall 71.25%
CCR and achieving the best score for the grade 2 voices
(65% CCR versus 50% for both full band and the best
individual subband 1000–2000 Hz). Conversely, the 3000–
5400 Hz band exhibits the lowest overall CCR (48.75%)
compared with the other subbands. Confusion observed in
the individual 1000 Hz-width subbands is still present, except
for the grade 3 voices which tend to take benefit of the
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Table 2: Performance of the 4-G classification (Task2) expressed in terms of correct classification rates (CCR in %) as well as the number of
succeeded tests (in parentheses) on the DV corpus according to two parameterization configurations (24 LFSC and 72 MFSC). Confidence
intervals (CI) are provided for the overall scores.

Correct classification rate (CCR in %)

(Succeeded Test Nb)

System Grade 0 Grade 1 Grade 2 Grade 3 Overall ±CI

24 LFSC 85.0 (17) 55.0 (11) 50.0 (10) 70.0 (14) 65.0 (52) 10.5

72 MFSC 95.0 (19) 65.0 (13) 70.0 (14) 85.0 (17) 78.8 (63) 9
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Figure 4: Performance per grade in terms of correct classification rate (CCR %) considering “All phonemes”, consonant and vowel classes,
for the 0–8000 Hz (each first set of three columns) and 0–3000 Hz (each second set of three columns) frequency bands.

complementarity of the individual subbands (65% CCR ver-
sus 25% and 20% for the corresponding individual 1000 Hz-
width subbands). Finally, the 5400–8000 Hz band, related
to the residual zone of fricative and plosive consonants,
provides reasonable performance for the normal (65% CCR)
and severe dysphonic voices (70% CCR). Regarding speech
information carried by this band, CCR of the grade 3 voices
may be explained by the resulting noise of the veiled (or
blown) features of severe dysphonic voices. In contrary, it is
more difficult to explain the behavior of the normal voices
in this band, except by a discriminant lack of information
compared with other grades.

4.2. Frequency Band-Based Phonetic Analysis. To help in
understanding and interpreting the behavior of the auto-
matic classification system in the 0–3000 Hz frequency band,

the authors propose to pursue the classification system obser-
vation through a frequency band-based phonetic analysis.
In this way, performance of the classification system will be
analyzed per phoneme class and per frequency range (0–
8000 Hz and 0–3000 Hz) in order to evaluate which impact
may have the dysphonia effects on phonemes or phoneme
classes in particular frequency bands according to the grades.
This phonetic analysis is close to the “phonetic labeling”
proposed in [39], in which a descriptive and perceptual
study of pathological characteristics of different phonemes
is proposed. To perform this frequency band-based phonetic
analysis, a phonetic segmentation is necessary for each
speech signal available in the DV corpus. This segmentation
was extracted automatically by realizing an automatic text-
constrained phonetic alignment. The latter was yielded by
the LIA alignment system, based on a Viterbi decoding
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Figure 5: Performance per grade in terms of correct classification rate (CCR %) considering voiced and unvoiced consonant classes, for the
0–8000 Hz (each first set of three columns) and 0–3000 Hz (each second set of three columns) frequency bands.
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Figure 6: Oscillogram and spectrogram for the extract “[· · · ] perdait toutes [· · · ]”/pErdetut/; grade 0 on the left (normal voice), grade
3 on the right (severe dysphonia). On the right, we can note (1) the abnormal extension of the voice onset time (VOT) on the unvoiced
plosive/t/. The consonant is quasi transformed in fricative (spirantisation), (2) the quasi unvoiced consonant/d/ transformed in/t/.
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and graph-search algorithms [40], a text-restricted lexicon
of words associated with their phonological variants, and
a set of 38 French phonemes. It is worth noting that
the phonetic segmentation is coupled with the automatic
dysphonic classification system for the decision step only.
Indeed, for the classification tests and decision making, the
averaged frame based likelihood (see Section 2.3) between
the incoming voice and the grade models is computed on
the restricted set of segments associated with a targeted
phoneme class. Conversely, grade models are learned on
all the phonemic material available per grade in the DV
corpus independently of the phoneme class targeted. Table 4
provides duration information of the phoneme classes
targeted.

Figure 4 compares performance of the overall phoneme
set (denoted “All phonemes” in the figure) with consonant
and vowel classes according to the 0–8000 Hz and 0–
3000 Hz frequency bands. Figure 5 focuses on consonant
performance comparing voiced and unvoiced classes.

Comparing vowel and consonant classes (Figure 4) on
the 0–8000 Hz band uniquely, it can be observed that
consonants outperform slightly vowels for the grade 0 (80
against 70% CCR), for the grade 2 (50 against 40% CCR),
and for the grade 3 (85 against 60% CCR). Best performance
is reached by the vowel class on the grade 1 uniquely
even if the difference is slight with the consonant class (55
against 50% CCR). Therefore, consonants tend to be more
efficient in this context for discriminating dysphonia severity
grades than vowels, although the former contains voiced
and unvoiced components. In this way, Figure 5 shows that
the unvoiced consonants outperform the voiced ones for
both the grade 0 (80 against 70% CCR) and the grade
1 (60 against 45% CCR) as opposed to the grade 2 for
which voiced consonants obtain 60% CCR against 55% for
unvoiced consonants. Both of them reach 75% CCR for the
grade 3.

Considering now the 0–3000 Hz frequency band,
Figure 4 shows that consonants outperform vowels on both
the grades 1 (55 against 30% CCR) and 3 (75 against 55%
CCR) while reaching similar performance on grades 0 (90
against 85% CCR) and 2 (70% CCR for both). Thus, similar
behavior can be observed on the grades 0 and 3 by comparing
the frequency bands, performance of the consonant and
vowel classes becomes equal for the grade 2 on the 0–3000 Hz
band. Only the behavior of the consonant and vowel classes
for the grade 1 is quite different since performance of the
vowels decreases largely on the 0–3000 Hz. This tends to
indicate that confusion with other grades is largely higher
for the grade 1 considering the first formants of vowels only
(present in the 0–3000 Hz). Regarding now Figure 5, the
behavior of the unvoiced consonant is rather similar for
grades 0 and 3 by comparing both the frequency bands.
Inversely, the behavior of the grades 1 and 2 is quite different
since the unvoiced consonants reach 35% CCR for the grade
1 on the 0–3000 Hz against 60% CCR on the 0–8000 Hz
frequency band and 75% against 50% CCR for the grade 2.
Therefore, the 0–3000 Hz frequency band seems to increase
the confusion of grade 1 with the other grades considering
the unvoiced consonants only.

4.3. Discussion. The progress in the experiments based on
the automatic classification system reported previously, from
the subbands to the phonetic analysis, tends to underline the
relevancy of the unvoiced consonant in the discrimination
of the GRBAS grades of dysphonia. This observation is
rather unexpected regarding the definition of dysphonia. For
that matter, studies reported in literature generally focus
on voiced components because they are directly affected
by pathologies related to the glottic source. For instance,
sustained vowels are extensively associated with perceptual
or objective approaches in literature since they make the
assessment or measurement of parameters directly linked
to the vocal source easier. The relatively high performance
of the unvoiced consonants exhibited in this paper tends
to highlight that these components can be of interest for
assessing severity grade of dysphonia similarly to the voiced
components. An interesting assumption for this observation
would be that the consequences of dysphonia on the vowel
production may impact the production of the unvoiced
consonants as well, considering Vowel-Consonant (VC) or
Consonant-Vowel (CV) contexts.

4.4. From Automatic Classification to Expertise: Preliminary
Results on Prolonged Voice Onset Time. Previous sections
have raised different interesting observations, requiring
further analysis by human experts. As dysphonia is a
laryngeal disorder, the quite good performance reached
on the unvoiced consonants by the automatic classifier
was rather unexpected. It is the reason why data were
manually analyzed, focusing first on the unvoiced plosives
(Figure 6). By verifying the automatic boundaries of the
plosive, a lengthening of the voice onset time according to
the dysphonia severity has been highlighted.

Voice onset time (VOT) is the duration between the
release of a plosive and the beginning of the vocal fold
vibration. This duration can be indicative of the speaker
capacity to coordinate his/her articulatory and phonatory
organs. For instance, during the production of the sequence
/pa/, the speaker must control the relaxation of the lips,
which creates a burst followed by the vibration of the
vocal cords to produce the vowel. However, a deregulation
can involve a lengthening or a shortening of this duration
because of some peripheral biomechanical constraints or
if motor control for the laryngeal vibration is delayed or
anticipated compared to the gesture of opening of the
consonant. This deregulation could also appear if the speaker
does not have a well-tuned pneumophonatory control, for
instance in dysphonia without laryngeal pathology. Abnor-
mal VOT has been studied for second-language learning
[41], aphasia or apraxia of speech [42], dysarthria [43],
stuttering speech [44], dysphagia [45], spasmodic dysphonia
[46]. To confirm VOT lengthening observation, VOT was
measured from 865 unvoiced plosives (161 /p/, 244 /k/, 460
/t/), present on the French text uttered by the 80 female
speakers of the DV corpus. For the statistical analysis,
the “R” software v.2.6.2—a language and environment for
statistical computing (http://www.R-project.org)—was used,
associated with a linear mixed model [47]. The latter is
a powerful model class used for the analysis of grouped
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Table 3: Performance of the 4-G classification following joint frequency subbands in terms of correct classification rates (% CCR)—24
LFSC. Confidence intervals (CI) are provided for the overall scores.

Correct classification rate (CCR in %)

(Succeeded test Nb)

Grade 0 Grade 1 Grade 2 Grade 3 Overall ±CI

Full Band 85.0 (17) 55.0 (11) 50.0 (10) 70.0 (14) 65.00 (52) 10.5

0–3000 Hz 90.0 (18) 65.0 (13) 65.0 (13) 65.0 (13) 71.25 (57) 10

3000–5400 Hz 65.0 (13) 40.0 (8) 25.0 (5) 65.0 (13) 48.75 (39) 11

5400–8000 Hz 65.0 (13) 35.0 (7) 45.0 (9) 70.0 (14) 53.75 (43) 11

Table 4: Total duration in seconds per phonetic class and per grade as well as the number of phonemes (nb), their averaged duration (μ)
and associated standard deviation (σ).

Phonetic classes
Grades Info. per class

G0 G1 G2 G3 nb μ σ

Consonant 135.13 139.21 149.83 167.28 6395 0.092 0.045

Liquid 34.56 34.01 36.04 43.03 2181 0.068 0.033

Nasal 29.72 30.17 31.85 33.42 1279 0.098 0.039

Fricative 31.77 32.32 35.07 40.70 1144 0.122 0.057

Occlusive 39.08 42.71 46.87 50.13 1791 0.100 0.039

Vowel 103.58 98.77 103.46 109.79 5586 0.074 0.046

Oral 84.37 80.45 85.22 93.66 4862 0.071 0.044

All phonemes 241.51 240.96 256.66 280.52 12140 0.084 0.046

data such as the repeated observations of a speaker available
in this study. A key feature of mixed models is that they
allow to address multiple sources of variation by introducing
some random effects in addition to fixed effects; in other
words, they permit to take both within- and between-
subject variation into account in this context. The model
VOT = f(GRADE) was studied here where GRADE is a 4-
level ordered factor as regressor and SPEAKER is a random
effect (intercept only). The statistical analysis, depicted in
Figure 7, shows that the linear component of the GRADE
factor is significant (P = .0001) with no significant quadratic
or cubic effect. The main result obtained is that VOT is
increasing with the dysphonia level in a significant way.
This result can be explained by the difficulty to initiate the
vocal cord vibration correctly, encountered by dysphonic
speakers. It confirmed the phenomenon observed manually
on the attack of sustained vowels by [48], which showed
the importance of the vowel onset to identify the dysphonia
severity perceptually. Of course, this study needs to be
pursued by observing other kinds of data. To conclude this
set of experiments, we can point out the interest of the
automatic system to highlight features which cannot be a
priori observed or expected by the human experts, especially
on continuous speech.

5. Conclusion

The work presented in this paper aims to show that
machine learning approaches could help the human experts
to analyze more deeply acoustic features linked to voice
disorders. Initially, the described approach relies on the
human expertise, necessary for feeding an automatic voice
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Figure 7: VOT (in seconds) according to the dysphonia severity
grade (0: normal, 3:severe dysphonia).

classification system. More precisely, the latter requires a set
of voice samples associated with some meaningful labels pro-
vided by the experts like pathologies and related perceptual
grades. After several tuning and validation steps involving
human experts (machine learning experts, phoneticians and
pathologists) the voice classification system is able to model
initial knowledge related to the labels. In a second phase,
the automatic classification system is used to determine
relevant information available in different parts of the input
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speech recordings or exploited through different kinds of
acoustical features. This second phase aims to determine
some new hypotheses on voice disorders (more precisely,
new hypotheses on the features characterizing voice disor-
ders). Therefore, a new feedback loop between the automatic
classification system and the human experts is mandatory.
To assess the general methodology, this approach was
experimented through an automatic classification system of
dysphonia severity grades (following the G criterion of the
GRBAS scale). This paper presents in details the automatic
classification system, the class of original information it
allows to highlight, as well as the first preliminary study
related to the VOT carried out by the human experts.

Experiments based on this automatic classification sys-
tem and conducted on a dysphonic corpus led to different
interesting observations. First, the 0–3000 Hz frequency
band achieved the best performance compared to [3000–
5400] and 5400–8000 Hz, with an overall correct classifi-
cation rate of about 71% (to be compared to 48% and
53% respectively for the other subbands) for the task of
severity grade classification. When the system was used to
rank the part of useful speech in terms of phonemic content,
it was observed that consonants outperform vowels and,
more surprisingly, that unvoiced consonants appeared to be
very relevant for the classification task. Submitted to the
human experts, these results led to a manual observation
and analysis of unvoiced consonants. Focused on unvoiced
plosives, this analysis highlighted a lengthening of the voice
onset time (VOT) according to the dysphonia severity. This
observation was confirmed by a statistical analysis performed
on 865 unvoiced plosives issued from the dysphonic corpus.
This phenomenon can be intuitively explained by the
difficulty in initiating the vocal cord vibration correctly
encountered by dysphonic speakers. However, from the
author’s knowledge, it has never been discussed from a
scientific point of view. Even if this preliminary study on
the VOT has to be pursued by observing, for instance, other
classes of unvoiced consonants, the approach proposed in
this paper has shown the potentiality of the back-and-forth
loop between the automatic dysphonic voice classification
system and the human experts. It should to drive the latter
towards a better understanding of the acoustic phenomena
related to voice disorders in the speech signal. In addition
to the validation of the VOT lengthening according to the
dysphonia severity levels, future work will be dedicated to
bring human expertise on the potentiality of the unvoiced
components for discriminating dysphonia severity grades.
First studies will examine more complex phonemic contexts
like Consonant-Vowel (CV) or Vowel-Consonant (VC) in
order to determine if vowel alterations due to dysphonia
may have impacts on the adjacent unvoiced consonants.
Once validated, this new knowledge will be analyzed by the
machine learning experts for its potential integration in the
automatic classification system.
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