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In this paper analytical and simulation results for the decentralized detection of unknown signals are introduced. Parallel sensor
network scheme is assumed. Additive White Gaussian Noise (AWGN) and Nakagami fading are assumed in both links, that is, from
the source to the decentralized local sensors and from the sensors to the fusion center. Furthermore, diversity employing Square
Law Combining (SLC) or Square Law Selection (SLS) is considered at each sensor, for both independent and correlated branches.
Appreciable improvements are obtained with the increase of the number of sensors and the diversity employment.

1. Introduction

In past researches [1–5], signal processing with distributed
sensors had gained importance due to the relatively low cost
of sensors, the inherent redundancy possible with multi-
ple sensors, the availability of high speed communication
links, and increased computational capability. Decentral-
ized detection using a group of local sensors to detect
the presence or absence of a certain target (phenomena-
unknown signal) was originally used mainly in military
tracking, radar systems, and control applications but now is
being employed in a wide variety of applications including
scientific, industrial, health care, agriculture, and domestic
applications. In decentralized processing, some preliminary
processing is carried out at each sensor, and the information
is then sent from each sensor to a central processor which
is known as the fusion center. In previously reported
work the processing at the detectors and at the fusion
center was optimized. Chair and Varshney [3] derived the
optimum fusion rule at the data fusion center for a Bayesian
detection problem with distributed sensors. Lee and Chao
[4] presented a distributed detection scheme based on soft
local decisions. In [5] nonparametric tests such as the Sign
and Wilcoxon detectors were considered for the situations

when the signal to be detected is embedded in a noise whose
characteristics are not completely known. In [6], Niu, Chen
and Varshney presented a model for the decisions made by
the local sensors and transmitted to the fusion center through
noisy and Rayleigh fading channels. This paper includes
analysis of the system in two stages. The first stage consists
of the detection of an unknown signal transmitted through
Nakagami fading channels using a group of local sensors that
employ an energy detection technique. The energy in the
received waveform is measured over an observation window.
The problem of detecting an unknown deterministic signal
over a Gaussian noise channel by employing the energy
detection technique was first addressed by Urkowitz [7].
It was revisited in [8] for Rayleigh and Nakagami fading
channels assumed in the detection problem. In [8], single
stage was assumed, no decentralized network was considered,
and no results were obtained for noninteger Nakagami fading
parameter. In this paper, expressions for probabilities of
false-alarm and detection at each local sensor are derived
under the presence of AWGN and Nakagami fading for
general fading parameters. Furthermore, in the second
stage, decisions made by the local sensors are transmitted
through Nakagami fading and AWGN channels to a fusion
center where expressions for the probabilities of false alarm
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and detection are obtained. The choice of the Nakagami
fading is due to its flexibility in matching experimental
data rather than the use of Rayleigh, log-normal, or Rice
distributions. Rayleigh distribution represents a special case
from it. Furthermore, it can fit less and severe fading than
that of Rayleigh. This paper is organized as follows. The
system model is described in Section 2. In Section 3, the false
alarm and detection probabilities over AWGN and Nakagami
fading channels are derived at the local sensors and the fusion
center, respectively. Diversity using Square Law Combining
(SLC) and Square Law Selection (SLS) schemes are employed
at the local sensors in Section 4, and the probability of
detection in both cases is also evaluated. Finally, numerical
and simulation results are demonstrated in Section 5, and the
conclusion is offered in Section 6.

2. SystemModel

The system under consideration is shown in Figure 1. As
shown in figure, parallel sensor network scheme is assumed.
Parallel data vectors are transmitted to each sensor through
independent wireless noisy fading channels in the first stage.
Each sensor makes its own binary decision. These decisions
are transmitted in the second stage through wireless noisy
fading channels to a fusion center where a global decision is
obtained.

The system parameters are defined as follows.

hi j : Nakagami fading channel for sensor i of stage j,

ni j(t): noise waveform modeled as zero mean Additive
White Gaussian Noise at sensor i and stage j,

Pdi j : Probability of detection at sensor i and stage j,

Pf i j : Probability of false alarm at sensor i,where 1 ≤ i ≤ K ,
where K is the number of sensors, and j = 1, 2 refers
to the first and second stage, respectively,

ui: decision made by local sensor i,

PD: Probability of detection at the Fusion Center,

PF : Probability of false alarm at the Fusion Center.

The signal to be detected is assumed to be unknown and
occurs on the basis of two hypotheses H1 and H0 indicating
signal presence or absence, respectively. Our analysis applies
to either low-pass (LP) or band-pass (BP) system, however
we focus on BP representation. The received signal at local
sensor i can be represented as

ri(t) =

⎧
⎪⎨

⎪⎩

R
{[

hi jSi(t) + ni j(t)
]

e− j2π fct
}

, H1,

R
{

ni j(t)e− j2π fct
}

, H0,
(1)

where R{·} denotes the real operation, fc is the carrier
frequency.

Si(t) is an equivalent LP representation of the unknown
signal at sensor i with bandwidth W . Let Sc(t) and Ss(t)
denote the inphase (I) and quadrature (Q) components,
respectively, that is,

Si(t) = Sc(t) + jSs(t). (2)

Similarly the AWGN ni(t) with one sided PSD N0 can be
written as

ni(t) = nc(t) + jns(t). (3)

Therefore, the I and Q components will be each confined
to the frequency support [−W/2,W/2]. Finally, let γ =
α2
i Es/N0 denotes the SNR, where Es is the signal energy,

and α represents the fading amplitude which is assumed
to follow a Nakagami distribution. Thus, the Probability
Density Function (PDF) of γ over a Nakagami channel can
be written as follows [8, Equation (6)]

fNak
(
γ
) = 1

Γ(m)

(
m

γ

)m

γm−1 exp

(

−mγ

γ

)

, γ ≥ 0, (4)

where m is the Nakagami parameter, and γ is the average
SNR.

The receiver structure implemented by the local sensor
can generally be described as follows. The received signal
is first prefiltered by an ideal BP filter. Then, the output of
this filter is squared and integrated over a time interval T
to finally produce a measure of the energy of the received
waveform. The output of the integrator denoted by g can be
expressed as

gi

� 2
N0

∫ T

0
ri

2(t)dt

∼= 1
N0W

⎡

⎣
N/2∑

i=1

(αcSci − αsSsi + nci)
2 +

N/2∑

i=1

(αcSsi + αsSci + nsi)
2

⎤

⎦,

(5)

where N/2 is the number of samples per either I or Q
components, αc = α cos θ, αs = α sin θ, and generally xck and
xsk, respectively, denote the kth samples of xc(t) and xs(t),
that is, I and Q components. It then follows that under H1, g
has a noncentral chi-square distribution with variance σ2,
non centrality parameter μ = 2γ and N Degrees of Freedom
(DOFs). Under H0, g has central chi-square distribution.
Throughout the following analysis, we will consider μ = aγ
and take the special case of a = 2 and σ2 = 1. Thus the PDF
of g is given by [8, Equation (3)]

fG
(
g
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
σN2N/2Γ(N/2)

g(N/2)−1e−g/2σ
2
, H0,

1
2σ2

(
g

aγ

)(N−2)/4

e−(aγ+g)/2σ2
I(N/2)−1

(√
aγg

σ2

)

, H1,

(6)

where Γ(·) is the gamma function and Iv(·) is the vth-order
modified Bessel function of the first kind [9, 2.1-120].

3. Analytical Results

In the following Sections 3.1 and 3.2, false alarm and
detection probabilities are derived for the first and second
stage, respectively.
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Figure 1: The two stage system model.

3.1. False Alarm and Detection Probabilities at the Local
Sensors. In this section, we define Pfi1 = Pr(gi > λ | H0) and
Pdi1 = Pr(gi > λ | H1) as the probability of false alarm and
the probability of detection for sensor i, respectively, where λ
is a decision threshold. The local sensors are assumed to be
identical, thus for simplicity, Pfi1 = Pf1 and Pdi1 = Pd1 . Based
on the statistics of g,Pf1 over AWGN channels can be written
as [8, equation (4)]

Pf1 =
Γ
(
N/2, λ/2σ2

)

Γ(N/2)
, (7)

where Γ(·, ·) is the incomplete gamma function. Similarly Pd1

is given by [8, equation (5)]

Pd1 = QN/2

⎛

⎝

√
aγ

σ2
,

√

λ

σ2

⎞

⎠, (8)

where QN/2(·, ·) is the generalized Marcum Q-function [10,
equation (4.59)].

By averaging (8) over (4), and with the aid of
Appendix A.1, the average Pd1 over a Nakagami channel,
Pd1,Nak , can be obtained as

Pd1,Nak = ζG1 +

(
2mσ2

2mσ2 + aγ

)m

e−λ/2σ
2

(N/2)−1∑

i=1

(
λ/2σ2

)i

i!

× 1F1

(

m; i + 1;
λaγ

2σ2
(
2mσ2 + aγ

)

)

,

(9)

where ζ = 2/ Γ(m) (mσ2/aγ)m, and 1F1(·; ·; ·) is the
confluent hyper-geometric function [11, 9.21]. For integer
m,G1 is given by

G1 = 2m−1(m− 1)!
v2m

b1
2

v2 + b1
2 exp

(

−b2
2

2
v2

v2 + b1
2

)

×
m−1∑

k=0

εk

(
v2

v2 + b1
2

)k

Lk

(

−b2
2

2
b1

2

v2 + b1
2

)

,

(10)
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where Lk is the laguerre polynomial of degree k [11, 8.970],
and

εk =

⎧
⎪⎪⎨

⎪⎪⎩

1, k < m− 1,

1 +
v2

b1
2 , k = m− 1.

(11)

Whereas for the special case of m = 1/2 which represents the
worst fading condition of the Nakagami distribution, G1 is
given by

G1 =
√
π

2
1
v

[

2Q1

(
b2

2

(

1− v

s

)

,
b2

2

(

1 +
v

s

))

− exp

(

− b1
2 + 2v2

s2

b2
2

4

)

I0

(
b1

2b2
2

4s2

)]

,

(12)

where v2 = 2mσ2/aγ, b1 = 1, b2 =
√
λ/σ2, s =

√

b1
2 + v2,

and I0(·) is the modified Bessel function of order zero.
Notice that Pf1 in case of fading channels will remain as

in (7), since it is independent on the SNR.

3.2. False Alarm and Detection Probabilities at the Fusion
Center. As shown in Figure 1, the second stage consists of the
binary decisions ui ∈ {+1,−1}, i = 1, 2, . . . ,K made by the
local sensors and transmitted to the fusion center through
fading and noisy channels and ui = +1 or −1 under H1

and H0, respectively. The detection performance of each local
sensor can be characterized by its corresponding probability
of false alarm and detection denoted by Pf1 and Pd1,Nak,
respectively, that were defined in Section 3.1.

The output of the channel (input to the Fusion center)
for the ith sensor is defined as

yi = xi + ni = hiui + ni, (13)

where hi is Nakagami fading with PDF given by [12, equation
(1)]

f (hi) = 2mmhi
2m−1

Γ(m)Ωm
e(−mhi

2/Ω), hi > 0. (14)

In the following analysis Ω = E(hi
2) is normalized. It is to be

noted that (14) is equivalent to (4) except that the SNR (γ) is
replaced by the amplitude hi.

To obtain an expression for the probability of detection
at the output of each channel (input to fusion center) it is
necessary to find p(yi | H1) and p(yi | H0).

Let us now consider p(yi | H1). The first step is to find
p(ui | H1):

p(ui | H1) =
⎧
⎨

⎩

Pd1,Nak, ui = 1,

1− Pd1,Nak, ui = −1.
(15)

From (13), f (xi | ui) can be written as

f (xi | ui) = 2mm

Γ(m)
ui xi

2m−1 exp
(−mxi

2)U(uixi), (16)

where U(·) is a step function defined as the following:

U(x) =
⎧
⎨

⎩

1, x ≥ 0,

0, x < 0.
(17)

Because ni is Gaussian distributed with zero mean and
variance σn2, f (yi | xi) is given by

f
(
yi | xi

) = 1√
2πσn

e−(yi−xi)2/2σn2
. (18)

Thus, the following result for f (yi | xi) is obtained as follows:

f
(
yi | ui

) =
∫

f (xi | ui) f
(
yi | xi,ui

)
dxi

=
∫

f (xi | ui) f
(
yi | xi

)
dxi,

(19)

where the identity f (yi | xi,ui) = f (yi | xi), which is
obtained from the fact that ui, xi, and yi form a Markov
chain, has been used.

By substituting (16) and (18) into (19) and setting ui =
1, a general integral form, that can be used to evaluate the
conditional PDF f (yi | ui) for any Nakagami parameter “m”,
can be written as

f
(
yi | ui = 1

)

= β
∫∞

0
x2m−1 exp

(

−
(
x − (

y/
(
2mσn2 + 1

)))2

2σn2/(2mσn2 + 1)

)

dx.

(20)

Similarly for ui = −1,

f
(
yi | ui = −1

)

= β
∫∞

0
x2m−1 exp

(

−
(
x +

(
y/

(
2mσn2 + 1

)))2

2σn2/(2mσn2 + 1)

)

dx,

(21)

where β = 2mm/(Γ(m)
√

2πσn) e−my2/(2mσn2+1)

In the following Sections 3.2.1, 3.2.2, and 3.2.3, three
cases will be considered depending on the fading depth. In
particular m = 1/2, 1, and 2, respectively, to obtain the
probabilities of false alarm and detection at the fusion center
due to each sensor independently. In Section 3.3 the overall
probabilities of detection and false alarm at the fusion center
are derived.

3.2.1. Case m = 1/2 (worst case of Nakagami fading).
Substituting m = 1/2 in (20) the conditional PDF fNak,1/2(yi |
ui) can be derived as (see Appendix B.1)

fNak,1/2
(
yi | ui

)

=
√

2
Γ(1/2)

√
σn2 + 1

e−yi
2/2(σn2+1) Q

(
−ui yi

σn
√
σn2 + 1

)

,

(22)

where Q(·) is the complementary distributed function of the
standard Gaussian, that is,

Q(x) =
∫∞

x

1√
2π

e−t
2/2dt. (23)
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Let f (yi | H1) and f (yi | H0) be defined for all m as in (24)
and (25), respectively,

f
(
yi | H1

)

=
∑

ui

[
p(ui | H1) f

(
yi | ui

)]

= Pd1,Nak f
(
yi | ui = 1

)
+
(
1− Pd1,Nak

)
f
(
yi | ui = −1

)
,

(24)

f
(
yi | H0

)

=
∑

ui

[
p(ui | H0) f

(
yi | ui

)]

= Pf1 f
(
yi | ui = 1

)
+
(

1− Pf1

)

f
(
yi | ui = −1

)
,

(25)

where Pd1,Nak, is the average probability of detection given by
(9) after setting m = 1/2 and evaluating. From (22) and (24),
fNak,1/2(yi | H1) can be obtained as

fNak,1/2
(
yi | H1

)

=
√

2
Γ(1/2)

√
σn2 + 1

e−yi
2/2(σn2+1)

×
[
(
1− 2Pd1,Nak

)
Q

(
yi

σn
√
σn2 + 1

)

+ Pd1,Nak

]

.

(26)

The expression for fNak,1/2(yi | H0) is similar to that in (26)
while replacing Pd1,Nak by Pf1 . Finally, the probability of false
alarm and the probability of detection at the output of each
channel of the second stage can be defined as Pf2 = p(yi ≥
0 | H0), and Pd2,Nak = p(yi ≥ 0 | H1) under hypotheses
H0 and H1, respectively. Pd2,Nak for m = 1/2 is denoted
by Pd2,Nak,1/2 and evaluated with the aid of Appendix B.2 as
follows:

Pd2,Nak,1/2

=
∫∞

0
fNak,1/2

(
yi | H1

)
dyi

= 1
Γ(1/2)

[
(
1− 2Pd1,Nak,1/2

) σn
2
√
π
e(σn2+1)/4 K0

(
σn2 + 1

4

)

+Pd1,Nak,1/2
√
π

]

,

(27)

where K0(·) is the Bessel Function of imaginary argument
as given by [11, 3.754.2]. Pf 2,Nak,1/2 will have a similar
expression as in (27) except for plugging Pf1 instead of
Pd1,Nak,1/2.

3.2.2. Case m = 1 (Rayleigh fading). Following the same
procedure as in Section 3.2.1 and by substituting m = 1 in

(20), f (yi | ui) for the Rayleigh fading case can be derived as
(see Appendix B.3)

fRay
(
yi | ui

)

= 2σn√
2π(2σn2 + 1)

e−yi
2/2σn2

×
[

1 + ui
√

2π pyie
(pyi)

2/2 Q
(−pui yi

)]

.

(28)

Using (28) and (24), as in the previous section fRay(yi | H1)
can be written as

fRay
(
yi | H1

)

= 2σn√
2π(2σn2 + 1)

e−yi
2/2σn2

×
{

1 +
[

Pd1,Ray −Q
(
pyi

)]√
2πpyie(pyi)

2/2
}

,

(29)

where p = 1/σn
√

2σn2 + 1, and Pd1,Ray is the value of Pd1,Nak

in (9) while substituting m = 1. Similarly, fRay(yi | H0) is
obtained with the same form of fRay(yi | H1) as in (29) while
replacing Pd1,Ray with Pf1 .

Moreover, Pd2,Ray and Pf 2,Ray can be obtained as in [6,
equations (20) and (21)]:

Pf 2,Ray = 1
2

+
Pf1 − 1/2
√

2σn2 + 1
,

Pd2,Ray = 1
2

+
Pd1,Ray − 1/2
√

2σn2 + 1
.

(30)

3.2.3. Case m = 2 (less fading than that of Rayleigh). For
Nakagami m = 2, fNak,2(yi | ui) can be obtained, with the
aid of Appendix B.4, as follows:

fNak,2
(
yi | ui

)

= 8√
2πσn(4σn2 + 1)3 e

−yi2/2σn2

×
{

yi
2σn

2 + 2σn4(4σn2 + 1
)

+ uiQ
(−uiqyi

)
eyi

2/2σn2(4σn2+1)

×
[

3
√

2πqyiσn4(4σn2 + 1
)

+
√

2πqyi3σn2
]}

,

(31)

where q = 1/σn
√

4σn2 + 1.
Therefore, f Nak,2(yi | H1) can be written as

f Nak,2

(
yi | H1

)

= 8e−yi
2/2σn2

√
2πσn(4σn2 + 1)3

×
{

yi
2σn

2 + 2σn4(4σn2 + 1
)

+ q
√

2πeyi
2/2σn2(4σn2+1)

×[
Pd1,Nak −Q

(
qyi

)][
3yiσn4(4σn2 + 1

)
+ yi

3σn
2]
}

.

(32)

A similar expression for f (yi | H0) can be obtained by
inserting Pf1 in (32) instead of Pd1,Nak. Using the same
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procedure as in Appendix B.2, in addition to making use of
[9, 14.4-14] and the result in [9, 14.4-15], thus Pd2,Nak,2 can
be derived and given by

Pd2,Nak,2

= 1

(4σn2 + 1)3

×
[

4σn4 +
8σn2

q
+

(
6σn2 + 1
q3σn3

)

Pd1,Nak,2

− 3
q2

(√

4σn2 + 1− 1
)

− 1
4q3σn3

(
1− ϕ

)2(2 + ϕ
)
]

(33)

where ϕ = 1/
√

4σn2 + 1, and Pd1,Nak,2 is obtained by
substituting m = 2 in (9).

Pf 2,Nak,2 can be obtained analogous to (33) while replac-
ing Pd1,Nak,2 with Pf1 .

3.3. Overall Probabilities of False Alarm and Detection at
the Fusion Center. Finally, the false alarm and detection
probabilities in the fusion center can be expressed as a
function of the probabilities at the output of the fading
channels of the second stage (i.e., input to the fusion center)
using the binomial expansion formula as studied before in
[5, equations (1) and (2)] as follows:

PF =
K∑

i=t

(
K
i

)

Pi
f2

(

1− Pf2

)K−i
, (34)

where t is the threshold.
For the same t, the corresponding PD is

PD =
K∑

i=t

(
K
i

)

Pi
d2,Nak

(
1− Pd2,Nak

)K−i
. (35)

4. Diversity at the Local Sensors

In this section, Square Law Combining (SLC) and Square
Law Selection (SLS) Diversity schemes are employed in order
to improve the energy detection performance at the local
sensors. In Section 4.1 results for SLC are obtained, and in
Section 4.2 results for SLS are depicted.

4.1. SLC Diversity. In this scheme, the outputs of the square
law devices (square and integrate operation per diversity
branch), denoted as {gil}Ll=1, where L is the number of
diversity branches, are combined to yield a new decision
statistic gi,SLC =

∑L
l=1 gil. Under H0 and for AWGN channels,

adding L i.i.d central chi-square variates, each with N DOFs
and variance σ2, will result in another chi-square variate with
LN DOFs and the same variance σ2.

Therefore, analogous to (7), Pf ,SLC can be written as [8,
equation (10)]

Pf ,SLC = Γ
(
LN/2, λ/2σ2

)

Γ(LN/2)
. (36)

Likewise, under H1, gi,SLC will be a chi-square variate with
LN DOFs, non-centrality parameter

∑L
l=1 aγl � aγt, and

variance σ2. Hence, Pd at the combiner output for AWGN
channels, Pd,SLC, can be evaluated by analogy to (8) as [8,
equation (11)]

Pd,SLC = QLN/2

⎛

⎝

√
aγt
σ2

,

√

λ

σ2

⎞

⎠. (37)

In SLC, it is necessary to study both cases of i.i.d. and
correlated diversity branches. In the following subsections,
the probability of detection is averaged over both i.i.d and
correlated Nakagami Channels.

4.1.1. Independent and Identically Distributed Nakagami
Channels. The PDF of γt for L i.i.d. Nakagami branches is
quite similar to that in (4), while replacing each m by mL and
each γ by Lγ. Hence, Pd,Nak,SLC,i.i.d is equivalent to Pd,Nak in
(9) after replacing each m by Lm, each γ by Lγ, and each N
by LN.

4.1.2. Correlated Nakagami Channels. For L correlated Nak-
agami branches, the PDF of γt is as given in [13, equation
(18)]:

Pγ
(
γ
)

=
(
γm/γ

)Lm−1
e−γm/γ(1−ρ)B

(
γ/m

)(
1− ρ

)m(L−1)(1− ρ + Lρ
)m

Γ(Lm)
,

(38)

where B denotes 1F1(m,Lm,Lmργ/γ(1− ρ)(1− ρ + 2ρ)),
and ρ is the correlation coefficient. By averaging Pd,SLC, noise
SLC, over (38), Pd1,Nak,SLC,corr can be obtained.

Results are obtained using Dual Diversity, that is, L =
2 in (38), and using the same approach used to obtain the
average probability of detection over Nakagami channels in
Appendix A.1. Hence Pd1,Nak,SLC,corr is given by

Pd1,Nak,SLC,corr

= η
∞∑

j=0

Γ
(
α + j

)
Γ
(
β
)
c j

Γ(α)Γ
(
β + j

)
j!

(
σ2

a

) j

×
[

2n+ j−1
(
n + j − 1

)
!

v2(n+ j)

(
b1

2

v2 + b1
2

)

e−b2
2v2/2(v2+b1

2)

×
n+ j−1
∑

k=0

εk

(
v2

v2 + b1
2

)k

Lk

⎛

⎝− b2
2b1

2

2
(

v2 + b1
2
)

⎞

⎠

+
LN/2−1∑

i=1

Γ
((
z + 2 j + 1

)
/2

)(

b2
2/2

)i
e−b2

2/2

2i!
((

v2 + b1
2
)
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)(z+2 j+1)/2

× 1F1

⎛

⎝
z + 2 j + 1

2
, i + 1,

b2
2b1

2

2
(

v2 + b1
2
)

⎞

⎠

⎤

⎦,

(39)
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where c = 2mρ/γ(1−ρ)(1+ρ), η = 2(mσ2/aγ)2m/Γ(2m)(1−
ρ)m(1 + ρ)m, z = 4m − 1, n = 2m, α = m, β = 2m, v2 =
2mσ2/aγ(1− ρ), and

εk =

⎧
⎪⎪⎨

⎪⎪⎩

1, k < n + j − 1,

1 +
v2

b1
2 , k = n + j − 1.

(40)

In the above equation, up to 40 terms are sufficient after
which the probability of detection is insensitive to any
increments to 3 significant digits independent on the values
of false-alarm as shown in Table 1.

After taking 100 terms of (39) it was found that the
maximum difference does not exceed 0.0445% as compared
with results obtained by taking 40 terms for the parameters
under consideration.

4.2. SLS Diversity. In the SLS diversity scheme, the branch
with maximum decision statistic gSLS = max(g1, g2, . . . , gL) is
to be selected. Thus, Pf 1 for SLS, Pf 1,SLS can be written as in
[8, equation (14)]:

Pf 1,SLS = 1−
(

1− Γ
(
N/2, λ/2σ2

)

Γ(N/2)

)L

. (41)

Using [8, equation (16)] Pd1,SLS,Nak for L independent
Nakagami branches is given by

Pd1,SLS,Nak = 1−
L∏

i=1

(

1− Pd1,Nak

(

γi,N
))

, (42)

where Pd1,Nak(γi,N) is obtained as in (9).

5. Numerical and Simulation Results

The Receiver Operating Characteristics (ROC) [14], prob-
ability of detection PD versus PF , for different situations
of interest and different parameters such as the Nakagami
fading parameter, the number of local sensors (K), or SNR
values are depicted. In all of the forthcoming results, the
number of samples N is taken equal to 4. Figure 2 shows the
performance of the system under consideration for different
Nakagami fading parameters (m = 1/2, 1, 2) when K = 2.
For the sake of comparison with the noiseless second link
channels, results for direct connection between the sensors
and the fusion center are included. It is clear that fading
deteriorates the performance. The degradation decreases
with the increase of m, that is less fading depth. Better
performance is achieved for higher SNR values (γ = 20 dB)
as shown in Figure 3. Figure 4 depicts the performance to
show the effect of increasing the number of sensors up to 4.
It is clear that the performance improves drastically with the
increase of K. For further improvement diversity techniques
are employed at the local sensors. Figure 5 displays the
performance for dual SLC for different Nakagami fading
assuming independent diversity branches. Similar results are
depicted at Figure 6 for correlation coefficient equals 0.7.
Both figures show that diversity appreciably improves the
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Figure 2: PD versus PF for K = 2, for different Nakagami fading,
γ = 10 dB.

0.95

0.955

0.96

0.965

P
D

0.97

0.975

0.98

0.985

0.99
m = 2

m = 1

m = 1/2

0.995

1

10−6 10−5 10−4 10−3

PF

10−2 10−1 100

Direct connection in the 2nd link
Noise + fading in the 2nd link

Figure 3: PD versus PF for K = 2, for different Nakagami fading,
γ = 20 dB.

performance and correlation degrades it as expected. Finally,
Figure 7 represents results for an easier diversity system
known as SLS for the dual situation. Although the perfor-
mance is improved relative to the nondiversity situation, it
is comparatively less than SLC system. Simulation results for
Nakagmai fading are obtained using the technique described
in [15]. Depicted results are shown in Figures 2 and 4. It is to
be noted that simulation results coincide with those obtained
theoretically with high degree of accuracy for all of the fading
parameters under consideration.
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Table 1

No. of terms Pf = 0.01 Pf = 0.05 Pf = 0.1 Pf = 0.5

40 Pd1,SLC = 0.785 Pd1,SLC = 0.865 Pd1,SLC = 0.901 Pd1,SLC = 0.977

50 Pd1,SLC = 0.785 Pd1,SLC = 0.865 Pd1,SLC = 0.901 Pd1,SLC = 0.977

60 Pd1,SLC = 0.785 Pd1,SLC = 0.865 Pd1,SLC = 0.901 Pd1,SLC = 0.977
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Figure 4: PD versus PF for different number of sensors assuming
Rayleigh fading channels in both links, γ = 10 dB.
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Figure 5: PD versus PF for K = 2 employing Dual SLC (i.i.d.
diversity branches) for different Nakagami fading parameters, γ =
10 dB.
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6. Conclusion

Comprehensive analytical and simulation results for decen-
tralized detection of unknown ignals are included in this
paper. AWGN and Nakagami fading are assumed in both
channels. Dual SLC and SLS are employed at the local sensors
for further improvement of the performance. Depicted
results show that the performance improves with the
decrease of the fading depth, that is, increase of the Nakagmi
parameter “m” and increase of the number of local sensors.

Appendices

A. Analytical Results for the Probabilities
of False Alarm and Detection at
the Local Sensors

A.1. Evaluation of Probability of Detection over Nakagami
Fading Channels. Given that

Pd1,Nak =
∫∞

0
fNak

(
γ
)
QN/2

⎛

⎝

√
aγ

σ2
,

√

λ

σ2

⎞

⎠dγ,

Pd1,Nak = ζ
∫∞

0
xu exp

(

−v2x2

2

)

QM(b1x, b2)dx = ζGM ,

(A.1)

where ζ = 2/Γ(m)(mσ2/aγ)m, u = 2m − 1, v2 =
2mσ2/aγ,M = N/2, b1 = 1, and b2 =

√
λ/σ2.

Using the recursive expansion of QM function given by
[10, 4.61]

GM =
∫∞

0
xu exp

(

−v2x2

2

)

QM−1(b1x, b2)dx

+
∫∞

0
xu exp

(

−v2x2

2

)(
b2

b1x

)M−1

× exp

⎛

⎝−
(

b1
2x2 + b2

2
)

2

⎞

⎠IM−1(b1b2x) dx.

(A.2)

GM can be recursively evaluated as follows

GM = GM−1 + JM−1

= GM−2 + JM−2 + JM−1

...

= G1 + J1 + J2 + · · · + JM−2 + JM−1

= G1 +
M−1∑

i=1

Ji.

(A.3)

With the aid of [11, 6.631] and [16, equation (29)], Ji is given
by

Ji =
Γ((u + 1)/2)

(

b2
2/2

)i
e−b2

2/2

2(i!)
((

v2 + b1
2
)

/2
)(u+1)/2

× 1F1

⎛

⎝
u + 1

2
; i + 1 ;

b1
2b2

2

2
(

v2 + b1
2
)

⎞

⎠.

(A.4)

G1, for integer m, can be found with the aid of [16, equation
(25)], while for the case of m = 1/2,G1 is obtained using [17,
equation (63)].

B. Analytical Results for the Probabilities
of False Alarm and Detection at
the Fusion Center

B.1. Evaluation of fNak,1/2(yi | ui). Setting m = 1/2 in (20)
yields

fNak,1/2
(
yi | ui = 1

)

=
√

2
Γ(1/2)

√
2πσn

e−y
2/2(σn2+1)

∫∞

0
e−(x−(y/(σn2+1)))2

/2(σn2/(σn2+1))dx

=
√

2
Γ(1/2)

√
σn2 + 1

e−y
2/2(σn2+1) Q

(
−y

σn
√
σn2 + 1

)

.

(B.5)

B.2. Evaluation of the Probability of Detection (Pd2) at the
Output of the Nakagami Fading Channel of the Second Stage
for the Case ofm = 1/2. Having

Pd2,Nak,1/2 =
∫∞

0

√
2

Γ(1/2)
σnwe

−y2/2(σn2+1)

× [
Pd1,Nak,1/2 +

(
1− 2Pd1,Nak,1/2

)
Q
(
wy

)]
dy,
(B.6)

where w = 1/σn
√
σn2 + 1

Pd2,Nak,1/2 =
√

2
Γ(1/2)

σw
[
A Pd1,Nak,1/2 +

(
1− Pd1,Nak,1/2

)
B
]
,

A =
∫∞

0
e−y

2/2(σn2+1)dy =
√

2π(σn2 + 1)
2

,

B =
∫∞

0
Q
(
wy

)
e−y

2/2(σn2+1)dy.

(B.7)

Making use of the approximate expansion for Q(x) as
presented in [18, equation (6)]:

B = 1
w
√

2π

∫∞

0

1√
1 + x2

e−(x2/2)(1+σn2)dx. (B.8)
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By making the change of variables, z = x2, and using [11,
3.364], thus

B = 1
2w
√

2π
e(1+σn2)/4K0

(
1 + σn2

4

)

. (B.9)

Similarly, Pf 2,Nak,1/2 can be justified following the same steps.

B.3. Evaluation of fRay(yi | ui = 1). Following the same
analysis as in B.2, while setting m = 1 in (20) yields

fRay
(
yi | ui = 1

)

= 2√
2πσn

e−y
2/2(σn2+1)

∫∞

0
xe−(x−y/(σn2+1))2

/(2σn2/(σn2+1))dx

= 2σn√
2π(1 + 2σn2)

e−y
2/2σn2

[

1 +
√

2πpye(py)2/2Q
(−py)

]

,

(B.10)

where p = 1/σn
√

2σn2 + 1.

B.4. Evaluation of fNak,2(yi | ui = 1). Having

fNak,2
(
yi | ui = 1

)

= 8√
2πσn

e−2y2/(4σn2+1)

×
∫∞

−y/(4σn2+1)

(
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(B.11)

where

X = e−y
2/2σn2(4σn2+1)

[
y2σn2

(4σn2 + 1)3 +
2σn4

(4σn2 + 1)2

]

,
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4σn2 + 1

)
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(B.12)

Also,

Z =
√

2π
(

y

4σn2 + 1

)3 σn
√

4σn2 + 1
Q

(

− y

σn
√

4σn2 + 1
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.

(B.13)

Finally,

fNak,2
(
yi | ui = 1

)

= 8√
2πσn(4σn2 + 1)3 e

−y2/2σn2

×
{

y2σn
2 + 2σn4(4σn2 + 1
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+ Q

(−qy)ey2/2σn2(4σn2+1)

×
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3
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2π qyσn
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