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We consider a classifier based on Independent Component Analysis Mixture Modelling (ICAMM) to model the feature joint-
probability density. This classifier is applied to a challenging novel application: classification of archaeological ceramics. ICAMM
gathers relevant characteristics that have general interest for material classification. It can deal with arbitrary forms of the
underlying probability densities in the feature vector space as nonparametric methods can do. Mutual dependences among the
features are modelled in a parametric form so that ICAMM can achieve good performance even with a training set of relatively
small size, which is characteristic of parametric methods. Moreover, in the training stage, [ICAMM can incorporate probabilistic
semisupervision (PSS): labelling by an expert of a portion of the whole available training set of samples. These properties of
ICAMM are well-suited for the problem considered: classification of ceramic pieces coming from four different periods, namely,
Bronze Age, Iberian, Roman, and Middle Ages. A feature set is obtained from the processing of the ultrasonic signal that is
recorded in through-transmission mode using an ad hoc device. A physical explanation of the results is obtained with comparison
with classical methods used in archaeology. The results obtained demonstrate the promising potential of ICAMM for material

classification.

1. Introduction

Determining the historical period of archaeological ceramic
shards is important for many archaeological applications,
particularly to reconstruct human activities of the past. In
fact, the standardization of an efficient and nondestruc-
tive testing (NDT) method for ceramic characterization
could become an important contribution for archaeologists.
Chemical, thermoluminescence, and other analyses have
shown to measure the age of ceramics accurately, but they are
expensive, time-consuming and involve some destruction of
the analyzed pieces [1]. Relative dating by comparison with
ceramic collections is nondestructive but very inaccurate
[1].

Ultrasound has been used in archaeological applications
such as ocean exploration to detect wrecks, imaging of
archaeological sites, and cleaning archaeological objects [2—
4]. In this paper, we consider a method to sort archaeological

ceramic shards based on ultrasonic nondestructive eval-
uation. This method aims to be economic, fast, precise,
and innocuous for the ceramic pieces. It consists of three
steps: measuring by the through-transmission technique,
extracting features from the measured ultrasonic signals, and
classifying the feature set in classes corresponding to historic
or protohistoric periods.

The estimation of the chronological period of an archae-
ological fragment is not a straightforward work, especially
if we consider that the fragment might be moved from
its context of origin due to migrations, wars, or trade
exchange, and so forth. In addition, some external features
used for classification of archaeological objects, such as
particular shapes and decorations, might be not evident in
the fragments, and thus these aspects would not provide
information for a correct classification of the fragments.

Through-transmission was selected because the ceramic
produces large attenuation to the propagation of ultrasound,



so the pulse-echo technique cannot be implemented at
the required operating frequency. Time, frequency, and
statistical features (to be described later) were extracted using
standard signal processing techniques. The characteristics
of the classification problem offer a good case study for
testing advanced classifiers, like those based on modelling
the underlying statistical densities of the feature space as
mixtures of independent component analyzers.

In consequence, we dedicate Section 2 to presenting the
ultrasound through-transmission model from a linear sys-
tem perspective and to defining the selected features. Then,
in Section 3 we present the rationale for these classifiers and
describe them based on mixtures of independent compo-
nent analyzers. Section 4 presents the experiments and the
results obtained in the sorting of ceramic pieces from four
different periods: Bronze Age, Iberian, Roman, and Middle
Ages. Section 5 presents the conclusions and future line of
work.

We reported some preliminary results related to this
archaeological application which was presented in confer-
ence [5]. The following significant new contributions are
presented in this paper: rationale and selection of new
ultrasonic features; use of a classifier that is based on
probabilistic semisupervision of independent component
analyzers (ICA) mixture models that are suitable for han-
dling expert uncertainty; implementation of an ad hoc
device designed to avoid the uncontrolled conditions of a
totally manual measurement procedure; and demonstration
of physical interpretation of the results obtained by the
proposed method in comparison with classical methods
used in archaeology. Therefore, this work provides the
foundations to implement a practical method to com-
plement or even replace some of the destructive and
time-consuming techniques that are currently employed in
archaeology.

2. Through-Transmission Model and
Features Definition

A simplified model of ultrasonic through-transmission anal-
ysis is to consider that the recorded signal is the convolution
of the material reflectivity with a linear time-varying system
(LTV) (see Figure 1). The variant impulse response of the
LTV is the injected ultrasonic pulse travelling through
the material, which bears the effects of attenuation and
dispersion that affect both its amplitude and frequency
content. Actually, some nonlinearity may be incorporated
into this simple model in some specific cases; however, in
general, the linear assumption is adequate for a large number
of situations, or is at least enough to be able to obtain
practical solutions yielding reasonable performance. Thus,
the received signal x(t) looks similar to the one shown in
Figure 1.

If we consider that x(¢) is a realization of a nonstationary
stochastic process {X(f)} having instantaneous power spec-
tral density P.(f,t), different “ultrasonic signatures” us(t)
can be computed like those included in the following
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Centroid frequency (fc):

[ £ Po(f,0)df
us(t) = fo(t) = =—F———.
I [FP.(f,0)df

Maximum frequency ( fmax):
us(t) = fmax(t) = EL%EPX(](: t)-

f (1)
Bandwidth (BW):

f _ 2 .
us(t) = BW(t) = fl (f = fe(0) - Pe(, t)df.

[ Pu(ft)df

Maximum frequency amplitude (A finayx):

us(t) = maxPy(f,1).

These signatures are measures of the spectral content
variations that are affected by the ultrasonic pulse travelling
inside the material. They can be estimated by means of well-
known smoothing techniques of time-frequency spectral
analysis [6].

From us(t), we can obtain features in different forms. For
example, the time average value (1/(t; —t;)) ftil us(t)dt or the
instantaneous value at one particular time instant us(#) can
be elements of the feature vector in the observation space.

Other time-domain features, such as the parameters A
and f corresponding to an exponential model of the signal
attenuation x(t) = Ae ' or the total signal power received

P = fOT Ix(t)lzdt/T, are also possible to complement the
frequency-domain features.

More features can be defined considering special con-
ditions of the through-transmission model. For example,
higher-order statistics can be used to detect the possible
degree of non-Gaussianity of the reflectivity by measuring
higher-order moments of the received signal like HOM =
E[x(nTs) -x((n—1)Ts) - x((n—2)Ts)] [7], where E[-] means
statistical expectation and 1/T; is the sampling frequency.
Departures from the linear model of Figure 1 can be tested
in different forms, for example, using the so-called time-
reversibility [8], which is defined by TR = E[(dx(¢)/dt)*].

3. Independent Component Analysis
Mixture Model

Let us consider a probabilistic classification context where
some selected features are organized as elements of vectors
belonging to an observation space to be divided into K
classes {Cr} k = 1---K. Given an observed feature vector
X, we want to determine the most probable class. More
formally, we want to determine the class Ci that maximizes
the conditional probability p(Cy/x). Since classes are not
directly observed, Bayes theorem is used to express p(Ci/x)
in terms of the class-conditioned observation probability
density p(x/Cx) in the form p(Ci/x) = p(x/Ci) p(Ck)/p(x).
Note that p(x) is a scaling factor that is irrelevant to the
maximization of p(Cy/x), and that a priori probability p(Cy)
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F1GURE 1: The through-transmission linear time variant model.

is assumed to be known (or equal to 1/K for all classes).
Hence, the key problem focuses on estimation of p(x/Ck).
A nonparametric classifier tries to estimate p(x/Ck) from
a training set of observation vectors, but this becomes
progressively intractable as the dimension of the observation
space (number of features) increases, because the required
size of the training set becomes prohibitive. On the other
hand, a parametric classifier assumes a given form for
p(Cy/x) and, thus, tries to estimate the required parameters
from the training observation set [9]. Most of the classifiers
from parametric approaches consider Gaussian densities to
simplify the problem in the absence of other information
that could lead to better choices. Moreover, both parametric
and nonparametric classifiers are very much complicated in
semisupervised scenarios, that is, when part of the observed
vectors belonging to the training set have unknown classes
[10].

Therefore, procedures that would be of interest in the
general area of classification should combine the following
characteristics: the versatility of the nonparametric approach
(from the point of view of the assumed form of p(x/Cx));
the simplicity of the parametric methods (in the sense that
most effort will concentrate on the estimation of a finite
set of parameters); and operate in semisupervised scenarios.
This is especially remarkable in the area of nondestructive
classification of materials. On one hand, the prediction of the
joint density of some selected features is almost impossible
(Gaussianity is an assumption that is too restrictive in many
cases). On the other hand, there are some applications where
the available set of specimens used to obtain the training set
can hardly be classified. This happens, for example, when the
specimen cannot be destroyed to find the true inner state or
when the definition of the K classes is not clearly known a
priori.

The classification application considered in this paper
has the conditions necessary for verifying the usefulness
of a versatile classifier that is capable of working with
semisupervised training. Ceramic composition is assumed to
be different in different historic and protohistoric periods,
so there should be opportunities to classify the pieces from
features derived from ultrasonic analysis. Nevertheless, exact
modelling of the propagation of ultrasound in ceramic and
statistical characterization of the features is a complex matter.

Hence, it is advisable not to assume particular parametric
distributions (like normal density) in the design of the
classifier. On the other hand, very often, the archaeologist
does not know the period of all the available specimens
that could be used to form the training set of observation:
semisupervised training is a requirement in this application.
Even more interesting is that the expert archaeologist can
assign some probabilities of classes (ranging from 0 to 1)
to part of the pieces of the training set, scenario that we
will call probabilistic semisupervision (PSS). Most of the
semisupervised classifiers are not capable of dealing with
PSS, only if the assigned probabilities to the labelled feature
vectors are 0 or 1.

In this paper, we consider the application of a classifica-
tion method based on the independent component analysis
mixture model (ICAMM) [11-15]. ICAMM has the two
required conditions: versatile modelling and the possibility
of PSS training. In ICAMM, it is assumed that every class
satisfies an independent component analysis (ICA) model
[16, 17]: vectors xi corresponding to a given class Cx k =
1---K are the result of applying a linear transformation
Ay to a (source) vector s, whose elements are independent
random variables, plus a bias or centroid vector by, that is,
Xx = Axsk + by k = 1---K. This implies that the overall
density of the observation vectors may be expressed as the
mixture p(x) = Zszl p(x/C) p(C) which gives the name
to the model. Moreover, it also implies that p(x/Cy) =
| detA; ' p(sk) where sy = A;'(x — by). Thus, estimation
of p(x/Cy) means estimation of A,:1 = Wy, and by (like
in a parametric method) plus estimation of p(sx). However,
this problem is simpler than the original one since the
joint density of the elements of s; can be expressed as the
product of the marginals p(sy) = p(sk1)p(sk2) - - - p(sn)-
Therefore, a very complex N-dimensional problem (where
N is the number of features) is broken down into N one-
dimensional problems that are more tractable. Actually,
many different types of densities can be assumed for the
marginals, thus relaxing the Gaussianity constraint, and
allowing a nonparametric estimation. In this sense, ICAMM
can be considered a hybrid method that compiles the
advantages of nonparametric and parametric models. There
are a few references of the application of this method in NDT
[18].



In summary, given one measured feature vector x, the
assigned class is given by

Cx) = gaggp(Ck/X),
Ck

(2)
=%|detwklp(sk)P(Ck), k=1---K,

Ck

where s = Wi(x — by), and Wy,b and p(si) are estimated
by means of a PSS training. This is achieved using an iterative
algorithm that we briefly describe below (a more detailed
description can be found in [15]). A relevant concept
in ICAMM learning is the embedded ICA algorithm. As
ICAMM is a set of multiple ICA models, learning of the
ICAMM parameters is essentially equivalent to simultaneous
learning of a set of ICA parameters. Thus, any ICA algorithm
could be used as part of the global ICAMM learning
algorithm as we describe below.

Let us consider that the set of training feature vectors
is formed by x,, m = 1---M. We divide the set into
two subsets. The first subset is formed by x, m =
1---M; M; < M vectors such that the expert archaeologist
is capable of assigning some p(®(Cy/x,,)ranging between 0
and 1 for k = 1---K. The second subset is formed by
M, = M — M, vectors where no knowledge exists about
the possible class they belong to. The learning algorithms
proceed in the following manner.

Initialization. Fork =1 - - - K, compute

b = M x,,p©(Ci/x,) (If My = 0, then select
the initial centroids randomly);

W,(CO) (randomly);

P9 (sx) (in a form depending on the selected embed-
ded ICA algorithm) using s,((?1 = W,(CO) (X — b;{o) )

Updating. Fori=1---Tandfork =1---K, compute

for the probabilistically labelled vectors

p“)(@) - p(0>(9> m=1---M,. 3)

For the unlabelled vectors
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P (Ci/%Xm) p(C)

O(c _
P ( k/xm) P(Xm)

o JdeewV i (s, ) p(co)
R et WD [ pi (s, ) p(Ce)’

m=M+1---M,
(4)

. M /C
b = Xxmp(”(—k),
m=1 Xm
w = Wi awd Y,

(i-1) _ d (i-1) -1 ( Ck
AWp 7 = ZAwkm(ICA)p - )
m=1

Xm

(AW;J; (11)C A 1s the updating due to training sample x,,
in the selected embedded ICA algorithm).

P (sk) (in a form depending on the selected embed-
ded ICA algorithm) using s, = W’ (x,, — b{").

4. Experiments and Results

Two identical transducers (one in emitter mode and the
other one in receiver mode) with a nominal operating
frequency of 1.05MHz were used to obtain the through-
transmission signals. This operating frequency was selected
after performing different tests, as the most appropriate to
achieve small ultrasound attenuation with resolution enough
to separate different kinds of ceramics. Sampling frequency
was 100 MHz and the observation time was 0.1 ms (10000
samples) for every acquisition. To reduce observation noise
16 acquisitions were averaged. The size of the transducers
was also important since the ceramic pieces were small (a
few centimetres in height and length, and less than one
centimetre in width, see Figure 2).

The ceramic pieces were measured using a device where
the ceramic piece is placed between two cases that adjust to
the curved surfaces of the piece (see Figure 3). This device
was implemented to perform controlled and repeatable
measurements, thereby improving the manual recording. A
rubber adaptor was used as coupling medium to match the
acoustical impedance of the transducer to the piece. The
adaptor has a good coupling to the surface of the material
and be innocuous to the piece. The emitter is located in
a case on the lower side of the piece and the receiver is
located in case on the upper side of the piece. Note that the
transducers are embedded into a case that has a pressure
control that allows the force that is applied to the material
to be the same for each measurement. Since the propagation
velocity is an important feature for classification, the device
has a mechanism that allows that piece thickness to be
measured and transmitted to the signal processing system
simultaneously with the ultrasound measurement.

The distribution of the pieces was: 47 Bronze Age, 155
Iberian, 138 Roman, and 140 Middle Ages. Thus, a total of
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FIGURE 2: Images of typical ceramic pieces.

480 pieces were used in the experiments from deposits at the
Valencian Community in Spain. The features were selected
from the features defined in Section 2. A total of 11 features
were considered. The first 4 were the time averages over
the whole acquisition interval of the 4 ultrasonic signatures
defined in (1). The squared magnitude of the Short Term
Fourier Transform was used to estimate Py (f, ).

Feature number 5 was f.(ty), the instantaneous value
of the centroid frequency at a specific time instant. The
parameters A, 8, P, HOM, and TR that are defined in
Section 2, were also included in the feature vector. Finally,
the velocity of propagation v of the ultrasound, which
was measured by dividing the piece thickness by the pulse
arrival delay, was also considered, since it is a standard
variable in the ultrasonic characterization of materials.
Figure 4 shows examples of the time record, spectrum, and
histogram for each period. It also shows the eleven features
obtained for each example. Note the significant differences
(in general) among the feature values corresponding to
different periods, which provide the opportunity for good
classification performance.

First, the signal features were preprocessed with Principal
Component Analysis (PCA) [19] to reduce the dimension of
the problem as much as possible and to detect redundancies
among the selected features. This resulted in only 6 signifi-
cant features (components), which were linear combinations
of the original ones. These 6 components explained a total of
90% of the data variance.

We had a total of 480%0.75 = 360 original samples for
training. By adding spherical Gaussian noise to the original
samples, three replicates were estimated to obtain a total of
1440 samples for training. We performed 100 runs varying
the sets of 360 samples used for training and 120 used for
testing. The percentage of success in determining the correct
class was then evaluated for a total of 120 X 100 testing
samples.

Different alternative ICAMM classifiers were imple-
mented together with other classical classifiers. We consid-
ered four embedded ICA algorithms: nonparametric ICA

TaBLE 1: Classification accuracy (percentage) obtained with the
different variants of [CAMM.

PSS ratio NP-ICA JADE TDSEP fastICA
1 0.83 0.81 0.79 0.81
0.8 0.79 0.75 0.69 0.71
0.6 0.72 0.67 0.66 0.60
0.4 0.65 0.64 0.55 0.59

TaBLE 2: Classification accuracy (percentage) obtained with the
other methods.

LDA RBF LVQ MLP kNN
0.73 0.64 0.59 0.67 0.64

(NP-ICA) [15, 20]; JADE [21]; TDSEP [22]; and fastICA
[23]. Several PSS ratios were also tested (PSS ratio is defined
as the proportion between probabilistically labelled and
unlabelled data in the training stage). Linear Discriminant
Analysis (LDA) classifier [19] was also verified as it is
representative of a supervised classifier optimum under
Gaussianity assumptions. Some other classifiers based on
neural networks schemes were also implemented: Radial
Basis Function (RBF), Learning Vector Quantization (LVQ),
and Multilayer Perceptron (MLP) [24]. As well the k-nearest
neighbor (kNN) was tested [19].

Table 1 shows the overall percentage of classification
accuracy achieved by the different ICAMM variants.

Table 2 shows the overall percentage of classification
accuracy achieved by the other different methods imple-
mented. Note that different values of the fitting variables
required in each method (e.g., the value k in kKNN) were
tested and the results shown are the best ones obtained.

The best performance in classification was obtained
using ICAMM NP-ICA at PSS ratio of 1 (total probabilistic
supervision), achieving a classification accuracy of 83%,
which is much better than the rest of supervised methods
(LDA, RBE, LVQ, MLP, and kNN). As the PSS ratio in
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FIGURE 3: Measurement device employed in ultrasonic signal acquisition. A detail of the ultrasound transducer case is included.

ICAMM is reduced, the performance gets worse. However,
for PSS ratio 0.8, ICAMM NP-ICA is still the best one
with classification accuracy of 79%. For PSS ratio 0.6,
only LDA gives a slightly better result. This confirms the
convenience of not assuming any parametric model of the
underlying probability density as is assumed in LDA and in
the parametric ICAMM variants. Besides, other supervised
nonparametric methods (RBF, LVQ, MLP, and kNN) cannot
compete with NP-ICA since it is a hybrid method with an
implicit parametric model (ICA), which allows of a training
set of relatively small size.

To gain more insight into the classifier performance,
we include Table 3, which contains the confusion matrix
obtained by NP-ICA for 1 PSS ratio. The Roman and Iberian
categories are not very difficult to classify, but they are often
confused with each other. The pieces from the Middle Ages
are confused with Bronze Age pieces 14% of the time, and
Roman pieces cause misclassification of some pieces from the
Bronze Age and the Middle Ages.

5. Discussion

In order to draw a physical interpretation of the results
obtained by ultrasounds, a diversity of morphological and
physiochemical characterization analyses were carried out
using conventional instrumental techniques. A stratified
random sampling analysis was made using data from the
physical analysis of the pieces: open porosity and apparent

TaBLE 3: Confusion matrix (percentages) by NP-ICA with 1 PSS
ratio.

Bronze Age  Iberian  Roman  Middle Ages
Bronze Age 0.79 0 0.07 0.14
Iberian 0 0.89 0.09 0.02
Roman 0.05 0.19 0.69 0.07
Middle Ages 0.02 0 0.05 0.93

density [25, 26]. Thus, a sample of the ceramic pieces
for the different periods was obtained. The raw material
composition of the selected pieces was analyzed using
optical microscope and scanning electron microscope (SEM)
[27, 28]; and also the processing methods of the pieces
were studied. From those analyses, the differences of the
ceramic physical properties for the different periods and the
ultrasound propagation are discussed.

5.1. Open Porosity and Apparent Density. A sample of the
pieces was selected for morphological and physiochemical
characterization based on open porosity and apparent den-
sity analyses of the pieces. For stratified random sampling,
the values of these physical properties for the different
periods were considered as random variables that follow
Gaussian distribution. First, an estimation of the variable
variance for the different periods (statistical strata) was
made. This estimation was obtained from 45 representative
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FIGURE 4: Some examples of time signals, spectra, histograms, and corresponding features extracted from ultrasonic signals for archaeolog-
ical ceramic pieces from different periods. Units are: Time axis: sample number; Frequency axis: MHz; Statistics axis: bins of signal values; P

(dB); v (m/s); fe fmax> BW, fe(to) (Hz).

TaBLE 4: Porosity and density statistics of the prior study.

Open porosity (%) Apparent density (gr/cm?)
Period i Mean 4 Ste}n«flardA Mean ji Ste.m(.iard/\
deviation o; deviation o;
(1) Bronze Age 28.20 3.7794 1.80 0.0676
(2) Iberian 22.70 3.3320 1.85 0.0663
(3) Roman 31.06 8.3532 1.79 0.1607
(4) Middle Ages 22.69 5.3441 1.84 0.0949

pieces that were physically tested for open porosity and
apparent density. The results of this prior study are shown
in Table 4.

The objective of the sampling was to provide estimators
with small variances at the lowest cost possible (considering
that morphological and physiochemical characterization are
costly). To estimate the fraction of the total sample size n

corresponding to the stratum i, we applied the so-called
Neyman allocation [29], ni/n = N,-ai/(z,.L:1 N;o;), where L is
the number of strata (4 periods for this application), N; is the
sample number in the stratum i (3, 15, and 15, 12 for Bronze
Age, Iberian, Roman, and Middle Ages pieces, respectively),
and o; is the standard deviation for the stratum i (estimates
of Table 4 were applied). The results for the stratai = 1-- -4

were: n/n = 6.85%, ny/n = 19.90%, n3/n = 44.42%,
and ny/n = 28.83% for open porosity; and n;/n = 6.5%,
ny/n = 21.01%, n3/n = 45.34%, and ny/n = 27.16% for

apparent density, respectively.

We specified that the estimate of the sample mean should
lie between B units of the population mean, with probability
equal to .95. This is equivalent to impose that the mean
estimate should lie in the interval y = 2 - ¢, thatis, B =2 g.
From the analysis of the variable means of Table 4, we chose
B = 1.1% and B = 0.02gr/cm® as the bounds on the
error of estimation of the population mean for open porosity



FIGURE 5: Bits taken from the ceramic fragments included in the test
probes prepared for the Scanning Electron Microscope.

and apparent density, respectively. These bounds allowed the
stratum mean of the sampling to be separated adequately.

The total number of samples was estimated using [29],
n = (S, Nio) /(N2 - D + S5 Nio?), where D = BY/4.
Thus, we obtained the total number of samples n = 79 and
n = 83 for open porosity and apparent density, respectively.
These were the number of pieces that the morphological
and physiochemical characterization analyses were applied
to. Using the estimated fractions n;/n for the strata and
the total number of samples n, we obtained the sampling
population for each stratum. The final results of the stratified
random sampling for an error margin of .05 are in Table 5.
The estimate of the population mean for open porosity
and apparent density for each stratum are shown with an
approximate 2 standard deviation bound on the error of
estimation.

Table 5 shows that the samples of the different strata
(chronological periods) can be clearly separated by open
porosity, since the bounds of the distributions define the
most part of the densities to be disjoint. The separation of
the samples by apparent density is more difficult because
there is a degree of overlapping between densities of Roman
and Bronze Age pieces, and a higher overlapping between
densities of Iberian and Middle Ages pieces. However the
joint densities of these two collections of pieces are well-
separated between them. In conclusion, physical properties
of the ceramics shows that it is possible a separation of
the pieces in the different chronological periods of this
study. Different porosities and densities of the pieces are
determined by the material composition and processing
methods employed in the ceramic manufacturing. These
issues are studied in the next section.

5.2. Ceramic Composition and Processing. The selected pieces
were observed, photographed, and then analyzed using an
optical microscope and a scanning electron microscope
(SEM). Some of the test tubes prepared for SEM are shown
in Figure 5.

The data provided by optical microscope and SEM
show that there are clear differences at a morphological
level between the different groups of processed fragments.
Therefore, the ceramic pieces corresponding to the Bronze
Age exhibited a dark brown tone and the presence of a lot
of dark-toned ferrous-composition spots that are associated
with magnetite as well as reddish ferrous iron oxide nuclei.
The Iberian ceramic pieces had varying shades between
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orange and black. The quartz temper was big or very big
grains and abundant ferrous iron oxide nuclei as well as
more isolated dark magnetite spots were found. This was
an iron-rich ceramic (up to 7.45% of Fe;O3) with a high
content of calcium (up to 6.30% of CaO). The fragments
of Roman ceramic had variable characteristics depending
on the typology (sigillata, common, and amphora). In any
of these, the pieces were made of an orange-toned paste
with small-size porosity and small quantity of temper that
increased from the amphora to the sigillata typology. Roman
ceramic showed content of Fe,Os of 5.71%, 6.36% and
9.24%, and content of CaO of 0.67%, 2.92% and 1.29%
for sigillata, common, and amphora, respectively. Finally,
the ceramic from the Middle Ages had a bright orange to
brown colour that indicates they are made of ferrous paste.
This ceramic contains abundant small to very small nuclei of
red ferrous iron oxide as well as dark-toned magnetic spots
and quartz temper of big or very big grains. Also, limestone
aggregates of white tone associated with high content of CaO
(around 8%) were observed.

With regard to the methods used to manufacture the
ceramics, they were different according to the evolution
in time of the processing techniques. The set of ceramic
fragments were from three regions (Requena, Enguera,
and Liria) from the Valencia Community at the East of
Spain. The pieces of the Bronze Age were from Requena
(XXX-XX centuries B.C.). They were handmade using basic
appliances, with an appearance very coarse, rudimentary,
and of irregular texture for household. Manufacturing was
local and authentic of every town; it was related to the
women’s domestic activities. From the dark tone of the
Bronze Age ceramics, it can be inferred that they were
made in reducing atmosphere, that is, in closed oven at
low temperatures. Iberian fragments corresponded to brush-
decorated with geometric, zoomorphic, and human motifs
or nondecorated vessels. These pieces have been dated at
about V-III centuries B.C and they were from three different
deposits. Paste of the Iberian ceramics was much more fine
and elaborated than the Bronze Age ceramic paste. The
technological innovation in the processing of the pieces was
the use of lathe.

The Roman fragments of the three groups (sigillata,
common, and amphora) showed technical perfection of
manufacture using different techniques: lathe, handmade,
and mold. They were from I-III centuries. In this period, the
applications of molds for potters allowed mass production of
ceramics. Sigillata ceramic features a red bright varnish that
is obtained applying a clay solution to the ceramic surface
and cooking at high temperatures in open oven (oxidizing
atmosphere). Sigillata pieces were decorated with reliefs of
different motifs and were luxury ceramic. Common and
amphora types of Roman ceramic were made using lathe.
They were rough appearance without decoration and for
household and/or storage or transport use. The Middle Ages
pieces were of two subperiods: Islamic and Christian (around
VIII-X centuries). The Islamic pieces were from caliphate
vessels of paste simple elaborated without decoration and
special treatment. The Christian pieces were white gross
paste of diverse typologies, some without decoration and
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TABLE 5: Statistics of the stratified random sampling for open porosity and apparent density.
N; n; Ui Ui F2- \/((Ni — n;)/Ni)(0?/n;)
(1) Bronze Age 47 5 29,30 27,70 30,90
. (2) Iberian 155 16 22,50 21,71 23,29
Open porosity
(3) Roman 138 35 32,00 30,78 33,22
(4) Middle Ages 140 23 23,80 22,78 24,82
(1) BronzeAge 47 5 1,85 1,82 1,88
. (2) Iberian 155 17 1,77 1,75 1,79
Apparent density
(3) Roman 138 38 1,87 1,85 1,89
(4) Middle Ages 140 23 1,78 1,76 1,80

some with incisions or decorations in black painted with
manganese oxide.

5.3. Ceramic Physical Properties and Ultrasound Propagation.
The differences in physical properties, composition and
processing of the ceramic pieces, presented above, suggest
the possibility of devising nondestructive techniques for
archaeological ceramic classification. In Section 5.1, it was
shown that the pieces could be separated by chronological
periods using measures of their open porosity and apparent
density. Besides, it is well-known that porosity and density
of a material have a definite influence on the propagation
of the ultrasound [30, 31]. Thus, it is clear that should
be there correlation between the results obtained by the
proposed method based on ultrasounds (Section 4) and
the differences in physical properties of the pieces for the
different chronological periods.

There are several factors that can determine the porosity
and density of ceramics, such as the raw material composi-
tion and the processing method employed to manufacture
the pieces. However, in the case of archaeological ceramics,
the original ceramic physical properties after manufacturing,
can be altered by other factors such as the ceramic use (i.e.,
over-heating for cooking, etc.) and in general with the pass
of the time (i.e., fractures, loss of cover layers, etc.). Thus,
an exhaustive analysis of physical properties and how these
properties were derived for archaeological ceramics becomes
a very complex problem that needed an important amount
of information that is outside the scope of this work. Note
that the objective of this work is to provide a new NDT
procedure to classify archaeological ceramics from the basis
of training with a set of pieces of known class made with the
intervention of an expert. A correct training will determine
the achievement of the procedure to classify ceramics of
unknown class.

The analysis of the results obtained by ultrasounds
provided here consider correct (or at least probabilistic)
labelling made by the expert and are based on available data
of the composition, processing and physical features of the
ceramics shown in Sections 5.1 and 5.2. Let us explain the
misclassifications in the confusion matrix of the ultrasound-
based classification of Table 3. Misclassification is obtained
from similar responses of pieces from different periods to
the ultrasounds. Table 3 shows that Roman ceramics is the
most misclassified group. Confusion between Roman and

Iberian pieces (19% and 9%) can be explained from ceramic
composition and processing. The amphora and common
Roman pieces were made from iron-rich paste and using
lathe as well as the Iberian pieces. Thus, the mechanical and
physical properties for these two groups were similar.

The confusion between Roman and Bronze Age pieces
(5% and 7%) can be explained due to changes in the
structure of some of the Roman pieces of the sigillata
subgroup that had lost the cover varnish. The high value
of porosity shown by the fragments of sigillata is associated
with pores of very small-size and very connected, which
allows big water absorption once the varnish is removed.
Thus, these two groups of pieces show similar physical
properties due accidents cause with the pass of the time.
Regarding to the confusion between Bronze Age and Middle
Ages pieces (14% and 2%), this also can be explained
from composition and processing. The Islamic subgroup of
Middle Ages pieces were from the “paleoandalusi” period
(early centuries of the Islamic period in Spain). During,
this period, the productive strategy of household chose
intentionally to simplify the production process. Simple
ways of ceramic manufacture and cooking were employed
to obtain kitchen’s recipients with thermal shock resistance.
Thus, ceramics were manually made from little-decanted
clays and cooked at low temperatures. The results were
coarse pieces from the Middle Ages with physical properties
comparable to the Bronze Age pieces [32].

Let us analyze the ultrasound-based results from the
point of view of the porosity and density. We observed
that the porosity and density of the Bronze Age pieces are
relatively close to porosity and density of the pieces from
Roman and Middle Ages. This explains why 7% and 14%
of the Bronze Age pieces were assigned to the Roman and
Middle Ages periods in Table 3. Similarly, the pieces from the
Iberian period and the Middle Ages have similar porosities
and densities, so this may justify why 2% of the Iberian pieces
were assigned to the Middle Ages.

The 9% of pieces of the Iberian period that should
have been assigned to the Roman period were incorrectly
assigned because the Iberian ceramic is very close to one
of the three kinds of Roman ceramics (sigillata, common,
and amphora)—the common kind—. This also explains
why the corresponding 19% of pieces of the Roman period
were incorrectly assigned to the Iberian period. No clear
explanation exists for the lack of symmetry in the confusion
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matrix of Table 3; however, it must be taken into account that
the training process introduced some degree of arbitrariness
because of the probabilistic labelling of the expert. Thus, it
seems that the expert was able to clearly identify the pieces
from Iberian and Middle Ages, but had more difficulties
with the Bronze Age and Roman ones. This uncertainty may
have been transmitted to the classifier during the training
stage.

The experiments with classical methods of ceramic
characterization used in archaeology not only show that
correlations between the extracted parameters from the
ultrasound signals and the physical properties of the materi-
als were found. Moreover, they also have demonstrated some
advantages of the proposed ultrasound method. The equip-
ment required for nondestructive evaluation by ultrasound
is, in general, less costly, and the experiments are easier to
perform. The pieces are not damaged in any way during
testing, nor is it necessary to alter or destroy any of the
material that is analyzed. Very significant differences for the
time required to analyze the pieces were demonstrated: the
ultrasound analysis (measuring, processing, and automatic
classification) for 480 pieces took only 6 hours; the SEM
analysis (tube preparation and electron microscope analysis)
for 80 pieces took 274 hours; the porosity and density
analyses (immersion and weighing of the pieces) for 80 pieces
took 288 hours.

There are limitations to the application of this procedure
due to the fact that the training of the classifier must be
performed from a specific set of data. Thus, the classifier
must be adapted to a specific data model and its efficiency
is restricted by the fact that the new data to be classified must
follow the same data model. Nevertheless, the training of
the classifier could progressively be improved by increasing
the number of pieces for each known chronological period.
With proper training, the classifier would be able to provide
a prediction of the chronological period for pieces that
do not have clear chronological markers. In addition, the
semisupervised training mode could be used to model the
uncertainty that expert archaeologists may have about the
chronological period to which the pieces belong.

6. Conclusions

We have presented the results of applying ICAMM to a
challenging application in the area of nondestructive testing
of materials: the classification of archaeological ceramic
pieces into different historic periods. We have demonstrated
the interest of using methods that are able to consider non-
Gaussian models of the underlying probability densities in
the feature vector space. Thus, an ICAMM classifier was
tested using different variants depending on the embedded
ICA algorithm. ICAMM has the additional merit of allowing
PSS labelling, which is of practical interest in the considered
application. Note that in any ICAMM variant, the mutual
dependence among features is modelled in a parametric
form; also note that in nonparametric ICAMM, the esti-
mated marginals are nonparametric. This confirms that
nonparametric ICAMM shares the good general modelling
capability of nonparametric classifiers and also can work
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with a training set of relatively small size, which is a relevant
property of parametric techniques. This explains the fact that
nonparametric ICAMM has shown the best results and is
able to produce acceptable performance for even low ratios
of PSS.

The experiments show promising results in defining
a standardised method that could complement or replace
destructive, costly, and time-consuming techniques, which
are currently being used by archaeologists in the area of
ceramic characterization. Extensions of the procedures pre-
sented in this work to other emergent material applications
are planned for future work.
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