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Nowadays, a variety of information related to the distance between two wireless devices can be easily obtained. This paper presents
a hybrid localization scheme that combines received signal strength (RSS) and round-trip time (RTT) information with the aim
of improving the previous localization schemes. The hybrid localization scheme is based on an RSS ranging technique that uses
RTT ranging estimates as constraints among other heuristic constraints. Once distances have been well estimated, the position
of the mobile station (MS) to be located is estimated using a new robust least-squared multilateration (RLSM) technique that
combines the RSS and RTT ranging estimates mitigating the negative effect of outliers. The hybrid localization scheme coupled
with simulations and measurements demonstrates that it outperforms the conventional RSS-based and RTT-based localization
schemes, without using either a tracking technique or a previous calibration stage of the environment.

1. Introduction

Intense research work is recently being carried out to design
and build localization schemes that can operate in indoor
environments and achieve a degree of accuracy, reliability,
and cost comparable to the well-known Global Navigation
Satellite Systems (GNSS). Accurate indoor localization is
an important challenge for commercial, public safety, and
military applications [1, 2]. In commercial applications for
residential and nursing homes, there is an increasing need to
track people with special needs, such as children and elderly
people who are out of regular visual supervision, navigate the
blind, and find specific items in warehouses. For public safety
and military applications, indoor localization systems are
needed to track inmates in prisons or navigate police officers,
fire fighters, and soldiers to complete their missions inside
buildings. Among the many technological possibilities that
have been considered for indoor localization schemes such
as infrared, ultrasonic, and artificial vision,radiofrequency-

based schemes predominate today due to their availability,
low cost, and coverage range.

The purpose of localization schemes is to find the
unknown position of a mobile station (MS) given a set
of measurements. The localization process consists of two
main steps. Firstly, selected localization metrics between the
MS and the reference points or anchors are performed.
Secondly, these metrics are processed through a positioning
algorithm to estimate the location coordinates of the MS.
As the measurements of metrics become less reliable, the
complexity of the positioning algorithm increases. The
localization metrics may be classified into two broad cate-
gories: direction-based and range-based systems. Direction-
based systems utilize antenna arrays and angle of arrival
(AOA) estimation techniques to infer the MS position
[3], while the received signal strength (RSS) and the time
of arrival (TOA) of the received signals are the metrics
used for range-based techniques [4-7]. The possibility
of combining different localization metrics encourages to



develop hybrid schemes that exploit the complementary
behavior of metrics to improve the overall accuracy of
the localization schemes. For instance, in [8] the Cramér-
Rao Bound (CRB) on location estimation accuracy of two
different hybrid schemes based on the combination of RSS
and either TOA or TDOA (Time Difference Of Arrival)
measurements is computed, concluding that, for short-range
networks, the hybrid schemes offer improved accuracy with
respect to conventional TOA and TDOA schemes. In [9]
an algorithm of neural networks is implemented for the
hybrid scheme that combines RSS and TOA measurements,
enhancing the overall performance of the hybrid localization
scheme. As range-based methods need measurements from
more than two anchors for positioning in two dimensions,
AOA measurements are incorporated to reduce the network
overload. For instance, a hybrid algorithm is presented by
incorporating AOA data in a time-based method, needing
measurements from only two anchors for line-of-sight (LOS)
[10] and non-LOS (NLOS) environments [11].

Time-based and direction-based measurements are
highly correlated with the MS position [3, 12], but AOA
and TOA localization metrics are not available to inex-
pensive and common wireless systems, due to the need
for antenna arrays and time synchronization or complex
timing requirements, respectively. On the contrary, the
RSS indicator is widely available and provides a cost-
effective means of position estimation, although in indoor
environments the propagation phenomena cause the RSS
localization metric to poorly correlate with distance [12].
The aim of this paper is to provide a new hybrid strength
time-based method for indoor localization that takes advan-
tage of easily available RSS measurements and does not
need time synchronization thanks to RTT (Round-Trip
Time) measurements. A previous essay [13] proposes a
hybrid localization scheme that combines RSS and RTT
measurements. However, it is implemented for open areas,
taking RTT measured values from the cellular network and
TOA measured values from GNSS. As indoor environments
impose more technological challenges than open areas, in
this paper, a new hybrid RSS-RTT localization scheme that
operates in indoor environments and in common IEEE
802.11 wireless networks is proposed to overcome indoor
impairments and improve the accuracy of the MS location
estimation with respect to RTT-only and RSS-only schemes.
In order to do that, the RSS and RTT measurements
are carried out at the MS that is going to be located
by using the printed circuit board (PCB) proposed in
(14].

The paper is divided as follows: Section 2 provides an
overview of the RTT-based and RSS-based ranging tech-
niques. Section 3 describes the new hybrid RSS-RTT ranging
technique, providing important simulation results. Section 4
describes a new multilateration technique that combines
RSS and RTT range estimates to find the MS position. This
section also includes simulation results and measurements
inside a building. Finally, conclusions are summarized in
Section 5.
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2. Previous Work

Ranging techniques have significant effects on location
accuracy and system complexity [12, 15]. This section
outlines the previous work related to two ranging techniques
whose performance was individually evaluated: RSS-based
and RTT-based ranging methods.

2.1. RSS-Based Ranging. RSS ranging is based on the prin-
ciple that says that the greater the distance between two
wireless nodes is, the weaker their relative received signals
are. However, the relationship between the RSS values and
the distance depends on a large number of unpredictable
factors. In fact, small changes in position or direction may
result in dramatic differences in RSS values. The attenuation
caused by the distance that separates two wireless nodes
is known as path-loss, and it is modeled to be inversely
proportional to the distance between the emitter and the
receiver raised to a certain exponent. This exponent is
known as path-loss exponent [16]. Other factors that affect
RSS values are the multipath or fast fading factor and
the shadowing or slow fading factor. These two factors
can be modeled with Rayleigh or Rician and log-normal
distributions [17, 18], respectively. However, the fast fading
term can be eliminated by averaging the RSS values over a
time interval [19].

Following the derivation steps shown in [20] the RSS
values can be modeled by the following expression:

Pg, = Pres — 10m;log,,(di) + X, (1)

where d; is the actual distance between the MS and the
anchor A, Py is the power measured at a reference distance
and it depends on several factors: averaged fast and slow
fading, antennas gains, and transmitted power. In practice,
P.ef can be often known beforehand [21] and its value will
be valid as long as the antenna gains and the transmitted
power remain constant. The term #; is the path-loss expo-
nent corresponding to the path connecting the MS to the
anchor A;, while X denotes a zero mean Gaussian random
variable caused by slow fading. The conventional textbook
explanation for the slow fading is the multiplicative model
which assumes that there are several random multiplicative
factors attenuating the received signal, and the logarithm
of their product approaches the Gaussian distribution for a
sufficiently large number of such factors [22]. The expression
(1) has been widely used in the literature to describe RSS
values as a function of the distance between two wireless
nodes. Common examples of the use of this expression are
the known propagation models of Okumura-Hata or Egli
[16].

Theoretical and/or empirical RSS-based range models
could mold the dependence between the RSS values and
the distance. In a previous work [5], the expression for the
maximum likelihood estimator (MLE) of the distance was
derived from the expression (1). Assuming that the MS could
obtain RSS values in time instants t1, t2,. . ., tn, where (17, ty)
is a time interval in which we can assume that the distance
and the environment between the MS and the anchor A;
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do not change significantly, the MLE of the distance can be
determined from RSS values as follows.

&\RSS[ = 10(Pref—PTz,)/1oni, o)

where dARss,. is the estimated distance from the MS to the
anchor A;, P is the power measured at the reference
distance of one meter, Py, is the received power from the
anchor A; averaged over the time interval (t;,fy), and #; is
the path-loss exponent. The difference between the estimated
and the actual distances is defined as the range estimate
error, where the variance of this error is at least as high as
the inverse of the Fisher information. For analytical details
on computing the CRB and the Fisher information see [5].
The expression (2) is used to obtain range estimates from
RSS values once the parameters Pf and n; are known. As
mentioned above, P is easy to obtain from a few RSS
measurements taken in a place of reference and it can be
assumed to be constant, as long as the antenna gains and the
transmitted power also remain constant. However, assuming
n; as a constant would be a simplification of reality because
propagation conditions between the MS and the anchor are
unpredictable and could change abruptly in time. For this
reason, the values of n; that characterize the propagation
environment between the MS and each anchor have to be
dynamically updated. In [5] the values of n; are updated at
each time interval (t;, fy) based on maximizing an objective
function. This objective function quantifies the compatibility
of all the range estimates between the MS and each anchor as
follows:

Let (A, A,,) be the known positions of the M anchors
beingi = 1,2,...,M with M = 3. In the event that all range
estimates are precise, the M circles with (A, A,,) centers and

dARssi radius would intersect at a single point. That point is the
result of solving an overdetermined system of M quadratic
equations whose least squares solution is defined as (X, y).
Therefore, the M circles would cut at a single point, if and
only if,

R-A) +(F-A)) —diss, =0, i=12,...,M (3)

However, in the general case, as all the range estimates are
not precise, the M circles do not intersect at a single point.
It is clear that the further the equations of the expression
(3) differ from zero the further the M circles would cut at
a single point. In this case, solving (3) requires significant
complexity, and it is difficult to analyze. Therefore, instead
of using the circles as the equations to determine (%, y), the
radical axes of all pairs of circles can be used. The radical axis
of two circles is the locus of points at which tangents drawn
to both circles have the same length. Analytically, the radical
axis can be easily obtained by subtracting the two circles
equations involved. Thus, the complex problem of solving an
over-determined system of M quadratic equations is reduced
to solve an over-determined system of M(M — 1)/2 linear
equations defined by the radical axes.

The compatibility function of the group of M range
estimates is defined as the extent to which the M(M — 1)/2
radical axes cut at a single point. Analytically,

C(drss, drss,»- - - » drssy )

Z((x AP+ (- Ay 1>2 (4)
diss, ’

where C is the compatibility function, the squares sum
is weighted with each range estimate in order to apply
more relevance to the smaller one, and the minus sign
indicates that the sum of squares and the compatibility are
inversely related. The expression (4) depends only on the
path-loss exponents n; used to estimate distances from RSS
values according to the expression (2). Hence, the path-
loss exponents that best characterize the different paths
connecting the MS to the anchors A; could be estimated
as the values 73, y,. .., fiy that maximize the compatibility
expressed in (4). Analytically:

,AiM) = arg  max C(nl,nz, )

(11,112,010

(h\l) ﬁZ)---

= arg min
(11,1255 10)

n[\/]

M(u A+ (- Ay lf

dRSSx

(5)

The expression (5) is a nonlinear least squares problem that
can be solved by using the Levenberg-Marquardt algorithm
[23, 24], where a rough approximation of the path-loss
exponents such as n; = 2, for all i can be chosen as an
initial guess. Indeed, the problem formulation is an iterative
process that starts by choosing an initial guess for the path-
loss exponents n;, i = 1,2,...,M, and whose values will
be modified iteratively with the aim of minimizing the
expression (5). The process of updating the 7y, 7s,. ..,y
values finishes when the expression (5) is equal to zero or
the maximum number of iterations has been reached. Once
the path-loss exponents are accurately estimated, the range
estimates are obtained by using the expression (2).

Therefore, accurate range estimates can be obtained only
from RSS measurements by using the RSS-based ranging
technique introduced in this section and explained in detail
in [5].

2.2. RTT-Based Ranging. The information related to the
distance that separates two wireless nodes can be obtained
by using the information of the signal propagation delay
without a common time reference, but by means of the signal
RTT values. In a previous work [14], a PCB was designed
to measure the RTT between an MS and an anchor using
the RTS/CTS two-frame exchange IEEE 802.11 mechanism.
Although RTT-based ranging eliminates the error due to
imperfect time synchronization because it does not need for
time synchronization between wireless nodes, relative clock



drift and electronic errors still affect ranging accuracy [12].
Furthermore, the bandwidth of the transmitted signal affects
ranging resolution [25]. To overcome these limitations,
several RT'T measurements have to be performed at each
distance and a representative value of the RTT, called the
RTT location estimator, has to be selected. That selection
is based on the coefficient of a determination value that
measures how much of the original uncertainty in the RTT
measurements is explained by a model. In [26], a simple
linear regression function is assumed to be the model that
relates the actual distance between the two nodes involved
in RTT measurements with the location estimators at each
distance in LOS. Analytically,

dARTT,- = o + ﬁriﬁl) (6)

where JRTT,, is the estimated distance from the MS to the
anchor A; and RTT; is the location estimator of the actual
RTT between both wireless nodes. In [26], the Holder mean
with the shape parameter of the Weibull distribution as
Holder parameter was found to be one of the best location
estimators of the actual RTT when the MS and the anchor
remain in LOS. The parameters 3y and f; are the intercept
and slope of the linear regression model, respectively. These
parameters are computed so that the estimated distance
best fits the actual one. They do not depend on the
environment where the wireless localization system is going
to be deployed, but on the wireless nodes to be used, that
is, the MS and the anchors. They are previously obtained in a
LOS scenario, not necessarily in the same environment where
the wireless localization system is going to be deployed.

Under LOS conditions, the error in distance estimation is
characterized as follows:

drrr, = di + €553, (7)

where d; is the actual distance and €k} is the error in LOS.
This error is defined as the difference between the estimated
and the actual distances when the MS and the anchor are in
LOS. This error follows a zero mean Gaussian distribution
and it is a product of electronic errors (electronic noise),
since a PCB is used to quantify the RTT, and also of the RTT
location estimator, since it is asymptotically Gaussian and a
large amount of measurements have been carried out.

Finally, the assumption that LOS propagation conditions
are present in an indoor environment is an oversimplifica-
tion of reality. In an indoor environment the transmitted
signal could only reach the receiver through reflected,
diffracted, or scattered paths. Therefore, in this kind of
environments, the NLOS effect has to be considered. Thus,
in an indoor environment, the distance estimate will be as
follows:

n LOS , NLOS
drrT, = di + €R7T + ERTT > (8)

where €5 is a random variable that represents the effect
of the NLOS. The random variable e}L>° depends on the
environment where the MS is going to be located and it has
been modeled with a wide range of statistical distributions,
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such as Gaussian, Exponential, and Gamma, [2, 27-30], or
by means of distributions obtained from specific scattering
models [31]. There are several techniques that deal with
the NLOS effect. The easiest method is simply to place
anchors at additional locations and select those from LOS.
However, one objective of this paper is to deploy a wireless
localization scheme in a common and unmodified wireless
network. Therefore, complex techniques that minimize the
contribution of NLOS paths [32] or techniques that focus
on the identification of NLOS anchors and discard them
for localization [33] have to be used. Nevertheless, their
reliability remains questionable in an indoor environment
with abundant scatters where almost all anchors will be in
NLOS. Therefore, it is crucial to use techniques that manage
to introduce, in the location process, the information that
actually resides in the NLOS measurements. In a previous
work [26], the effect of severe NLOS was corrected from
the range estimates applying the prior NLOS measurement
correction (PNMC) technique [34] with dynamic estima-
tion of the NLOS parameters [35]. The PNMC technique
estimates the ratio of NLOS present in a record of time-
based measurements from each anchor and corrects those
measurements in a previous stage to the location process.
This processing relies on the dynamic statistical estimate of
the NLOS measurements present in the record. For a detailed
information on the PNMC technique see [34].

Therefore, accurate range estimates can be obtained by
using the RTT-based ranging technique introduced in this
section and explained in detail in [26, 35].

3. Hybrid RSS-RTT Ranging Technique

The more information you have when beginning your search,
the easier it will be to locate your target. From this point of
view, the RTT and RSS information gathered in the MS and
related to the distance to anchors will be used together to
improve the ranging accuracy. The way in which the hybrid
RSS-RTT ranging technique works is as follows.

Taking the RSS-based ranging technique introduced in
the previous section and in order to obtain the actual path-
loss exponents of the expression (5), the compatibility of
distances does not have to be maximized in a global fashion,
but for a set of path-loss exponents belonging to a feasible set
of solutions . That is,

A
Jiap) =arg max  C(ny,na,...,1nu),
(n1,12,.05m0

(ﬁlﬁﬁZ:---

9)

s.t.(ny,na,...,ny) € V.

In [5] a feasible set of path-loss exponents was derived
using four different constraints based on heuristic reasoning.
Nevertheless, the advantage to be exploited in this paper is
the fact that a simple device, such as the PCB proposed in
[14], can gather both the RSS and RTT information from
anchors and, consequently, RTT-based range estimates can
also be used. Thus, a hybrid RSS-RTT ranging technique
is proposed. It consists in imposing constraints to the
RSS-based ranging technique from the RTT-based ranging
estimates which correlate closely to the actual distance.
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ferrr (2)

ERTT «
2

GRTTF%

FiGgure 1: Graphical representation of the RTT-based constraint in
a time interval (1, ty).

The constraint from the RTT-based ranging estimates is
as follows: R

As stated in (8), drrr,, the estimated range to an anchor
A; from the RTT information, is corrupted by €3, a
Gaussian error, and exe®, a NLOS error, both of them
independent. As it is well known, the probability density
function (PDF) of the sum of two random variables equals

their PDFs’ convolution. That is,

Jerrr = feigs * feies, (10)
where f represents the PDF and errr = €Ly + €Rie®.

Thus, the difference between the estimated and the actual
distances, drrt, — d;, lies in the interval where the function
ferr 1s defined. However, in order to delimit that interval,

with (1 — «) probability, the estimated distance, C?RTT,. will be
enclosed by the following expression:

di — €rrr,, < drrT, < di + €RTT, 405 (11)

and thus,

ARTT, — €RTT, o < di < dRTT, + ERTT,> (12)

where €rrr,, and €egrr,_,, represent the points on which the
probability distribution equals probabilities a/2 and (1 —
a/2), respectively. That is,

J " fGRTT(Z)dZ = %’
- (13)

ERTT] g2 o
j fo(@dz =1~ %,

Figure 1 shows a possible fe,, in a time interval (t,ty),
where the actual distance d; lies between drrr, — €RTT, .

and C/I\RTT[ + €rrT,, With (1 — &) probability according to the
expression (12).

By using the expression (2), range constraint (12) can
be translated into path-loss constraint. That is, for i =
1,2,....M

IA

dRTT, — €RTT, o» < di < drrT, + €RTT,,

7 Pres—Pr;) /10m; _ 7
= drrr, — €RTT, oy < 10F PRI < goro + erpr,

Pref_PiR,-

10log,, (C?RTT, - GRTTka/z)

Pref_PiR,
=>Nn; = =
10 loglo (dRTT,»‘i’ERTTm)

>

(14)

Furthermore, other heuristic constraint based only on
RSS information can be added to the ones proposed in [5]:
if Pg, is the averaged RSS from the anchor A;, let Ay, Aa, ...,
A be the M anchors sorted according to Pg,. That is,

Pg, < Pp, <--- < Pg,. (15)

Thus, certain constraints can be imposed on the distance
estimates dAng1 , (;Z\Rssz,. N C/I\RSSM. In [5] it is assumed that the
estimated distance to the most powerful anchor, dARssl, is
lower than the constant D;, that is, dARssl < D;. As it is
reasonable to assume that the most powerful anchor would
be the nearest one, D; is chosen as the furthest distance from
any possible MS position to the nearest anchor. Hence, it is
rgason/qble to assume that the distance to the other anchors,
dgss,, drss,» - - - » drss,, Will be enclosed by the constant D; and
the distance that separates the anchor A; and the anchor
Aj,j=2,3,...,M,d, ;, respectively as follows:

‘dl’j—Dl‘ SJRSSJ- Sdl,]'-f-Dl. j=2,3,...,M. (16)

Figure 2(a) shows a general case in which C?Rssl , the estimated
distance to the most powerful anchor in the time interval
(t1,tn), is lower than the parameter D, . Figure 2(b) shows the
extreme case in which dARssl = D, in two different scenarios,
when the MS is located at the nearest point and at the furthest
point from the anchor A; with j = 2,3,..., M. The latter
would be the case in which the equality of the expression (16)
would be fulfilled.

By using the expression (2), range constraint (16) can
be translated into path-loss constraint. That is, for j =
2,3,....M

‘d])j - Dl’ < &\RSS]' < d])j + D1

— ‘dl,j — D1 ‘ < IO(PMiPiRJ‘)/lon] < dl,j + D1

Pref_PiR]'

Pref _PiR}-
— =n
1010g10<‘d1’j - D1 ‘)

> .
1010g10<d1)]’ + Dl)
(17)

J
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(Asj Ay)) g v (MS.MS,)
\ AN /
\\ N
i = Du o —’//bl = dgss
di; ] !
dyj+ D
1

(b) Extreme case

FIGURE 2: Graphical representation of the heuristic constraint D, in
a time interval (¢, ty).

Therefore, constraints (14) and (17) can be added to the
feasible set of solutions A proposed in [5] resulting in a more
restrictive set of possible path-loss exponents, V.

~

\P:AU{(ﬁl,...,VlM)

Pref — PfRz
10 loglo(dRTTi - ERTTlfzx/Z)

P.s— P
> > el 7 2R . i=1,2,...,M,
1010g10 (dRTT,v + GRTTa/z)
Pref_PiRj
10log,y( |dy ;- D1])
Pret — Pr.
np = N j=2,3,...,M,
10logy, (dy; + D1)
(18)

where WV is a polyhedral set of constraints, and the expression
(9) can be solved applying variants of the Levenberg-
Marquardt algorithm [36]. In this paper, the centre of the
polyhedron has been chosen as the initial guess for the path-
loss exponents in the RSS-based range method introduced in
the previous section.

3.1. Simulations. In this subsection, the accuracy improve-
ment of the set of constraints ¥ is compared to the previous
set A proposed in [5] by means of simulations. In order
to do that, the simulation scenario consists of 5000 points
corresponding with a person who is randomly walking at
a constant speed between two circles with a (20,20) centre
and a 5 and 18 m radius, respectively. As it can be seen in
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FIGURE 3: Simulation scenario (40 X 40 m?) with 6 anchors placed
on the vertices and centre of a regular pentagon. The blue stars
represent the actual MS positions.

Figure 3, in the simulation scenario, 6 anchors were placed
on the vertices and centre of a regular pentagon with a 20 m
radius.

On one hand, according to the expression (1), for each
actual position and time interval (t;,fy) with N = 100,
100, RSS values from each anchor were modeled. In the
latter expression, Prf was set to —56.5dBm, and n; was
simulated as uniform random variables. In particular, n; €
U(1.3,1.7),ny,n3 € U(1.7,2.25), 14,15 € U(2.25,3.25), and
ne € U(3.25,4.25), where (n1,n,,...,ns) are the 6 different
path-loss exponents that characterize the propagation chan-
nel from the 6 anchors sorted according to their proximity
to the MS. Finally, the standard deviation of the shadow
fading X was simulated as a uniform random value between
2.85dBm and 3.45dBm. On the other hand, according to
the expression (8) for each actual position and time interval

(t1,tn), 100 JRTT values from each anchor were modeled,
where €503 was simulated as a Gaussian random variable
with zero mean and o}%y = 2.3 m, and €RY° was simulated
as an Exponential random variable with the parameter A
uniformly distributed, A € U(0,3). All of these simulation
values were chosen as the most feasible ones based on
the values obtained in previous trials with measurement
equipments.

At each actual position the RSS and RTT values from
the four most powerful anchors were used as inputs of the
hybrid RSS-RTT ranging technique previously described.
Although important information might be cut from the
remaining anchors, there is one main motivation behind
our taking only four anchors: the higher the number of
anchors you take into account in the hybrid algorithm, the
longer the time the algorithm needs to converge and find the
optimal path-loss exponents. Therefore, there is a trade-off
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FIGURE 4: Histogram of errors in the path-loss exponent estimation for the different sets of constraints A and V.

between information or accuracy in the path-loss exponent
estimation and the time response.

These RSS and RTT values were used to estimate the
path-loss exponents, and hence the actual distance, to each
of the four anchors. The parameters needed for the set
of constraints A were the same as the ones used in [5].
Additionally, as D; is the parameter that delimits the distance
to the most powerful anchor, and it is reasonable to assume
that the most powerful anchor will be the nearest one,
the value of D; was chosen as the furthest distance from
any possible MS position to the nearest anchor. In the
simulation scenario shown in Figure 3D; = 10m. On the
other hand, the values exrrr,, and €xrrr, ,, are dynamically
computed from fe,, having taken « = 0.1. Figure4
shows the histogram of the 20000 errors in the path-loss
exponent estimations (5000 estimates per anchor). This error
is defined as the difference between the estimated path-loss
exponents and the actual ones. As it can be seen, the new
set of constraints ¥ estimates the path-loss exponents more
accurately than the set of constraints A, achieving a mean
error of 0.0695 and standard deviation of 0.0722.

Furthermore, Figure 5 shows the cumulative distribution
function (CDF) of the error in ranging estimates. This
error is defined as the difference between the estimated
range and the actual ones. In that figure, three methods are
compared: the RTT-based ranging that only takes the RTT
information as input data; the RSS-based ranging, set of
constraints A, that only takes the RSS information as input
data; and the hybrid RSS-RTT ranging, set of constraints
Y, that takes the RTT and RSS information as input data.
Figure 5 shows that the newly proposed hybrid method
outperforms the previous ones, achieving an error lower than
one meter for 50% of cases. It is important to point out that
the improvement achieved by the hybrid RSS-RTT ranging
method, set ¥, is not shared in equal portions between

! — -~
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Ficure 5: CDFs of errors in ranging estimate depending on the
ranging method and set of constraints used.

constraints (14) and (17), but the improvement achieved
by constraint (17) is marginal compared to constraint (14).
Therefore, the RTT-based range constraint (14) is the main
contribution to the hybrid RSS-RTT ranging method.
Finally, it is worth mentioning that none of the ranging
methods described in this paper need any calibration of the
environment since they are dynamic methods that try to
adapt themselves to the dynamic nature of radiofrequency
signals in cluttered environments, such as the indoor one.
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4. Hybrid RSS-RTT Multilateration Technique

After having estimated the distances between the MS and the
anchors, the location of the MS can be found by multilat-
eration, a common and well-known operation to find the
MS location by using its range estimates to three or more
anchors whose positions are previously known. Fortunately,
additional capabilities can be included to multilateration
methods to find the MS position more accurately. Since mea-
surements outliers naturally occur in an indoor environment
due to the complex propagation of the transmitted signal
between the MS and the anchors, this section proposes a new
multilateration technique based on a robust least-squared
method with the aim of accurately finding the MS position
from both the RTT and RSS-range estimates.

In two dimensions, multilateration is defined as the
method to determine the intersections of M circles (M > 3).
Each circle has a centre defined by the anchors position
(Ax,Ay,), and a radius defined by the range estimates from

the MS to each anchor (c?i), both i = 1,2,..., M. Assuming
that the number of range estimates is greater than the
minimum required (M > 3), an over-determined system of
quadratic equations has to be solved to find the MS position.
However, as d; is impacted by errors, it does not usually
match the actual distance. Thus, the M circles will not cut
at a single point, so the solution of that over-determined
system should be found in the least-squared sense. Hence,
the MS position x = [x, y]” can be estimated by finding X
that satisfies

M 2
X =arg Ianynz [\/(Ax,- —x)+ (4, - },)2 _ di] . (19)
=1
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Solving problem (19) requires significant complexity and it is
difficult to analyze. Therefore, instead of using the circles as
the equations to determine the MS location, the radical axes
of all the pairs of circles will be used [37]. The radical axis of
two circles is the locus of points at which tangents drawn to
both circles have the same length. It can be easily obtained
by subtracting the two circles’ equations involved. In this
way, the complex problem of solving an over-determined
system of M quadratic equations is reduced to solve an over-
determined system of (M (M — 1))/2 linear equations.
Let

Bx=b (20)

be the linear equations system defined by the radical axes
with

(Ax1 - AXz) (Ay1 - Ayz)

(Aqu - AXM) (A,‘VMA - A,‘VM>

c/lg _&? - (Aﬁzcz _A92€1> - (Af’z _A§’1>

d?w - &%4—1 - (AJZCM - AﬁZCMA) - (Af’M h Af’M*‘)
(22)

where B is a matrix of (M(M — 1))/2 rows and 2 columns
described only by the anchors coordinates, while b is a vector
of (M(M — 1))/2 rows represented by the range estimates
together with the anchor coordinates. In the least-squared
sense, the solution for (20) is done via

% = (B"B) 'B™, (23)

where X is an estimate of the actual MS position. Note that

as b depends on dA, and, in general, c/l\, does not match the
actual distance, the solution of (23) has to be found in the
least-squared sense. In this paper, this method is denoted as
the least-squared multilateration method (LSM).

The main drawback of using the LSM method is that
all the distance estimates are weighted equally. Therefore,
as it is assumed, if the number of distance estimates is
greater than the minimum required to determine a two-
dimensional MS location (M > 3), then, a new and more
robust multilateration method can be defined. If M > 3, C
groups of range estimates can be performed if and only if
the number of range estimates involved in each group is not
smaller than 3. That is,

M
C=> (1\1/1) (24)
i=3

Applying the LSM method to each of these combinations,
C MS position estimates can be obtained and denoted as
intermediate position estimates, X;, j = 1,2,...,C. The
final MS position estimate, X, could be obtained as the
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point that minimizes the distance to all the intermediate
position estimates in a robust sense. In order to do that,
firstly, a vector of distances between each pair of intermediate
position estimates is computed. That is

C
V=[V1,V2,...,Vi,...,VN], WhereN:(z),

,C,i=1,2,...,N.
(25)

vi = |[& - %

, Vjizkjk=1,2,...

Secondly, the median of the vector v is computed as a
robust value in the presence of outliers. After that, the inter-
mediate position estimates X; that are separated from more
than a half of the other intermediate positions Xi (j # k)
more than two times the median are removed. Therefore,
the final MS position will be the point that minimizes the
distance to the remaining intermediate positions. That is,

P
= arg n}iynZ\/(?j -0M+ (35 -9 (26)
S
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where P is the number of intermediate position estimates
that satisfies

~A A . C .
Ix; — Xkl <2 - MED(v), Vj#k more thanztlmes,

(27)

where MED(v) denotes the median of the vector v. This
method will be denoted as the robust least-squared multi-
lateration method (RLSM).

4.1. Simulations. In this subsection, the accuracy improve-
ment of the hybrid localization scheme that mixes the RSS
and RTT range estimates is compared to the methods that are
only based on RSS or RT'T range estimates by using the RLSM
and LSM methods, respectively. In order to do that, the range
estimates performed in the simulation scenario described in
Section 3 were used. At each actual position, only the range
estimates from the four most powerful anchors were used.
Therefore, in order to estimate the MS position, the LSM
method uses four range estimates, that is, four RSS-based
or four RTT-based, while the RLSM method uses 8 range
estimates, that is, four RSS-based and four RTT-based.
Figure 6 shows the CDFs of the error in the MS position
estimation. This error is defined as the distance between
the estimated and the actual positions. As it can be seen,
the LSM method using the RSS-based, set of constraints ¥,
outperforms the same method using the set of constraints
A, and the RTT-based method. The latter is an expected
result since the RSS-based ranging method with the set of
constraints ¥ outperforms the other ranging techniques.
However, even better results can be achieved when mixing
the RSS and RTT range estimates in the RLSM method.
Figure 6 shows that a mean error lower than a meter
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is achieved in the MS position estimation if the RLSM
method is used. Obviously, the behavior of the RLSM
method is the same as the LSM method when outliers
are not present as intermediate positions. Therefore, the
improvement achieved by RLSM is due to mixing RSS and
RTT range estimates, once the outliers were removed. It is
important to point out that no tracking techniques were
used.

4.2. Experimental Setup. The complete hybrid localization
scheme is evaluated from the RSS and RTT measurements
that were performed on the second floor of the Higher
Technical School of Telecommunications (ETSIT), taking the
PCB described in [14] as the measuring system. As shown
in Figure 7, the campaign of measurements was carried out
following a route among offices, laboratories and with a
few people walking around. As anchors, 8 identical wireless
access points (AP) were used with two omnidirectional
rubber duck antennas vertically polarized to each other in
diversity mode. The APs were configured to send a beacon
frame each 100 ms at constant power on frequency channel
1 (2.412Ghz). As MS, an IEEE 802.11b WLAN cardbus
adapter was used with two on-board patch antennas in
diversity mode. Diversity circuitry determines which antenna
has better reception and switches it on in a fraction of
a second while it turns off the other antenna. Therefore,
both antennas are never on at the same time. The PCB was
connected to the WLAN cardbus adapter. Both APs and
cardbus adapter can be found on most IEEE 802.11 WLANS.
Figure 7 shows the multilateration points that were obtained
by using the RLSM method with the previous RSS and RTT
range estimates, and the LSM method with the previous RSS
range estimates for the set of constraints A.

With the purpose of illustrating the accuracy improve-
ment of the complete hybrid RSS-RTT localization scheme
proposed in that real environment, the RLSM method is
compared to the other methods cited: LSM with the RSS
range estimates for the set of constraints A and ¥ and LSM
with the RTT range estimates. Figure 8 shows the CDFs of the
MS position estimation error. As it can be seen, the RLSM
method outperforms the previous ones achieving a mean
error lower than 3 m.

Obviously, the position accuracy could be improved
using some tracking techniques, such as Kalman or particle
filters, but the aim of this paper is to show the feasibility
and reliability of the path-loss exponent estimates, range
estimates, and MS position estimates without using any of
those filtering techniques.

5. Conclusions

This paper proposes a complete hybrid localization scheme
based on the RSS and RTT information, analyzing it and
putting it into action in a cluttered indoor environment. A
previous PCB has been taken as RSS and RTT measuring
system, and an already deployed IEEE 802.11 wireless
infrastructure has been used as indoor wireless technology.
As a first step, a previous RSS-based ranging technique
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has been improved with the RTT-based range estimates as
constraints, which correlate more closely with distance. In
this way, the accuracy achieved by the RSS-only and RTT-
only schemes has been improved. As a second step, the MS
position has been estimated using a new multilateration
technique that combines the previous RSS and RTT range
estimates based on a robust least-squared method. The
hybrid localization scheme coupled with simulations and
measurements in a cluttered indoor environment demon-
strates that it outperforms the conventional RSS-based and
RTT-based indoor localization schemes without using either
a tracking technique or a previous calibration stage of the
environment.

Hybrid localization systems have experienced a flurry of
research in recent years. However, there still remain multiple
areas of open research that will help systems to meet the
requirements of applications that have to operate in harsh
propagation environments where GNSS typically fails, such
as inside buildings. These are (i) Interference mitigation: To
date, the majority of research effort ignores the effects of
interference on time estimation accuracy, and few papers
propose robust interference mitigation techniques. (ii) Iner-
tial Measurements Units (IMU): the integration of RSS and
RTT information with IMU information, such as the one
reported by accelerometers, gyroscopes, and magnetometers,
could provide location estimations more precise. (iii) Secure
ranging: in certain scenarios, the localization process may be
subject to hostile attacks. While some works have presented
secure localization algorithms (see, e.g., [38, 39]), less
attention has been paid to secure ranging.
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