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The maximum likelihood estimators (MLEs) for the clock phase offset assuming a two-way message exchange mechanism between
the nodes of a wireless sensor network were recently derived assuming Gaussian and exponential network delays. However, the
MLE performs poorly in the presence of non-Gaussian or nonexponential network delay distributions. Currently, there is a need
to develop clock synchronization algorithms that are robust to the distribution of network delays. This paper proposes a clock
offset estimator based on the composite particle filter (CPF) to cope with the possible asymmetries and non-Gaussianity of the
network delay distributions. Also, a variant of the CPF approach based on the bootstrap sampling (BS) is shown to exhibit good
performance in the presence of reduced number of observations. Computer simulations illustrate that the basic CPF and its BS-
based variant present superior performance than MLE under general random network delay distributions such as asymmetric
Gaussian, exponential, Gamma, Weibull as well as various mixtures.

1. Introduction

Wireless sensor networks (WSNs) have been recently pro-
posed for observing and monitoring various aspects of the
physical world. In WSNs, the basic operation is data fusion,
where data from multiple sensors are integrated together to
form a single meaningful result [1]. The fusion of individual
sensor readings is possible only by exchanging messages that
are timestamped by each sensor’s local clock. This mandates
the need for a common notion of time among the sensors.
Such a common notion of time is achieved through the clock
synchronization task. In WSNs, clock synchronization is an
important research area [2].

The two-way message exchange mechanism used in
the Network Time Protocol (NTP) [3] and Timing Synch
Protocol for Sensor Networks (TPSN) [4] is adopted herein
as the clock synchronization approach between two nodes
of the WSN. Due to the presence of nondeterministic
and unbounded message delays, messages can get delayed
arbitrarily, which makes the synchronization very difficult
in WSNs [2]. The most commonly widely used models to
capture the non-deterministic delay distributions in WSNs
are Gaussian, exponential, Gamma, and Weibull probability

density functions (pdfs) [5–7]. However, in general, it is
difficult to determine which delay model should be adopted
in a given WSN at a certain time instant. Recently, [8] studied
the performance of maximum likelihood estimators corre-
sponding to symmetric Gaussian (GML) and exponential
(EML) network delay distributions. Preliminary computer
simulations [8] illustrated the fact that GML and EML are
not robust to asymmetries or uncertainties in the network
delay distributions.

In [9], the inference of general state-space models char-
acterized by nonlinear process and observation equations
is addressed via the concept of Gaussian sum particle filter
(GSPF) which approximates the filtering and predictive
distributions by weighted Gaussian mixtures, that is, banks
of Gaussian particle filters (GPFs). With non-Gaussian
noise approximated by Gaussian mixtures, the non-Gaussian
noise models are approximated by banks of Gaussian noise
models. However, in wireless sensor networks, the process
and observation equations are linear functions. Therefore,
we extend the use of a new filter, the composite particle
filter (CPF), to encompass linear and additive non-Gaussian
noise models. For a linear state-space model with addi-
tive non-Gaussian noise, CPF approximates the posterior
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distributions as Gaussian mixtures using banks of parallel
Kalman filters (KFs). The main contribution of this paper is
a novel clock offset estimation method, called the composite
particle filter (CPF), which is shown to be robust to the
unknown distribution of network delays. The CPF approx-
imates the filtering and predictive distributions by using
weighted Gaussian mixtures and is basically implemented via
banks of Kalman filters (KFs) instead of Gaussian Particle
filters (GPFs) [9]. Thus, CPF appears as a variation of the
Gaussian sum particle filter (GSPF) [9], fit for estimation
of linear models perturbed by non-Gaussian random noise
components.

There is another method capable of coping with
nonlinear processes and observation equations, and non-
Gaussian noise models, which is called the Gaussian mixture
sigma point particle filter (GMSPPF) [10]. Both GSPF and
GMSSPF approximate the filtering and predictive distribu-
tions by weighted Gaussian mixtures. The big difference
consists in the integrating sub-techniques. Specifically, the
GMSPPF combines the Particle filter and Sigma Point filter
with a Gaussian Mixture Model (GMM) whose features
are estimated via the Expectation-Maximization (EM) algo-
rithm, while the GSPF integrates the Gaussian Particle filter
with GMM via a Gaussian sum filtering approach. In [11],
the Gaussian mixture Kalman particle filter (GMKPF) was
proposed, which is a slightly changed version of the GMSPPF
and obtained by replacing the sigma point Kalman filter
(SPKF) with a KF. The CPF proposed in this paper and
the GMKPF [11] present a different updating mechanism of
GMM parameters such as the weights. Also, the bootstrap-
ping sampling technique is shown herein to be an effective
mechanism to improve the performance of clock estimation
schemes.

As explained in [4, 12], energy conservation is a very
important concern. Reference [13] pointed out that much
less power is consumed in processing data than transmitting
it. In fact, [13] showed that the energy required for a sensor
node to transmit 1 Kbit over 100 meters (3 Joules) in a
particular WSN was equivalent to the energy required to
execute 3 millions of instructions. Therefore, the possibility
of trading off computational power for more savings in
energy consumption appears as a very feasible approach.
Thus, one way to reduce the amount of energy spent
on signal transmissions and implicitly on achieving clock
synchronization is the usage of possibly more sophisticated
signal processing algorithms with the goal of achieving
more accurate clock offset estimates especially in operational
regimes characterized by a reduced number of observations
and unknown network delay distributions. In case that
message exchange errors occur, a node will not retransmit
the message to a neighbor node but will resample the
observation data from the original observation data using
the bootstrap sampling (BS) approach [14, 15]. The BS can
be implemented by constructing a number of resamples of
the observed data, each of which being obtained by random
sampling with replacement from the original observed data.
Notice that a node will then estimate the clock offset from the
resampled observation data by using the CPF. The computer
simulations highlight that the CPF with BS achieves better

performances in various random delay models, and it aims
at reducing the number of message exchanges. Therefore, the
CPF with BS leads to less power consumption relative to the
CPF, GML, and EML.

It is interesting also to remark that the clock synchro-
nization literature for wireless sensor networks is quite
scarce in terms of contributions addressing the robustness
or improving the mean square error (MSE) performance of
existing state-of-the-art clock synchronization algorithms in
the presence of message errors, unknown and possibly time-
varying network delay distributions, or reduced number of
observations (data measurements). Thus far, it appears that
only very few preliminary and straightforward applications
of standard Kalman filtering or general adaptive signal
processing techniques have been recently reported (see [16–
18]) to improve the MSE performance of protocols such as
RBS [19] or TPSN [4]. However, no attempts have been made
to address the problem of building clock synchronization
algorithms that are robust to the unknown distribution
of random network delays, message errors, or presence of
reduced number of observations. This paper aims to answer
these questions from the light of a composite particle filtering
technique.

The rest of this paper is organized as follows. Section 2
introduces the state-space model that will be used through-
out the paper and a description of problem formulation.
Section 3 provides a description of the CPF and BS-based
CPF approaches for estimating the clock offset in wireless
sensor networks. The results of computer simulations are
given in Section 4. Finally, Section 5 provides concluding
remarks.

2. ProblemModeling and Objectives

The two-way timing message exchange protocol is a recently
proposed clock synchronization approach for WSNs [4, 5,
8]. Under this protocol, the synchronization between two
generic nodes A and B is achieved by transmitting timing
messages in both directions. The message exchanges between
nodes A and B are organized in terms of cycles, and during
each cycle a message exchange occurs in each direction. For
example, during the kth cycle, the Node A sends its time
reading T1,k to Node B, which records the time of arrival
of the message sent by node A as T2,k, according to its own
time scale. Similarly, a timing message exchange is performed
from Node B to Node A. At time T3,k node B transmits back
to node A the timing information T2,k and T3,k. According to
Node A’s clock, the message transmitted by Node B arrives
at node A at time T4,k. Therefore, at the end of the kth
cycle, node A has access to all the time information {Tj,k},
j = 1, . . . , 4, that prove to be sufficient for estimating the
clock phase offset and deterministic propagation delay.

Indeed, following [5, 8], the time differences correspond-
ing to the kth up and down link delay observations of the
kth timing message exchange can be expressed respectively
as Uk = T2,k − T1,k = d + θA + Nk and Vk = T4,k − T3,k =
d−θA+Mk, respectively. The fixed value θA denotes the clock
offset between the two nodes, d stands for the (deterministic)
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propagation delay, and Nk and Mk model the variable
portions of delay and might assume any distribution such
as Gaussian, exponential, Gamma, Weibull, or a mixture of
two distributions. For notational convenience, we adopt the
notation xk = θA to denote the unknown clock phase offset.
Given the observation samples zk = [Uk,Vk]T , our goal is to
find the minimum mean square estimator of the unknown
clock offset θA, which is given by

x̂k = E
{

xk | Zl
}

, (1)

where Zl denotes the set of observed samples up to time l,
Zl = {z0, z1, . . . , zl}. Since the clock offset value is constant,
the clock offset is assumed to obey a Gauss-Markov dynamic
channel model of the form

xk+1 = Fxk + vk, (2)

where F represents the state transition scalar value (if xk is
vector, F is matrix) for the clock offset. The noise vector vk
is modeled as a Gaussian random variable with zero mean
and covariance Evkv

T
k = Q. Notice also that the vector

observation model follows from the observed data and takes
the expression

zk+1 =
⎡

⎣

Uk

Vk

⎤

⎦ =
⎡

⎣

d + xk + Nk

d − xk + Mk

⎤

⎦ =
⎡

⎣

1

1

⎤

⎦d +

⎡

⎣

1

−1

⎤

⎦xk + nk,

(3)

where the observation noise vector nk = [Nk,Mk]T may
assume any probability density function (pdf). Hence, it
turns out that our initial problem is now casted as the esti-
mation problem of a Gauss-Markov model with unknown
state (see (2) and (3)).

3. Composite Particle Filtering and Bootstrap
Sampling Approach

The maximum likelihood clock offset estimator was reported
in [8] for the two-way timing message exchange protocol
such as TPSN and NTP under the assumption of Gaussian
or exponential delay models. Herein we will derive a CPF for
clock phase offset estimation assuming a general unknown
distribution of network delays and then compare the CPF
and existing maximum likelihood clock offset estimators that
were derived for Gaussian (GML) and exponential (EML)
delay models. Under the Bayesian framework, an emerging
powerful technique for obtaining the posterior, predictive,
and filtering probability density functions is referred to as the
particle filtering (PF) (see, e.g., [20, 21]). The PF technique
allows for a complete representation of the state posterior
distribution, which approximates p(xk | z0:k), by stochastic
samples generated using a sequential importance sampling
strategy. The most common employed PF strategy is to
sample from the transition prior distribution due to its
simplicity. Since the prior importance sampling distribution
employs no information from observations in proposing new
samples, its use is often ineffective and leads to poor filtering

performance. To overcome these challenges, we will derive
an extension of GSPF [9] applicable for linear non-Gaussian
models.

In the GSPF, the filtering and predictive distributions
are recursively represented as finite Gaussian mixtures
(GMs) using Gaussian Particle Filtering (GPF) [22]. One
set of methods approximates the mixture components of
the predictive and filtering distributions as Gaussian. The
approximation can be implemented by the GSPF, resulting
in a parallel bank of GPFs. Since Gaussian mixture models
are increasingly used for modeling non-Gaussian densities
[23, 24], herein we plan extending the use of the GSPF to
linear non-Gaussian models. The resulting new approach
will be referred to as CPF. Notice that in the measurement
and time-update equations of CPF, the updated mean and
covariance of each mix and follow from the KF. The CPF is
implemented by means of G parallel KFs, and the weights are
adjusted according to the given update equations. Notice also
that the CPF approach comes out of the utilization of another
filtering technique (KF) producing a filtering probability
density function used as importance function (IF) for the
particle filtering.

We next describe briefly the general framework of CPF
methods. Assume at time k − 1, the posterior distribution
p(xk−1 | z0:k−1) is approximated as closely as desired by a
Gaussian mixture model (GMM) of the following form [25]:

p(xk−1 | z0:k−1) ≈
G
∑

g=1

w(k−1)gN
(

xk−1;μ(k−1)g ,P(k−1)g

)

, (4)

where G stands for the number of mixing components, w(·)g
denote the mixing weights, and N(x;μ,P) is the normal
distribution of RV x with mean μ and covariance P. The
transition prior is modeled as

p(xkxk−1) =
L
∑

l=1

α(k)lN
(

xk;Fxk−1 + μ(k−1)l,P(k−1)l

)

, (5)

where α(k)l denote the mixing weights, L is the number of
Gaussian mixing components for modeling the transition
prior. The time update stage that the previous observations
and state used to predict the current state is encompassed
by the predictive distribution which can be approximated as
follows:

p(xk | z1:k−1)

=
∫

p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1

=
∫

p(xk | xk−1)
G
∑

g=1

w(k−1)gN
(

xk−1;μ(k−1)g ,P(k−1)g

)

dxk−1

=
∫ L
∑

l=1

α(k)lN
(

xk;Fxk−1 + μ(k−1)l,P(k−1)l

)

·
G
∑

g=1

w(k−1)gN
(

xk−1;μ(k−1)g ,P(k−1)g

)

dxk−1.

(6)
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The predicted and updated Gaussian component means
and covariances are calculated using the KF. As in the KF, the
integral on the right is approximated by a Gaussian. Then,
the predictive distribution can be approximated as

p(xk | z1:k−1) ≈
GL
∑

j=1

w̃kgN
(

xk; μ̃(k) j , ˜P(k) j

)

, (7)

where the parameters of the mixture are obtained according
to KF

μ̃k j = μ(k−1)l + Fμ(k−1)g ,

˜Pk j = FP(k−1)gF
T + P(k−1)l,

w̃k j = αlw(k−1)g ,

(8)

for appropriate j = 1, . . . ,GK , g = 1, . . . ,G and l = 1, . . . ,L
and j = g + (l − 1)L.

In the measurement update stage, the operation of acting
on new observations to improve on previously “predictive”
states p(xk | z1:k−1) can be approximated as

p(xk | z1:k) = p(zk | xk)p(xk | z1:k−1)
p(zk | zk−1)

≈ Cn

GL
∑

j=1

w̃k j p(zk | xk)N
(

xk; μ̃(k) j , ˜P(k) j

)

,

(9)

where Cn is the normalizing constant. Therefore, the updated
filtering distribution is approximated as

p(xk | z1:k) ≈
GL
∑

j=1

wk jN
(

xk;μ(k) j ,P(k) j

)

. (10)

The reader is directed to [9] for more detailed explanations
of the GSPF algorithm. Finally, notice that the conditional
mean state estimate and the corresponding error covariance
can be calculated, respectively, as

xk =
GK
∑

j=1

w
( j)
k μ

( j)
k ,

Pk =
GK
∑

j=1

w
( j)
k

[

P
( j)
k +

(

μ
( j)
k − xk

)(

μ
( j)
k − xk

)T
]

.

(11)

Next, we introduce another clock estimation scheme
obtained through the integration of the CPF technique
with the bootstrap sampling (BS) approach. The reader is
directed to [14, 15] for more detailed explanations about
bootstrap sampling. In order to provide a consistent amount
of observation data in the presence of errors during timing
message transmissions, new sampled observation data from
the original observation data are generated via the BS. Then,
the clock offset is estimated based on the CPF. Notice that
even in the presence of corrupted or lost data packets,
BS can create additional samples to the original sample
set, by drawing at random with replacement from Z, and

without being necessary for additional retransmissions. Each
of the bootstrap samples is considered as new data. Based
on the additional sampled observation data, we can then
approximate the clock offset x by using the CPF. The major
steps of the CPF approach with bootstrap sampling are
summarized by the following pseudocode

Algorithm: CPF with BS. (1) Conduct the experiment to
obtain the random sample Z = {Z1, . . . ,Zn} and calculate

the estimate ̂θ from the sample Z.
(2) Construct the empirical distribution ̂H , which puts

equal mass 1/n at each observation Z1 = z1, . . . ,Zn = zn.
(3) From ̂H , draw a sample Z∗ = {Z∗1 , . . . ,Z∗n },

operation called bootstrap resampling.
(4) From the bootstrap resample Z∗, estimate the clock

offset x̂ by CPF.
The calculation of the computational cost of CPF is

very complex, compared to GML and EML. In general, the
computational cost of CPF is a function of the number of
particles and the number of measurements. However, GML
and EML are a function of the number of measurements
and do not use the particle filtering method. Hence, it is
difficult explicitly to compare the complexities of GML/EML
and CPF. However, we will use the big O notation to express
the computational complexities of GML/EML and CPF in
terms of flops by evaluating only the most computationally
demanding steps. Letting L, N , and G denote the dimension
of the state vector (x), the number of particles, and the
number of GMM, respectively, the GML is approximately
O(L), and the CPF is approximately O(GNL3) which is the
maximum complexity and occurs in the posterior pdf step.
This shows that the CPF is approximately 300 times slower
than GML in an application with L = 1, N = 100, and G = 3.

4. Simulation Results

In this section, extensive computer simulation results are
presented to illustrate the performance of the CPF, CPF with
BS, GML [8], and EML [8] approaches for estimating the
clock offset in wireless sensor networks, assuming a variety of
random network delay models such as asymmetric Gaussian,
exponential, Gamma, and Weibull as well as a mixture of
Gamma and Weibull, respectively. These computer simu-
lations and numerous other simulations not shown herein
due to space limitations corroborate the conclusion that the
proposed method can be widely and flexibly applied for any
delay distribution. The stationary process vk assumes the
constant variance Q = 1e − 4, while the number of particles
and GMMs are set to 100 and 3, respectively. The bootstrap
samples are twice the number of measurements.

Figures 1, 2, 3 and 4 show the MSE (Mean Square Error)
of the estimators when the network delay distributions are
asymmetric Gaussian, exponential, Gamma, and Weibull
pdfs, respectively. The subscript attached to the distribution
parameters are used to differentiate the parameters of the
uplink distribution with respect to those of the downlink
distribution. For example, for an asymmetric Gaussian delay
model, (σ2

1 ) and (σ2
2 ) denote the uplink and downlink
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Figure 1: MSEs of clock offset estimators for asymmetric Gaussian
random delays [σ1 = 1, σ2 = 4].
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Figure 2: MSEs of clock offset estimators for asymmetric Exponen-
tial random delays [λ1 = 1, λ2 = 5].

variances, respectively. The MSE curves are plotted against
the number of observations ranging from 5 to 25. Note
that the CPF performs much better with over 100% MSE-
reduction when compared to the GML or EML. Notice also
that the CPF with BS exhibits the best performance in the
presence of reduced number of observation data. Notice also
the MSE of GML achieves better performance than EML
in asymmetric Gaussian delay models, while EML assumes
superior performance relative to GML in asymmetric expo-
nential, Gamma, and Weibull delay models. The reason for
this is that Gamma and Weibull delay models are closer to
the exponential distribution than the Gaussian distribution.
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Figure 3: MSEs of clock offset estimators for Gamma random
delays [α1 = 2, β1 = 1].
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Figure 4: MSEs of clock offset estimators for Weibull random delays
[α1 = 2, β1 = 2 and α2 = 6, β2 = 2].

To further quantify the robustness of the estimators, we
studied the performance of the CPF with BS, CPF, GML, and
EML under more general random delay models obtained by
mixing two arbitrary distributions. For example, in Figure 5,
we mix uniformly the Gamma with the Weibull delay model,
each distribution accounting for 50% of samples. This means
that if 10 observations are observed, 5 observations are
Gamma, and the remaining ones are Weibull distributed.
From Figure 5, we observe that CPF clearly outperforms
the GML and EML. Notice that additional simulations not
shown herein and performed assuming different mixture
models for the network delays such as mixtures of Gaussian
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Figure 5: MSEs of clock offset estimators for mixing of Gamma
[α1 = 2, β1 = 5 and α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2
and α2 = 6, β2 = 2].
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Figure 6: MSEs of clock offset estimators for asymmetric Gaussian
random delay [σ1 = 1, σ2 = 4] and 2 message exchange errors.

and exponential, Gaussian and Gamma, exponential and
Gamma, and exponential and Weibull corroborate the same
conclusion, namely, the fact that CPF outperforms both
the GML and EML no matter what distribution model is
assumed for the network delays.

Figures 6, 7, 8, 9, and 10 depict the MSEs versus the
number of observation data in the case when 2 message
exchange errors occur with uniform distribution for the
scenarios assumed by Figures 1–5. From the Figures 6–
9, we observe that CPF with BS clearly outperforms CPF,
GML, and EML. From Figure 10, we observe that unlike the
Figures 6–9, CPF with BS exhibits the best performance in
the presence of a reduced number of observations. These
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Figure 7: MSEs of clock offset estimators for asymmetric Exponen-
tial random delay [λ1 = 1, λ2 = 5] and 2 exchange message errors
occur.
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Figure 8: MSEs of clock offset estimators for Gamma random delay
[α1 = 2, β1 = 1], and 2 exchange message errors occur.

simulation results corroborate the general conclusion that
the CPF with BS and CPF are reliable methods in the
presence of a reduced number of samples.

5. Conclusions and FutureWork

This paper provided novel methods such as CPF and BS
for estimating the clock offset in wireless sensor networks.
The benefits are in terms of improved performance and
applicability to any random delay models such as asymmetric
Gaussian, exponential, Gamma, and Weibull, as well as
mixtures of these delay models. In addition, the proposed
CPF approaches are robust to the presence of a small number
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Figure 9: MSEs of clock offset estimators for Weibull random delay
[α1 = 2, β1 = 2 and α2 = 6, β2 = 2] and 2 exchange message
errors occur.
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Figure 10: MSEs of clock offset estimators for mixing of Gamma
[α1 = 2, β1 = 5 and α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2
and α2 = 6, β2 = 2] and 2 exchange message errors occur.

of observations, message exchange errors, and unknown
network delay distributions. Also, the proposed iterative
clock phase estimation algorithms can track time-varying
clock phase offsets, which represents a notable improvement
relative to the existing state-of-the-art GML and EML
estimators. Possible disadvantages of the proposed composite
particle filtering-based approaches are the facts that they
present high computational complexity and require good
initializations; analytical closed form expressions do not
seem to exist for the clock estimators and the computation
of the lower bound performance bounds appears difficult

due to the non-Gaussian nature of involved distributions.
In addition, the CPF with BS and CPF achieve excellent
performance compared to GML and EML in environments
which manifest in message exchange errors and time-varying
network delay distributions.
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