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Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents
such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be
occurred: “Flow,” “Dense” and “Congested”. Objective of this research is to identify the current traffic condition by examining
the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In
our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to
classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression
classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with
One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear
model of backpropagation neural network is introduced for classification. This combination has not been reported on previous
studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared
using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

1. Introduction

Traffic flow characteristic shows dynamical change at dif-
ferent time periods of the day. Many traffic incidents such
as accidents, disabled cars, construction activities, high
demands on traffic, and other unusual events cause this
change. For dealing with these unstable traffic problems,
traffic conditions should be clarified. Mainly there exist three
different major traffic conditions: “Flow Traffic,” “Dense
Traffic,” and “Congested Traffic”. Clarification of them req-
uires careful/detailed examination of the flow parameters of
speed, volume, and occupancy (SVO).

Accurate interpretation of SVO supports traffic manage-
ment centers to make proper decision on directing the traffic
to the less intensive roads. Hence, the response time for
intervention in an incident will be reduced.

Measurement methods for obtaining SVO have changed
for the last 60 years of the span (i.e., especially the last 40
years with the rapid rise in the number of freeways). Indeed,

they are still changing [1]. Some of them are

(i) measurement at a point,

(ii) measurement over a short section (about 10meters),

(iii) measurement over a length of road (at least 0.5 km),

(iv) measurement with mobile observer in the traffic
stream,

(v) measurement with multiple simultaneous mobile
vehicles, as part of ITS (Intelligent Transportation
Systems).

Although all measurement methods above produce speed
and volume of SVO, the only method producing occupancy
(i.e., the percentage of unit time that the detection zone of
the instrument is occupied by vehicles) is the measurement
over a short section [1].

Detectors used for short section measurement can be
based on inductive loop (IL), microwave, radar, photocell,
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ultrasonic, and analog/digital camera technologies [1]. Since
the quick and effortless installation is possible only on IL
technology, we have used Radio Transmissions Microwave
Sensor-based (RTMS) IL detector. We have collected SVO
parameter values at different times of day by using RTMS-IL.

The collected SVO data is analyzed through our three
distinct novel approaches to classify traffic flow as “Flow”,
“Dense”, or “Congested”. These approaches are estimating
error prediction for multiple linear regression analysis, two
improved variants of support vector machines (SVM), and
backpropagation neural network. First two methods are
linear classifiers, whereas NN is non-linear.

In Section 2, the contributions of our paper will be given
in the related works. Then, background is presented. In the
Section 4, all details about the proposed study are going to
be given. Section 5 summarizes experimental results. Finally,
conclusion is given.

2. RelatedWorks

Flow theory has been tried to analyze traffic through the
speed, volume, and the vehicular concentration parameters.

Temporal vehicular concentration named as occupancy
can be measured only over a short section (i.e., shorter than
the minimum vehicle length). So, this parameter becomes
unmeaning for long section measurements.

Density as an alternative vehicular concentration has
been a part of traffic measurement since 1930’s. It depicts
the number of vehicles over a long section (i.e., one mile or
kilometer) in contrast to occupancy.

Although vehicular concentration encompasses both
density and occupancy parameters, indeed, it would be fair
to say that the majority opinion is in favor of using density
during the evolution of traffic flow theory.

However, a minority view has intended to use occupancy
in theoretical works. Although there are well-defined facts
put forward by the majority for the continued use of density,
the minority also propounds major reasons for making more
use of occupancy. The most crucial reason among them
can be given as density (i.e., vehicles per length of road)
ignores the effects of vehicle length and traffic composition.
Occupancy, on the other hand, is directly affected by both of
these variables and therefore gives a more reliable indicator
of the amount of a road being used by vehicles.

First mathematical model-based on speed, volume, and
density variables had been developed by Greenshild in
mid 1930s [2] using the aerial photographs. In his work,
relationship between speed and density is introduced relying
on simple linear regression approach.

After World War II, with the tremendous increase in
use of automobiles and the expansion of the highway
system, there was also a surge in the study of traffic
characteristics and the development of traffic flow theories.
In 1950’s, theoretical developments based on a variety
of approaches, such as car-following, traffic wave theory
(hydrodynamic analogy), and queuing theory has emerged.
Some of the seminal works of that period include the works
by Reuschel (1950) [3–5], Wardrop (1952) [6], Pipes (1953)
[7], Lighthill and Whitham (1955) [8], Newell (1955) [9],

Webster (1957) [10], Edie and Foote (1958) [11], Chan-
dler et al. (1958) [12], and other papers by Herman et al.

Reuschel and Pipes offered a microscopic traffic model
that identifies the linear dependency between the speed of
a vehicle and the distance between the vehicles in a single
lane. The models described by Reuschel and Pipes were
reasonable in concept, but no experimental verification of
their conclusions was pursued for many years [13].

Wardrop’s theory was based on two major principles.
The first one was stating that travel times between the same
origin and destination pairs for any used routes are less
than or equal to the travel times for all unused routes. This
is referenced as Dynamic User Equilibrium (DUE) in the
literature and used for large-scale networks. Diverting traffic
with DUE is inefficient and difficult-to-implement system
optimum (i.e., min. average travel time) [14]. The second
one aims at minimizing both the total travel times and
average travel times for all assigned routes for all drivers on
the whole network. However, individual choice of drivers was
by no means guaranteed to satisfy this principle and in most
cases did not [13].

A few years later, Lighthill and Whitham (L-W) together
set out the first comprehensive theory of kinematic waves.
In L-W traffic model, there exists correlation between
traffic flow (cars/hour) and traffic density (cars/mile) [8].
Propagation of shock waves, generated by traffic transitions
from one steady state to another, was also determined by
L-W model. Nevertheless, this model was viable only for
describing the density changes. Unfortunately, the model
produces larger densities exceeding the possible maximum
vehicle density.

Greenberg improved the existing mathematical models
by adding the nonlinearity into the model structure [15]. He
treats the traffic stream as a continuous fluid and derives the
relations between speed, density, and flow by fluid dynamics.

The distinction of free (i.e., non-congested) and con-
gested flow on the speed-density model was carried out by
Eddie [16] and Underwood [17] and was investigated in an
important empirical test by Drake et al. [18].

Athol [19] suggested using the occupancy rather than
the density for the flow-concentration works, however his
suggestion became popular one decade later.

Speed, flow, and occupancy (SFO) relationships have
been studied at the free flow level by Hurdle and Datta
[20], Persaud and Hurdle [21], F. L. Hall and L. M. Hall
[22], Banks [23], Smith et al. [24], Hall et al. [25], and
Wemple et al. [26]. Also, SFO have been studied at congested
flow level and by Hall and Montgomery [27], Zhou and Hall
[28], and Banks [29, 30].

SVMs are usually employed for incident detection algo-
rithms identifying the anomalies of traffic flow model using
single or two sensors [31]. The process for determining
the presence of an incident is twofold. The first is a
determination of congestion (exits/not-exists), one of the
states we also want to identify. Next is the binary analysis
of type of congestion (incident occurred/not-occurred). Past
researches and applications usually tend to use the traffic
descriptors of two traffic sensors as their input parameters
for incident detection with SVMmethods.
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In ITS, neural networks can be found on the areas like
vehicle detection, road detection, and single loop vehicle type
classification [32, 33]. Rarely some work related with traffic
flow control can be found and they are also not well defined
[34].

All retrospective researches so far show the binary
relationships between the traffic parameters such as flow rate
and occupancy (FR-O), flow rate and speed (FR-S), speed
and occupancy (S-O) at congested or flow levels. Traffic
status is assessed according to these binary relationships or
by inspecting only one parameter (like speed) rather than
examining all of them.

The first contribution of this paper to the traffic studies
is focusing on another major traffic flow level ignored in
earlier researches called dense flow level. All the previous
works studies congested and flow traffic levels.

The second contribution of the paper is that no one in
the earlier works is based on “single sensor” (i.e., all of them
used double sensor placed within some distance) with using
SVO triplets (i.e., triple relations of traffic parameters).

The third one is our new approach of “estimation with
error prediction” for multiple-linear regression.

The fourth and most important one is our novel
algorithms of “Multiclassification withOne-Against-All” and
“Multiclassification with Binary Comparison” as variants for
support vector machine (SVM) classifier for the traffic flow
model.

The final contribution is that none of the earlier works
uses neural network model to classify the traffic control by
short section with single ILD.

3. Background

One of the short section detectors, RTMS, is capable of
producing some kind of traffic parameters periodically for
each lane on the freeway. These parameters are volume,
speed, and occupancy.

(i) Volume shows the count of total vehicles passed
through this short section for one period.

(ii) Speed shows the average speed of total cars passed
through this short section for one period.

(iii) Occupancy shows the sum of the time; vehicles
occupy the short section divided by one period time.

3.1. Linear Multiple Regression Analysis Method as a Classifier.
The objective of linear multiple regression analysis (LMRA)
is to define which of the independent variables are important
on predicting the model [35]. Multiple regression analysis
provides a predictive equation

Y = a + β1x1 + β2x2 + · · · + βnxn, (1)

where, a is interception constant, βi (i=1, 2, ...,n) are standard-
ized partial regression coefficients (reflecting the relative
impact on the criterion variable). xi (i=1, 2, ...,n) are the metric
scores (i.e., interval or ratio data) of different independent
variables. Y is the single dependent variable structuring the
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Figure 1: Maximum margin of optimal hyperplane.

model. Equation (1) actually symbolizes a linear hyper plane.
The purpose of the LMRA classifier is to minimize the energy
function E for each data point, defined by LMS as in (2). The
parameters a and βi (i=1, 2,...,n) are obtained from solving the
partial derivatives of

E =
∑(

yp −
(
a + β1x

p
1 + β2x

p
2 + · · · + βnx

p
n

))2
. (2)

for given data.

3.2. Support Vector Machine as a Classifier. Another inno-
vative supervised pattern classifier technique SVM was first
proposed by Vapnik in 1995 [36]. The formulation applied
by SVM embodies the Structural Risk Minimization (SRM)
principle, which has been shown to be superior to traditional
Empirical Risk Minimization (ERM) principle [37]. While
SRM minimizes an upper bound on the expected risk,
ERM minimizes the error on the training data [38]. It is
the difference which equips SVM with a greater ability to
generalize, which is the goal in statistical learning. SVMswere
developed to solve the classification problem (i.e., data must
belong to either Class 1(+1) or Class 2(−1)) but recently they
have been extended to the domain of regression problems
[39].

The decision function in (3) determines the classes of all
input vectors (x = xim) [where i is the input and m is the
tuple indexes]. φ is fixed feature-space transformation, W is
m dimensional weights, and b is bias term [40]:

D(x) =WTφ(x) + b. (3)

If there are multiple solutions, we should find the
smallest generalization error. So, “margin” (i.e., smallest
distance between decision boundary and any of the samples)
should be found through [controlling the separability] [41]:

min
∣∣∣WTx + b

∣∣∣ = 1. (4)

Although there are infinite number of solutions to
separate hyperplanes, by maximizing the margin, Figure 1
shows only two decision functions satisfying (4).
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Figure 2: Classification interpretation of ANN model selecyion [51].

The margin is given by the perpendicular distance to the
closest point xi from the data set and we wish to optimize
the parameters W and b in order to maximize this distance
(using target ti). Thus the maximum margin solution is
found by solving

argmax
W ,b

{
1

‖W‖
}
min

i

[
ti
(
WTφ(x) + b

)]
. (5)

The dominating approach for solving multiclass prob-
lems using SVM has been based on reducing single multi
class problem into multiple binary problems. For instance,
a common method is to build a set of binary classifiers
where each classifier distinguishes between one of the labels
to the rest. This approach is a special case of using output
codes for solving multi class problems [42]. However, while
multi class learning using output codes provides a simple and
powerful framework it cannot capture correlations between
the different classes since it breaks a multi class problem into
multiple independent binary problems [43].

The idea of casting multi class problems as a single
constrained optimization with a quadratic objective function
was introduced by Vapnik [44] and Watkins [45]. These
attempts to extend the binary case are achieved by adding
constraints for every class and thus the size of the quadratic
optimization is proportional to the number of categories in
the classification problems. The result is often a homoge-
neous quadratic problem which is hard to solve and difficult
to store. The idea of breaking constrained optimization prob-
lem into smaller problems was extended by Joachims [46].
Multiple class problems were then discussed by Schölkopf
[47]. Today’s panorama of SVM is well summarized by
Cristianini [48] and more completely by Schölkopf and
Smola [49].

3.3. Backpropagation Neural Network as a Classifier. Artificial
neural networks (ANN) are used to serve two important
functions as pattern classifiers and as nonlinear adaptive
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Figure 3: Simple Three-layered Neural Network Structure (3-4-2).

filters. Figure 2 gives a brief overview about the ANN
architecture for proper pattern classification [50, 51]. Since
the data is not guaranteed to be linearly separable (i.e.,
overlapped), three-layered Backpropagation NN (BPNN)
architecture is chosen in this paper as classifier. This type
of architecture does not need any prior knowledge about
data (i.e., exemplar pattern initialization). Since there is no
need for distribution of the data (for fault-tolerance), asyn-
chronous update in weights and self-classification, BPNN is
suitable as supervised classifier [32, 50]. In Figure 3, simple
three-layered BPNN is indicated.

In our paper work, we used alternative learning methods
for comparing the performances. They are Gradient Descent
with Momentum (gdm), Conjugate Gradient Descent (cgd),
Scaled Conjugate Gradient (scg), and Levenberg-Marquardt
Gradient Descent with momentum and Scaled Conjugate
Gradient. In [52], you can find algorithms and related details
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Figure 4: An example simulator data for Congested traffic.
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Figure 5: An example simulator data for Flow traffic.

about the formulation and theory about these learning
methods.

4. ProposedMethod

4.1. Data. For each traffic condition, different values and
types of data can be acquired through the FHWA’s (Federal
Highway Agency) TSIS 5.1 software (i.e., a CORSIM-based
microscopic traffic simulation tool). Differentiation of data
is supplied by configuring simulation tool parameters such
as distribution function of generated traffic, lane speeds, car
distances, and incident creation intervals.
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Figure 6: An example simulator data for Dense traffic.

Each ILD sensors generates speed, volume, and occupancy
parameters values for configurable one period of time (i.e.,
60 seconds) for each lane on the freeway.

4.1.1. Congested Condition. Congested traffic condition can
be observed by creating long-term incidents along the
freeway. According to the number of lanes they occupy,
incidents can be assorted. In our study, kinds of incident
scenarios are created for four-lane freeway. The sensors are
placed 100 feet upstream from the incident point. As seen
in Figure 4 occupancy reaches the maximum values, whereas
both speed and volume reach the minimum values.

4.1.2. Flow Condition. In order to generate the flow traffic
condition, CORSIM’s average speed input is determined
from high values (i.e., 90 km/h) and no incidents are created.
Figure 5 illustrates the flow condition. It is clear from the
figure that, when the speed is high and volume is low, the
occupancy approximately reaches to zero. Under the low
speed and high volume conditions, occupancy rises but never
reaches to the maximum value.

4.1.3. Dense Condition. Dense traffic condition can be iden-
tified by generating low speed values, short-term incidents,
and decreased distances between the cars in traffic. This
condition is observed between the flow and congested
conditions. As seen in Figure 6 the occupancy never reaches
to min or max values.

4.2. Multiple Regression Analysis. There exist two significant
facts through the basis of this method. The prior one says
it is obvious that occupancy approximates to zero whether
the average speed of vehicles approximates to infinity in
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flow traffic condition or not. On the contrary, occupancy
goes to maximum value when speed approximates to zero in
congested traffic flow condition.

It is also obvious that, until the volume reaches its
maximum, occupancy is also increasing. After the maximum,
the volume is going to be monotonically decreasing whereas
occupancy is still increasing.

Under these circumstances, in flow traffic conditionmore
volume leads to more occupancy. However, in congested
traffic flow, the less volume observed leads tomore occupancy.

According to the facts mentioned above, occupancy is
dependent both on speed and volume.

Occupancy = a + β1 ∗ Volume + β2 ∗ Speed + Error. (6)

Equation (6) is not viable in real world affairs. Once
the traffic seems to be in congested, both speed, and
volume can show the zero, although occupancy approaches
to maximum. Unless the vehicles exist along the freeway
(i.e., flow condition), speed, volume, and also the occupancy
indicate zero. A linear dependency of SVO for each traffic
condition with respect to the discrepancy are modified from
(6) as in (7). For each flow condition a, β1, and β2 parameters
are different,

Occupancycondition = a + β1 ∗ Volume + β2 ∗ Speed + Error.
(7)

4.2.1. Regression Planes. Using the CORSIM data, α, β1, and
β2 values for each traffic condition are calculated using LMS
(Least Mean Squares) method. The obtained results can be
tracked through following subtitles.
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Figure 8: Regression plane for Flow traffic.

(a) Congested condition. The plane evaluated for congested
traffic is depicted in Figure 7 and its equation is in

Occupancycongested = 98, 02− 8, 5∗ Volume− 2, 5∗ Speed.

(8)

Through the crosschecking (8), it can easily be seen that
occupancy reaches max (98.2) when the speed and volume
are marked as zero. This verifies the expectations of the real
traffic condition.

(b) Flow Condition. Figure 8 shows the plane obtained from
the flow traffic. Its equation is defined as

Occupancyflow = 0, 05 + 0, 3∗ Volume− 0, 004∗ Speed. (9)

In real traffic, if no car is detected on the freeway during
the time period, detectors will produce the occupancy as 0
whereas speed and volume also share the same value. Through
the crosschecking (9), it can easily be seen that occupancy
reaches min (0.05) when the speed and volume are marked
as zero. This verifies the expectations of the real traffic
condition.

(c) Dense Condition. Figure 9 depicts the dense traffic flow
condition’s regression plane. Linear equation of the plane can
be defined as

Occupancydense = 34.5 + 0, 58∗ Volume− 0, 7∗ Speed.
(10)

(d) Combined Data and Regression Planes. Data and regres-
sion planes of all traffic conditions are shown in Figure 10.

Three different methods are applied, respectively, for
classification of traffic conditions using linear regression.

(1) Using Analytic geometry (AG). From the CORSIM
simulation, regression planes are defined for each traffic
conditions. AG calculates the distances between all data
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points and each plane. The result (i.e., nearest plane) supplies
us to infer the class (status) of current traffic.

From (8), we can obtain (11) for congested traffic as

0 = 98, 02+8, 5∗Volume−2, 5∗Speed−Occupancycongested,

dcongested

=
∣∣98.02−8, 5∗Volume−2, 5∗Speed−Occupancy∣∣√

8, 52+2, 52+12
.

(11)

From (9), we can obtain (12) for flow traffic as

0 = 0, 05+0, 3∗Volume−0, 004∗Speed−Occupancyflow;

dflow

=
∣∣0, 05−0, 3∗Volume−0, 004∗Speed−Occupancy∣∣√

0, 32+0, 0042+12
.

(12)

From (10), we can obtain (13) for dense traffic as

0 = 34.5+0, 58∗Volume−0, 7∗Speed−Occupancydense,
ddense

=
∣∣34.5−0, 58∗Volume−0, 7∗Speed−Occupancy∣∣√

0, 582 + 0, 72 + 12
.

(13)

(2) Estimating Occupancy without Error Prediction (EO). In
EO, linear regression (6) is used and error is assumed as zero.
Using this assumption occupancy estimator can be calculated
for each simulated traffic condition (8), (9), (10) using the
real speed and real volume. After acquiring these estimators,
they are compared with the real occupancy. The one nearest
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Figure 10: Composite regression planes of all traffic.

to real occupancy becomes the result of our traffic flow
condition.

(3) Estimating Occupancy with Error Prediction (EOwEP):
Another method for finding the traffic flow class is extended
version of EO. This method calculates occupancy estimators
by adding the predicted error values.

EOwEP depends on the training data values and their
residuals. Nearest point is found by measuring L2 distance
between real traffic data point and CORSIM simulated data
points from each traffic condition. The residual of the found
point is assumed to approximate our error. As a result,
occupancy estimator for that condition can be determined.
So the obtained equation as

Occupancycongested = 98, 02 + 8, 5∗ Volume− 2, 5

∗ Speed + resi,
(14)

where i is the nearest point, found by (15), to the real data
point among the congested training data points

Min
[
(Voli − Vol)2 +

(
Speedi − Speed

)2 + (Occi −Occ)2
]
.

(15)

4.3. Support Vector Machines. As mentioned in background,
SVM is generally applied to binary classification problems.
Since the addressed problem is mapping the input data into
one of three flow conditions, SVM can be seen inapplicable
at first. However, without changing its calculation style, SVM
can also be used inmulticlassification problems. The idea lays
behind multi classification is just using more than one SVM
and classifing the data according to the outputs of multiple
SVMs. We use our two novel approaches for Multiple SVM.

Multiclassification with One-Against-All Method (OAAM).
The designated architecture (our novel approach) for this
method is composed of three SVMs. Each SVM represents
one of the traffic flow conditions. Detector values can
be fed into each SVM, respectively. The bipolar output
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BPNN Algorithm;
(i) Initialize weights (vi, j , w j,k) with small random values
(ii) Broadcast the input data to the input layer xi

Feed-forward phase is starting here;
(i) Calculate the hidden layer unit signals

(“f ” is sigmoid function in our work)

zj in =
n∑
i=1
xivi j

z j = f (zj in) = 2
1 + e−z j in

− 1

(ii) Calculate the output unit signal

yk in =
p∑
j=1

zjwjk

yk = f (yk in) = 2
1 + e−yk in

− 1

Backpropagation phase is starting here;
(i) Calculate the residual. By using expected value for output signal (tk).

δk = (tk − yk)∗ f ′(yk in) = (tk − yk)∗
(
1
2
[1 + f (yki n)][1− f (yk in)]

)

Δwjk = αδkzj
where α is learning rate. In the learning phase, Δwjk is updated according to learning rule.

(ii) Then calculate reflectance of the residuals and propagate it to the input weights.

δj =
m∑

k=1
δkwjk ∗ f ′(zj in)

Δvi j = αδjxi
(iii) All weights are updated with learning rule (i.e., gdm/scg).

wjk(new) = wjk(old) + Δwjk

vi j(new) = vi j(old) + Δvi j
(iv) Test the stopping condition (i.e., reaching to “goal”; predefined Mse —mean square error- of the total residuals)

Algorithm 1

[“+1” (Class 1), “−1” (Class 2)] indicates if the input data
belongs to this SVM or not.

For modeling OAAM, data is acquired from TSIS 5.1.
Decision is made through. “KKT (Karush-Khun-Tucker
method for minimizing Quadratic Problem solution for
SVM) [45] ”.

min
{
1
2
‖W‖2

}
. (16)

(a) Congested SVM (C-SVM). In the training, C-SVM target
is trained with “+1” whereas the other SVM targets are
trained with “−1”. Plane for C-SVM can be shown in
Figure 11. Its equation is

D
(
vol, spd, occ

) = −0.1235∗ vol−0.0443∗ spd + 0.1052

∗occ− 0.9996.
(17)

(b) Dense SVM (D-SVM). In the training, D-SVM target is
trained with “+1” whereas the other SVM targets are trained
with “−1”. Plane for D-SVM can be shown in Figure 12. Its
equation is

D
(
vol, spd, occ

) = 2.6577∗ vol− 1.7462∗ spd− 0.2456

∗ occ− 0.9998.
(18)

(c) Flow SVM (F-SVM). In the training, F-SVM target is
trained with “+1” whereas the other SVM targets are trained
with “−1”. Plane for F-SVM can be shown in Figure 13. Its
equation is in (19);

D
(
vol, spd, occ

) = 0.0105∗ vol + 0.0788∗ spd − 0.3218

∗occ + 1.0003.
(19)

After training is done, each member of Multiple-SVMs
has its own linear planes for OAAM. In order to get the
correct class of the queried data is just easy as to look at
the responses of each SVMs. The “+1” response of the SVM
clarifies the class of the data. For instance if F-SVM’s response
is “+1” (i.e., the others are expected as “−1”) then the class
of the data belongs to flow traffic.

However, this is not sufficient alone. Following cases
must be taken into account and supplemented approaches
must be applied in these conditions.

(i) If at least two SVMs produce output “+1”, then the
one with the longest L2 distance from data point
to its own SVM plane can be picked out. Since the
furthest distance from the data point to plane exposes
the stricter and more accurate data for current traffic
flow condition, we choose the furthest one.

(ii) If all SVMs produce output “−1”, the one with the
shortest L2 distance to SVM plane must be chosen.
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Figure 11: Congested Traffic Plane for C-SVM of OAAM.
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Figure 12: Dense Traffic Plane for D-SVM of OAAM.

Producing output “–1” implies that the data does not
belong to the current SVM’s traffic condition. Since,
the shortest distance from data point to SVM plane
is the nearest one to “+1” (Class 1), we can pick this
SVM out as our desired class.

Multiclassification with Binary Comparison (BC). Our other
novel approach applied to classify our data is again composed
of three SVMs. However, it can be distinguished from the
OAAM method by its architecture. In BC method, each
SVM is responsible for the following binary combinations,
respectively; (Congested, Dense), (Congested, Flow), and
(Flow, Dense). This multi classification method depends
on basic voting principle. There exist three candidates (i.e.,
Congested, Flow, and Dense traffic conditions) and three
voters (each SVM). The one among the candidates wins the
election if it gets the most votes from voters.
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Figure 13: Flow Traffic Plane for F-SVM of OAAM.

(a) Congested-Dense (CD-SVM). In the training, CD-SVM
target “+1” indicates that data belongs to Class 1 (i.e.,
congested traffic). The other alternative of “−1” indicates
that the data belongs to Class 2 (i.e., dense traffic).

So the voter gives its vote to Congested candidate if its
output equals “+1”. In adverse condition, it gives to Dense
candidate. Figure 14 shows the decision plane for CD-SVM.
The plane equation is

D
(
vol, spd, occ

) = −0.0642∗ vol− 0.0440∗ spd− 0.0041

∗ occ + 1.8692.
(20)

(b) Congested-Flow SVM (CF-SVM). In the training, CF-
SVM target “+1” indicates that data belongs to congested
traffic. The other alternative of “−1” indicates that the data
belongs to flow traffic. Figure 15 shows the decision plane for
CF-SVM. The plane equation is

D
(
vol, spd, occ

) = −0.0044∗ vol− 0.0160∗ spd + 0.0711

∗ occ−0.9998.
(21)

(c) Flow-Dense SVM (FD-SVM). In the training, FD-SVM
target “+1” indicates that data belongs to flow traffic. The
other alternative of “−1” indicates that the data belongs to
dense traffic. Figure 16 shows the decision plane for FD-
SVM. The plane equation is

D
(
vol, spd, occ

)=0.0105∗ vol + 0.0788∗ spd− 0.3218

∗ occ +1.0003.
(22)

A supplemented way must be found for handling the
situation when all candidates have the equal vote. Using the
longest distance from data point to each SVM’s plane will
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Figure 14: Plane of CD-SVM for BC.
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Figure 15: Plane of CF-SVM for BC.

give us the most accurate class for that data point. Then the
SVM with the longest distance will choose the leader class.

Backpropagation Neural Network Architectures . The network
architecture in our work is selected as three-layered back-
propagation neural network (BPNN). three groups of data
are used as input. The first group is fed into the network as
training data set. The next one is used as verification data
set. The last one is used as query set (i.e., test set) to measure
the classification performance of the neural net.Training data
set is obtained from TSIS 5.1 simulator. This data is verified
through the verification set also gathered from the simulator.
The test set is gathered from single sensor planted on the
2.Ring road in Istanbul. Test set indicates real data. Our
model is trained and verified through the simulated data and
tested with real traffic information.In the learning phase we
have used gradient descent with momentum (Gdm) update
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Figure 16: Plane of FD-SVM for BC.

function in (23) (i.e., learning rule). This base rule is used for
all architectures

wjk(t + 1) = wjk(t) + αδkzj + μ
[
wjk(t)−wjk(t − 1)

]
,

vi j(t + 1) = vi j(t) + αδjxi + μ
[
vi j(t)− vi j(t − 1)

]
.

(23)

In the learning phase, we have used the algorithms of only
Gdm, Levenberg-Maquardt with Gdm and Scaled Conjugate
Gradient with Gdm [52]. Matlab 7.6.0 (Rev.2008a) Neural
Network Toolbox where our related work algorithms and
learning rules are ready is used.

We have used default max iteration as 1000, Mse goal
value as 10−4, and verification iteration count as 6. The
network architecture is performed as three-layered models
of 3-10-3, 3-20-3, and 3-50-3. Since one hidden layer usage
is almost identical with two hidden layered architecture, we
prefer to use single hidden layer model. For the connec-
tions lying between Input/Hidden Layers are trained with
LogSig or PureLin activation functions. LogSig activation
function normalized the input and applies Sigmoid. Pure
Linear activation function transfers input to hidden.We give
the performance analysis of our neural net architectures
in Table 1. Gray labeled values are average performances
obtained from 100 runs of neural net models. According
to the average performances, our 3-20-3 backpropagation
model gives the best result for classification.

5. ExperimentalWork

Turkey General Directorate of Highways has carried out
works in managing traffic in Istanbul hence traffic manage-
ment center is planned to be opened at the end of December
2007. The system is installed by Turkey’s leading electronics
company ASELSAN Inc. In Istanbul traffic management
system, microwave radar type detectors are used for occu-
pancy, speed, and traffic volume measurements. There exist
almost 30 radio transmission microwave sensors along the
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Table 1: Backpropagation Neural Net Performances.

GDM LM SCG

LogSig-PurLin PurLin-PurLin LogSig-PurLin PurLin-PurLin LogSig-PurLin PurLin-PurLin

BackPrp 3-10-3

Cong 100 100 0.9604 0.9472 100 0.4073

Dense 0.5733 0.5612 0.5134 0.5671 0 0

Flow 0.9502 0.9189 0.9210 0.9470 0 0.062

Total (Rate/Iteration) 0.9678/1000 0.9258/1000 0.9352/360 0.9170/5 0.0068/156 0.0615/15

BackPrp 3-20-3

Cong 0.6227 0.9472 100 0.9393 100 0.9393

Dense 0.6914 0.6878 0.4677 0.6778 0.8531 0.6725

Flow 0.9804 0.8950 0.7492 0.8967 0.9914 0.9468

Total (Rate/Iteration) 0.8785/1000 0.9192/1000 0.7367/168 0.9102/4 0.9794/301 0.9512/23

BackPrp 3-50-3

Cong 0.9721 0.9393 0.9732 0.9893 0.9789 0.9472

Dense 0.4552 0.6686 0.1256 0.6800 0.6318 0.6711

Flow 0.9571 0.9869 0.9899 0.9907 0.9879 0.9867

Total (Rate/Iteration) 0.9120/1000 0.9265/1000 0.9058/35 0.9803/3 0.9595/136 0.9512/16

Table 2: Estimation Performance of Our Model for Each Traffic
condition.

Method Flow Dense Congested

Analytic Geometry 99% 84% 70%

Without Error Prediction 100% 78% 35%

Error Prediction 99% 24% 46%

SVM with One-Against-All Method 100% 46% 97%

SVM with Binary Comparison 100% 74% 100%

BackPrp NN-SCG (3-20-3) 99.14% 85.31% 100%

BackPrp NN-LM (3-50-3) 99.07% 68% 98.93%

BackPrp NN-GDM (3-10-3) 95.02% 57.33% 100%

2.Ring Road. The measurements recorded at critical points
on the road are transmitted periodically to the management
center [53].

Occupancy, speed, and traffic volume measurements
are both recorded in the database, and the traffic status
according to these measurements is mapped to color codes
and displayed on a large screen. Whenever any congested
state or dense state occurs along the road, alarms with
severity levels are generated and the operators are informed.
Information regarding the traffic status is also displayed on
LED-based Variable Message Signs (VMS) on the road.

During one day, data from 7 different microwave sensors
is acquired every 60 seconds periodically. Occupancy, volume
and speed measurements are shown in Figure 17. Videos
from the traffic surveillance cameras, which are capable of
watching the places that microwave sensors are installed,
are also captured in order to synchronize them with the
sensors measurements. Then, measurements are grouped as
congested, dense and flow according to these videos. [We
have used training data set of total size 18.000 x 3 (i.e., each
traffic condition has balanced data subset size of 6000 x 3)
and we have used testing data set of total size 55.000 x 3, and
3 indicates SVO values]. These data sets are used to for the
Table 2.
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Figure 17: Real Traffic data from 2.Ring Road in Istanbul (by 7
sensors).

6. Conclusion

Eight methods discussed above have applied the one day data
captured from 7 sensors on 2.Ring Road in Istanbul. Their
performance for each traffic condition can be seen in Table 2.

Although our novel approaches OAAM and BC for Mul-
tiple SVM have good performances, our BPNN architecture
of 3-20-3 with SCG (3-20-3) is better than all other seven
methods. As a result of this comparison, this method has
chosen and installed for the evaluation of traffic condition in
Istanbul traffic management center (at Istanbul 2.Ring road).

According to the result it calculates, our algorithm colors
the road map for each status changes on GIS projection
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screens. Once congested level is detected, it produces an
alarm with high severity to inform the operators. Never-
theless, dense level also creates alarm with lower severity.
After verification of this assessment by operator, VMS can be
supplied by messages to inform drivers about the road flow
condition.
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