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An outlier elimination algorithm for curve/surface fitting is proposed. This two-stage hybrid algorithm employs a proximity-
based outlier detection algorithm, followed by a model-based one. First, a proximity graph is generated. Depending on the use
of a hard/soft threshold of the connectivity of observations, two algorithms are developed, one graph-component-based and the
other eigenspace-based. Second, a model-based algorithm, taking the classification of inliers/outliers of the first stage as its initial
state, iteratively refits and retests the observations with respect to the curve/surface model until convergence. These two stages
compensate for each other so that outliers of various types can be eliminated with a reasonable amount of computation. Compared
to other algorithms, this hybrid algorithm considerably improves the robustness of ellipse/ellipsoid fitting for scenarios with large
portions of outliers and high levels of inlier noise, as demonstrated by extensive simulations.

1. Introduction

Curve and surface fitting has a broad range of applications.
For example, in computer vision, curves and surfaces are
important geometric primitives and shape descriptors. As
a result, curve and surface fitting is commonly carried out
in applications such as object reconstruction and feature
extraction. In related fields such as image processing, pattern
recognition, and machine learning, it is consequently an
essential tool.

As an extensively studied field, curve and surface fitting
has a rich literature. Various algorithms have been proposed
from several different perspectives. Most of the algorithms
are based on minimizing an l2 norm, which results in least-
squares fitting methods. There are two main categories of
least-squares fitting algorithms, algebraic fitting [1–3], and
geometric fitting [4–6], depending on the definition of error
distances.

Least-squares methods are efficient and accurate in situa-
tions in which observations are accurate or are contaminated
by a moderate amount of noise. However, when the noise
level is high or when the set of observations contains
wildly erroneous observations, which is often the case when

dealing with real environments, least-squares algorithms
break down, and more robust algorithms are required to
accomplish the task.

Under those circumstances, l1 distance is often employed
instead of Euclidean distance to tackle the outliers. There is
a considerable literature focusing on this case as well. Al-
Subaihi and Watson [7] proposed a series of curve fitting
algorithms using the l1 norm and a Gauss-Newton step,
which includes examples of fitting lines in three-dimensional
space, as well as fitting circles and ellipses in two-dimensional
space. Al-Subaihi [8] further investigated an algorithm that
fits circular arcs to observations using the l1 norm. As
shown by numerical examples, the algorithm can produce
satisfying results with the presence of a small portion of
extreme outliers. Although fitting curves and surfaces using
the l1 norm is an effective way of dealing with outliers, it
still requires a concrete model for the curve and surface
to be fitted. In particular, a specific algorithm has to be
designed for each model based on its mathematical form,
typically yielding high computational cost. As a result, it is
still desirable to remove the majority of the outliers from
the observations first without the knowledge of the specific
model, and then to fit the observations to the model using
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Figure 1: Two different types of outliers. Proximity-based methods
are good at detecting outliers similar to point A, while model-based
methods can better detect outliers similar to point B.

more commonly used and efficient algorithms, such as least-
squares.

Being a well-developed field itself, outlier detection
has been widely studied from very different perspectives,
such as statistics, neural networks and machine learning.
Hodge and Austin [9] provided a comprehensive survey
of outlier detection algorithms. Among all these methods,
the proximity-based outlier detection algorithms have the
advantage that they do not require prior knowledge about
the distribution of the observations. The most widely applied
group of proximity-based algorithms is k-Nearest Neighbor
(k-NN). For example, Byers and Raftery [10] proposed a
method that determines the distance Dk from an observation
to its kth nearest neighbor and compares it with a threshold
d. If Dk > d, then the observation is classified as an
outlier. In 2000, Ramaswamy et al. [11] proposed a similar
algorithm that ranks the observations according to Dk in
descending order and marks the top n observations in
the ranking as outliers. In addition, Knorr and Ng [12]
introduced an algorithm that classifies an observation as an
outlier if less than m of its k nearest neighbors lie within
a disk of radius d. Hautamäki et al. [13] proposed an
algorithm based on a weighted directed graph (k-nearest
neighbor graph). The graph is constructed in such a way
that each vertex (observation) has k directed edges to its
k nearest neighbors with edge weight being the distance
between the observation and its neighbor. Any vertex that
has indegree less than a threshold T is classified as an outlier.
k-NN flavored algorithms can be applied to various outlier
detection problems, for example, spatial outlier detection
[14].

Despite a large number of proximity-based algorithms
available, we still need to design a new outlier elimination
algorithm in this work, due to the special properties of
the curve and surface fitting problem. Proximity-based
algorithms alone are not sufficient to eliminate all the
outliers for the fitting problem. One of the difficulties is
that the outliers and inliers usually intertwine in a complex
manner, as shown in Figure 1. Some of the outliers are
distant from the curve (like point A), yet others may fall
closer to the curve (like point B). The outlier detection
algorithms based on proximity may not be effective for
detecting the B-type outliers. Moreover, even for A-type
outliers, k-NN flavored algorithms fail in certain scenarios
(see Section 3 for further details).

In order to better handle the B-type outliers, we may
resort to model-based outlier detection algorithms like

random sample consensus (RANSAC) [15]. RANSAC works
nicely in various applications, such as [16], in which the
percentage of outliers is relatively low and the inliers have
little noise. However, with a high percentage of outliers, when
the number of the parameters of the model is large, even
if the inlier noise is negligible, the computational cost of
RANSAC looms as a serious problem. On defining w as the
portion of inliers, d as the minimum number of observations
needed to fit a model, and p as the probability of successfully
finding the correct model after running RANSAC k times, we
have the following relationship

p = 1− (1−wd)
k
. (1)

When w is small (the percentage of outliers is high), we
need k to be large in order to have a sufficiently high
p. Unfortunately, the increase in k with respect to d is
exponential. If we assume w = 0.5, to guarantee p = 0.99,
we need k = 16 for a simple two-dimensional straight line
model; yet for ellipse fitting, where d = 5, we need k = 146.
For an ellipsoid (d = 9), we need k = 2356. Moreover,
when d is large, the fitting algorithm itself becomes rather
expensive to run even once.

In one of the latest variations of RANSAC [17], the
number of iterations needed can be dramatically decreased
by replacing pure random sampling (which is the origin of
the name RANSAC) by guided sampling, in which promising
“inliers” are given more weight at resampling. Moreover,
unlike the vanilla version of RANSAC, which uses the
number of observations in accordance to the suggested
model to evaluate its goodness, a more robust measure,
(weighted) median absolute deviation (MAD/WMAD) is
introduced to reduce the influence of outliers on model
evaluation. In terms of total numbers of fittings needed, this
algorithm performs very well in scenarios of low inlier noise.
However, the algorithm is susceptible to falling into local
minima and generating models completely different from the
desired one. This phenomenon is aggravated when the level
of noise on the inliers is high and the portion of outliers is
large. The details of this phenomenon can be found in the
simulation results of Section 5.

Another approach to robustly fit curves and surfaces
is by enumerating all possible solutions. For example, in
the case of ellipse fitting, Five Point Fit Ellipse Fitting
(FPFEF) [18] is an algorithm in which all five-tuples of
observations are selected and fit by ellipses, the median of the
parameters of which being the final fitting result. In terms of
robustness, this algorithm performs competitively; however,
the computational complexity is essentially combinatorial,
which is unacceptable when the number of parameters is
high. Specifically, for a model with d parameters, suppose
the total number of observations (including both inliers and
outliers) is K ; then the total number of iterations needed for
FPFEF is (

K
n

)
= O(Kn). (2)

For a reasonable ellipse fitting problem with 100 observa-
tions, the total number of parameters is n = 5, and thus
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we need approximately 75 million iterations to enumerate
all 5-tuples in order to fulfill the requirement of the FPFEF
algorithm.

To counter these problems, in this paper, we develop
a two-stage hybrid outlier detection algorithm for curve
and surface fitting that combines the proximity-based and
model-based outlier detection algorithms. First, with the
help of algebraic graph theory [19], we employ an outlier
detection algorithm based on the graph formed by the obser-
vations, using their proximity information. Second, after
reducing the portion of outliers within the remaining set
of observations, we employ a model-based outlier detection
algorithm to efficiently refine the results. In the first stage, a
large portion of the most distant, isolated outliers, which can
be a great hazard to model-based outlier detection methods,
are detected and eliminated. In the second stage, the subtler,
closer outliers that go against the curve/surface model are
detected, and some of the misclassified inliers are retrieved.
These two stages compensate for each other to form a more
efficient and accurate outlier detection algorithm. To our
knowledge, there are no such hybrid outlier elimination
algorithms discussed in the literature for curve/surface fitting
on point cloud data.

The structure of the paper is as follows: in Section 2,
the model of our outlier detection problem is specified
with several important assumptions. Section 3 describes our
proximity-based outlier detection algorithm, the first stage
of our hybrid outlier detection algorithm. By employing
hard and soft thresholds, the graph-component-based and
eigenspace-based algorithms are described, respectively. As
a necessary supplement, the estimation of the length of a
curve based on proximity information is also introduced in
Section 3. Section 4 summarizes the model-based outlier
detection algorithm. The simulation results, taking ellipse
and ellipsoid fitting as examples, are described in Section 5.
Section 6 concludes our work.

2. Model and Assumptions

First, we need to specify the model by stipulating a few
assumptions about the data, both for inliers and outliers.
Let M be a d-dimensional manifold with finite volume V
in a d∗-dimensional space Rd∗ (d ≤ d∗). Specifically, an
ellipse is a 1-dimensional manifold in 2-dimensional space.
We define the inliers as observations that are drawn from M
independently with a certain distribution, and then possibly
corrupted by a small amount of noise. Due to the noise, the
inliers might fall outside of M. Outliers are different in the
sense that they are at a larger distance from M. We define
δ-outliers as outliers whose distance to M is at least δ in the
space Rd∗ .

In addition, we need to assume that the inliers are the
majority of the observations, more than 50% of all the
observations.

The basic idea of our proximity-based outlier detection
is that if the inliers are all distributed over a manifold
M of finite volume, then when the number of the inliers
N is sufficiently large, with high probability, the distances
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Figure 2: k-NN algorithm failure example.

between inliers become sufficiently small such that if we
connect all the observations within distance δ, the inliers will
form a strongly connected component in a proximity graph.
Therefore, by selecting the largest strongly connected com-
ponent formed by connecting observations within radius δ,
we can effectively detect δ-outliers, that is, observations at
least δ-distant from M.

To tackle the outliers that lie close enough to M (distance
less than δ), we use a model-based algorithm so that only the
observations that agree with the model of M are classified as
inliers. Since the proximity-based outlier detection algorithm
can guarantee that all remaining outliers are at most δ distant
from M, it is rather easy to use implementation-friendly
l2 loss functions for our model-based algorithm, instead of
resorting to other more computationally costly algorithms.

3. Proximity-Based Algorithm

Although there are many proximity-based algorithms avail-
able, they may not be appropriate in the context of
curve/surface fitting. Take the vanilla version of the k-NN
algorithm [10] as an example.

In Figure 2, a collection of observations (inliers) on a
circle together with a small cluster of outliers are fed to the
k-NN outlier elimination algorithm. Suppose we set k = 2.
Then as shown in the left hand side of the figure, when the
radius of d is set to be large enough so that all observations
on the circle are classified as inliers, the three outliers are also
classified as inliers.

On the other hand, as illustrated in the right-hand side of
Figure 2, when d is sufficiently small so that the observations
in the small cluster disqualify as inliers, so do all the true
inliers. In this scenario given k = 2, no matter how we select
d, there is no possible way to eliminate the outliers.

However, if we take into consideration the connectivity
of graph components formed by links within radius d in the
case shown in the left hand side of Figure 2, then the entire
set of observations can be easily separated into two connected
components, one much larger than the other, which can
be used as an argument for classifying the observations
in the small cluster as outliers. Therefore, we need a
proximity-based algorithm that takes into consideration the
connectivity information among observations in a more
holistic way beyond the k-NN flavored algorithms, which
only use information of local neighborhoods of observations.
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Data: K observations {(xi, yi)}Ki=1

Result: I, indices of inliers in the dataset
begin

forall the i, j ∈ 1, 2, . . . ,K do
Qij ← Euclidean distance between (xi, yi) and (xj , yj)

end
Estimate the curve length L based on Q according to Algorithm 2
forall the i, j ∈ 1, 2, . . . ,K do

if Qij − αL > 0 then
Wij ← 0, no edge between vertexes i and j

else
Wij ← 1, edge added between vertexes i and j

end
end
Get the set of connected components {Ck = (Vk ,Ek)}Sk=1 of the graph corresponds to matrix W
I ← {i : i ∈ Vk , |Vk| > βK}

end

Algorithm 1: Graph-component-based algorithm.

Consequently, it is desirable to develop a graph-based
algorithm to fully exploit the proximity information for
outlier detection.

3.1. Graph-Component-Based Outlier Detection

3.1.1. Detecting Outliers from Graph Structure. As described
in Section 2, when the number of inliers is sufficiently
large, with high probability, the inliers will form a strongly
connected graph component. On the other hand, the δ-
outliers, distant from the inliers as well as other outliers, will
not form connected components with many vertices. As a
result, we can effectively detect δ-outliers.

For the special case when M is a closed curve, we have
been able to derive a bound on the probability of detecting
δ-outliers. It shows that on a closed curve of circumference L,
if the N independent inliers are uniformly distributed on the
curve, then the probability that they fail to form a strongly
connected graph component (with all points within distance
δ = αL connected) decays asymptotically as O(Ne−αN ). The
details of the bound is described as follows.

On a closed curve of length L, on which a direction is
defined, if there are N independent uniformly distributed
observations, then with probability no less than 1 − ε, each
observation has a neighbor within on-curve distance (curve
length) δ = αL (0 < α < 1) along the curve direction, where

ε = Ne−αN

1− α
. (3)

The derivation of the bound can be found in Appendix A.
According to this bound, with probability 1 − ε, each

observation on the curve has a neighbor within on-curve
distance δ = αL along the curve direction, and thus its
Euclidean distance to its neighbor is less than δ. So, each
observation is connected to its neighbor. Therefore, in the

proximity graph formed by connecting all neighbors within
radius δ, there exists a single loop that connects all the
observations. As a result, the generated graph is strongly
connected. Thus, for a given ε, by properly selecting δ
according to the bound, we can effectively eliminate δ-
outliers by simply classifying large connected components as
inliers and others as outliers.

The graph-component-based outlier detection algorithm
for curves is based on the reasoning above. After selecting
an appropriate value of α, and taking δ = αL, we form a
proximity graph by connecting observations if the Euclidean
distance between them is less than δ. Then, we classify all
the connected components that have less than βK vertices
as outliers, with K being the total number of observations.
Practically, β ranging from 0.05 to 0.1 is an appropriate
choice. Algorithm 1 summarizes the details of detecting
αL-outliers for a closed curve of circumference L in 2-
dimensional space.

It is worth pointing out that the length L of the curve, or
more generally, the volume of M needs to be estimated from
the observations. This is described in Section 3.1.2.

3.1.2. Estimating the Volume ofM. The efficacy of our outlier
detection algorithm is directly related to the choice of δ.
A small value of δ leads to small probability of forming a
strongly connected component of all the inliers, yet a large
value of δ results in tolerance to wilder outliers, which is
rather disastrous to the second stage model-based outlier
detection algorithm.

The choice of δ is directly related to the volume of the
manifold M in which the inliers reside. In order to select a
proper δ, one needs to have an estimate of the volume V
of M, without even having an accurate model fitted to it.
Specially, in the one-dimensional case, the length of the curve
L is essential to outlier detection. As a result, we provide an
estimate ofthe volume of M as follows.
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Suppose M is a d-dimensional manifold, and that
N observations are drawn independently from M. If the
probability density of the observations is given by ρ(x), x ∈
M, then

P
(
Nearest neighbor distance ≤ y

)
≈ (N − 1)V

(
B(d)
y

) ∫
M ρ2(x)dx,

(4)

where V(B(d)
y ) stands for the volume of a d-dimensional ball

with radius y. Specially, if the observations are uniformly
distributed, then

P
(
nearest neighbor distance ≤ y

) ≈ (N − 1)V
(
B(d)
y

)
V

.

(5)

In the special case in which a curve of length L is considered,
and in which N observations are independent and uniformly
distributed on the curve, then

L ≈ 2(N − 1)y
P
(
nearest neighbor distance ≤ y

) . (6)

The details of the estimates (5) and (6) can be found in
Appendix B.

In practice, the distribution P(nearest neighbor distance
≤ y) can be estimated from the histogram of the nearest-
neighbor distances of each observation (or resampled obser-
vations, if performed in a bootstrapping manner). To ensure
that all the nearest-neighbor distances are between the
inliers, it is desirable to truncate the tail of the histogram.
In the worst case, we can cut off 50% of the nearest-neighbor
distances to roughly ensure that no outliers mix in. Then the
value of N is simply the remaining number of observations
after cutting off the tail. With properly selected quantile y,
the curve length L can be readily estimated.

The reason that we only use nearest-neighbor distances in
our estimate is because nearest-neighbor distances are fairly
good approximations (from above) to the true distances on
the manifold. Other distances among the inliers could be
informative, yet not compatible with our measure on the
manifold.

If the inliers are contaminated by noise, then even the
nearest-neighbor distances are not very accurate estimates of
the distances on the manifold. Estimates based on (6) could
deteriorate. Estimates given by (6) in the noisy case are larger
than the true volume of the manifold.

The algorithm for estimating the length of a curve is
summarized in Algorithm 2. The basic idea is to first take a
vector m of nearest-neighbor distances, sorted in ascending
order. Then, cut off 50% of the tail of the vector, and use
the histogram of the remaining nearest-neighbor distances
to estimate the curve length L according to (6).

3.2. Eigenspace-Based Algorithm. In practice, graph-
component-based outlier detection works very well when
there is no noise or a very small amount of noise on the
inliers, since in this case, our estimate of the volume of M is
very accurate and we are able to choose δ properly. However,

(a)

(b)

(c)

Figure 3: Different choices of connection radius lead to different
results. The figure on the left depicts the situation in which the
radius is so small that even the inliers do not connect sufficiently
with each other. The figure on the right illustrates the case in which
the radius is so large that almost all the observations are connected
with each other, and thus makes it impossible to distinguish inliers
from outliers. The figure in the middle shows that with a properly
selected radius of connection, the inliers form a large connected
component, leaving most of the outliers unconnected.

due to the noise on the inliers, we usually cannot determine a
very accurate estimate of the size of M. In this case, if a hard
connection rule is applied to generate the graph, it might lead
to an over-connected graph in which too many outliers are
connected to inliers, or an under-connected graph, in which
the inliers are isolated in several pieces, as shown in Figure 3.

To solve this problem, we choose to use a soft threshold
(heat kernel) to determine the connectivity among observa-
tions, and then analyze the eigenspace (ideally, the null space)
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Data:Q, with Qij being Euclidean distance between (xi, yi) and (xj , yj)
Result: Curve length estimate L
begin

for i ∈ 1, 2, . . . ,K do
mi ← min{Qij , j ∈ {1, 2, . . . ,K} \ {i}}

end
m′ ← sort m in ascending order
m∗ ← take the first �K/2	 elements of m′

q ← p-quantile of m∗

L← 2q(�K/2	 − 1)/p
end

Algorithm 2: Circumference estimation of a curve (one dimensional manifold).

of the graph Laplacian of the resulting weighted undirected
graph to detect outliers.

3.2.1. Constructing Proximity Graph and Its Laplacian.
According to algebraic graph theory, the connectivity infor-
mation about a graph is reflected in the graph Laplacian and
its corresponding eigenvalues and eigenvectors. Instead of
using an unweighted graph with a hard connection rule as
in the case of the previous subsection, the graph Laplacian is
constructed using heat kernels in the following manner:

(1) form a matrix Q with Qij being the Euclidean dis-
tance between the observations (xi, yi) and (xj , yj);

(2) form a fully connected proximity graph with edge

weight Wij = e−Q
2
i j /t (heat kernel);

(3) construct the graph Laplacian matrix: L = D −W ,
where D is a diagonal matrix with its diagonal entries
as column sums (or row sums) of W ;

(4) compute eigenvalues and eigenvectors for the gener-
alized eigenvector problem, Lf = λDf .

Then, the set {λ | λ ≈ 0, λ ∈ {λi}Ki=1} and its correspond-
ing eigenvectors form the cornerstone of our proximity-
based outlier detection algorithm. The algorithm for con-
structing the graph Laplacian is summarized in Algorithm 3.

The success of proximity-based outlier detection depends
heavily on the choice of the “radius of connection” (i.e.,√
t in the heat kernel). Thus, the value of t is of essential

importance. Yet since the heat kernel is a soft threshold,
it is more tolerant to this choice compared to the choice
of δ in the graph-component-based algorithm. Still, the
choice of t is a rather delicate problem. According to
algebraic graph theory, t is closely related to the algebraic
connectivity of the graph (the smallest nonzero eigenvector
of the graph Laplacian). Here, we present an empirical rule
for determining a good value of t. Sort all the elements of Q
in ascending order and denote the resulting vector as q. Then
take the pKth element of q as

√
t; that is, assign

√
t as the

p-quantile of the distribution of all the elements of Q. This
bears some similarity to the way we estimate L and select δ.

Intuitively, most of the small elements of Q are com-
posed of the distances between inliers, according to our
assumptions. By taking the pKth element of q as

√
t, we

Data: K observations {(xi, yi)}Ki=1

Result: The eigenspace of the Graph Laplacian L
begin

forall the i, j ∈ 1, 2, . . . ,K do
Qij ← Euclidean distance between (xi, yi) and (xj , yj)

end
Choose radius of connection t based on Q
forall the i, j ∈ 1, 2, . . . ,K do

Wij ← e−Q
2
i j /t

end
D ←diag(1TW)
L← D −W
Solve Lf = λDf

end

Algorithm 3: Construct the graph Laplacian.

approximately guarantee a connected subgraph among the
inliers of average degree p − 1, if we assume e−1 is the
threshold for a “connection”. Empirically, p = 4 works well.

3.2.2. Selecting Outliers in Eigenvectors. Given an appropriate
value of t, the inliers form a strongly connected component,
leaving most of the outliers loosely connected to it and each
other. As a result, with a proper interchange of rows and
columns, the matrix Q, and thus the Laplacian matrix L,
is close to a block diagonal matrix. Each block corresponds
to a strongly connected component, with the largest one
corresponding to the inliers.

For each block, there is an eigenvalue approximately
equal to zero, and the corresponding eigenvector is almost
a binary vector composed of 0’s and 1’s, with only the
elements aligned with the block being 1’s. Here, we assume
that the l∞ norms of all the eigenvectors are normalized
to 1. Among all the approximate binary eigenvectors that
correspond to the close-to-zero eigenvalues, some contain
more 1’s than others. The key step of outlier elimination is to
eliminate those observations that correspond to the nonzero
elements of binary eigenvectors with very few 1’s, because
the components composed of these observations are very
weakly connected to other components, and thus are more
likely to be outliers.
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Data: Eligible eigenvectors {fi}li=1, fi ∈ Rk

Result:O, indices of outliers in the set of observations
begin

foreach fi, i ∈ 1, 2, . . . , l do
Initialize:

I′i ← indices of randomly chosen
⌊
K

2

⌋
elements of fi

Ii ←null
while Ii /=I′i do

Ii ← I′i
α1/4 ← 25% quantile of {fi, j∈Ii}
μ← 50% quantile of {fi, j∈Ii}
α3/4 ← 75% quantile of {fi, j∈Ii}
I ← [μ− γ(μ− α1/4),μ + γ(α3/4 − μ)]
I′i ← { j : fi, j ∈ I}

end
Oi ← { j : j = 1, 2, . . . ,K , j /∈Ii}

end
Output O ← ⋃l

i=1 Oi

end

Algorithm 4: Select outliers in the eigenvectors.

Therefore, finding outliers is approximately equivalent
to finding protruding 1’s in the eigenvectors with close-to-
zero eigenvalues. Thus, we have reduced a problem of high-
dimensional outlier detection with a complex hypothesis
into a one-dimensional outlier-detection problem. However,
since the eigenvectors that correspond to close-to-zero
eigenvalues are not perfectly binary, more elaborate methods
need to be employed to detect outliers.

First, eligible eigenvectors (approximate binary eigenvec-
tors) are selected from the collection of eigenvectors. Specifi-
cally, we take the eigenvectors that correspond to eigenvalues
less than 0.1 as the candidates. Then, keeping only the
binary eigenvectors, the “high frequency” eigenvectors are
excluded. Note that f is a “high frequency” eigenvector if
(
∑

j |f j| − |
∑

j f j|)/
∑

j |f j| is sufficiently large; that is, those
eigenvectors with both large; positive and negative elements
are excluded. After that, a one-dimensional outlier detection
algorithm is employed, as shown in Algorithm 4.

Algorithm 4 does not guarantee the “correct” result.
It can be helpful to run it several times and choose the
result with minimum intraclass deviation (as in the case of
RANSAC). However, in our simulations, we ran the routine
only once, which was good enough for our data.

4. Model-Based Algorithm

The algorithm described in the previous section uses only
the proximity information of the observations. However, it
is rather incapable of detecting type-B outliers in Figure 1,
and more specifically, outliers that lie within the range of less
than δ from M, even if they obviously deviate from the true
model.

To eliminate type-B outliers, we need to use the addi-
tional prior knowledge that the inliers are located on a
manifold with certain shape and size; for example, an ellipse.

Since we have greatly reduced the portion of outliers in the
first step, we can of course achieve this goal by running a
model-based outlier detection algorithm.

Moreover, since our proximity-based algorithm also
guarantees, with high probability, that the remaining outliers
are close enough to the true model, we can even be more
efficient by initializing our model using all the observations
classified as inliers in the first step, and iteratively eliminating
the ones whose distances to the fitted model exceeds a thresh-
old, until convergence. We can even retrieve misclassified
inliers, if any, given that they lie right on the model fitted
in the second step, the model-based algorithm.

We summarize the model-based outlier detection algo-
rithm as follows:

(1) fit a model h to the “inliers” selected by the
proximity-based outlier detection algorithm;

(2) test all the observations with respect to h, classify
the observations that saliently deviate from h (above
a threshold) as outliers and then classify other
observations as inliers;

(3) refit model h based on the updated inliers;

(4) repeat step (2) and step (3) until the classification
does not change any further.

Specifically, for algebraic fitting of curves, the second step of
the algorithm is shown in Algorithm 5.

With this model-based outlier detection algorithm, we
are able to detect most of the outliers missed in the first stage
(usually harder ones very close to the inliers), and also clear
the labels for misclassified inliers.

In addition, due to the fact that the number of outliers
is rather small for the second step, and they are all close
enough to the true model, the convergence of the second step
is usually very fast.
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Data: Inliers selected by a proximity-based algorithm, {(xi, yi)}i∈I
Result: I, indices of inliers in the data set
begin

Initialize: I′ ← I, I ←null
while I /=I′ do

I ← I′

fit a model h(xi, yi) = 0 to {(xi, yi)}i∈I
compute average fitting deviation σ =

√
1
|I|

∑
i∈I h(xi, yi)

2

I′ ← {i : h(xi, yi) < ασ}
end
Output I

end

Algorithm 5: Model-based algorithm.

5. Simulation Results

Among many curve/surface fitting problems of possible
interest, we choose ellipse and ellipsoid fitting as our
subject for simulation, because these two fitting problems
are widely useful in various application scenarios, yet are
sufficiently difficult, in terms of the number of parameters
and the computational cost for each individual fitting, so that
RANSAC is rather costly when the fraction of outliers is large.

In the outlier detection problem for ellipse and ellipsoid
fitting, we assume that there are a total number of K =M+N
observations {(xi, yi)}Ki=1 with N inliers and M outliers. The
inliers are sampled on an ellipse and then contaminated by
Gaussian noise with standard deviation σ0; and we simply
model the outliers as points on the ellipse added by a
significantly intense Gaussian noise, with standard deviation
σ1 > σ0.

Since we are interested in the case in which inliers are
contaminated by nonnegligible noise, the eigenspace-based
algorithm (which employs soft links among observations)
is used as the algorithm in the proximity-based stage. The
value of

√
t is selected as the 4Kth element of q as in the

explanation of Algorithm 3. Moreover, for the second stage of
our algorithm, we choose α = 3 in Algorithm 5 throughout
our simulation.

5.1. A Typical Ellipse Fitting with Outlier Elimination. It is of
interest to inspect a typical simulation for outlier detection
on an ordinary ellipse to see the performance of our two-
stage algorithm. In the simulation, we have N = 100
inliers and M = 50 outliers. The standard deviation of the
independent Gaussian additive noise of inliers in both x and
y directions is σ0 = 0.1, and that of the outliers is σ1 = 2.
The true ellipse has an eccentricity ε = 0.95 with semimajor
length a = 5, and takes the standard position (centered at the
origin, with semimajor axis aligned with the x axis).

The outlier detection results of our algorithm on an
ellipse are shown in Figure 4. Note that the first stage of
our algorithm makes several mistakes, with several outliers
missed (the ones inside and closely outside the ellipse) and a
few inliers misclassified (several circled observations on the

perimeter of the ellipse). These mistakes are corrected by
the second-stage model-based algorithm. And the final result
leaves us a group of purged, low-noise observations from an
ellipse.

5.2. Improvement in Performance. It is worthwhile to com-
pare the performance of fitting procedures with and without
outlier elimination for different numbers of outliers. In this
simulation, we choose N = 100, M ranging from 1 to 55,
σ0 = 0.1, and σ1 = 3, keeping the true model for the ellipse
the same as in the previous simulation.

To measure the performance of ellipse fitting algorithms,
we employ the nonoverlapped area of the fitted and the true
ellipses (normalized by the area of the true ellipse). To be
more specific, the fitting error is defined as the normalized
area difference between the true ellipse Et and the fitted
ellipse Ef :

error rate = SEt∪E f − SEt∩E f

2SEt
, (7)

where SEf ∪E f − SEf ∩E f is the area difference and SEt denotes
the area of the true ellipse. This measure is henceforth
called relative area difference. This simulation result is
shown in Figure 5. Each point in the figure is the average
performance of 200 independent trials. It is obvious that the
outlier detection algorithm effectively eliminates most of the
outliers, even when the fraction of outliers is close to 50%.

5.3. Comparison with Vanilla RANSAC. Not only does the
hybrid algorithm perform well in terms of small fitting error,
it is also attractive computationally. Given that the model is
complex enough, fitting the model to the observations can
be deemed to be the most costly step. Therefore, the total
number of times that the model fitting step is implemented
can be a good measure of computational complexity of
the outlier eliminating algorithms. A desirable algorithm
should be able to achieve a reasonably good result in a
small number of iterations. Since in the hybrid algorithm,
the first-stage proximity-based algorithm eliminates a large
portion of the wild outliers, the second stage empirically
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Figure 4: Outlier detection results for ellipse fitting. The circled
observations are classified as outliers by the algorithm. The figure
on the left demonstrates the detected outliers after the proximity-
based algorithm, in which there are several missed outliers close to
the ellipse, while a few inliers are misclassified as outliers. The figure
on the right shows that these mistakes are corrected by the model-
based algorithm.

converges very fast, and is to some extent irrelevant to
the percentage of outliers. On the contrary, to guarantee
a similar performance, the number of iterations needed
for the vanilla version of RANSAC increases rapidly as the
percentage of inliers w decreases. According to (1), given that
wd is sufficiently small, the total number of needed iterations
k satisfies

k ≈ C ·
(

1
w

)d
. (8)

Obviously when d is large (d = 5 for ellipse fitting) and w is
small, the number of iterations k can be enormous.

Therefore, we demonstrate the comparison of our hybrid
algorithm and vanilla RANSAC in two ways. First, given
a maximum number of iterations for vanilla RANSAC,
which almost ensures the same computational complexity as
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Figure 5: Comparison between ellipse fitting algorithms with and
without outlier detection using the hybrid detection algorithm.

our hybrid algorithm (both are almost constant-time), we
compare the average fitting errors (in relative area difference)
of the two methods. Second, given that our algorithm and
the vanilla version of RANSAC have the same performance
measured in terms of relative area difference, we compare
the average numbers of iterations needed for the hybrid
algorithm (second stage) and the vanilla RANSAC.

In this simulation, we choose inlier noise level as σ0 = 0.1
and outlier noise level as σ1 = 3, keeping the geometry of
the ellipse unchanged. Moreover, we fix the total number
of inliers as N = 100, and change the number of outliers
to achieve different outlier percentage of the total points,
M/(M + N). For the first purpose, we fix the total number
of iterations of vanilla RANSAC to 1000, and vary the outlier
percentage from 0% to 45%. For the second purpose, we
enforce the constraint that the RANSAC algorithm reach the
same performance (in terms of relative area difference) as our
hybrid algorithm, and record the averages of the numbers
of iterations of both algorithms, with the outlier percentage
ranging from 0% to 25%. For computational reasons, we set
an upper limit of 20000 iterations for both algorithms.

For each percentage of outliers, we run the two algo-
rithms 200 times, and record the averaged results in Figure 6
and Table 1.

In the simulation, our hybrid algorithm has a consid-
erable advantage in terms of the total number of fittings.
To achieve the same performance, the second stage of the
hybrid algorithm needs only a few iterations, as compared
to thousands of iterations for vanilla RANSAC. If we force
RANSAC to terminate in 1000 iterations, its average perfor-
mance deteriorates rapidly with respect to the percentage of
outliers.

Moreover, close inspection indicates that the RANSAC
algorithm, when the percentage of the outliers is high,
very frequently reaches the maximum number (20000) of
iterations, which gives the hybrid algorithm an advantage in
terms of the number of iterations.
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Table 1: Average number of iterations of RANSAC and the hybrid algorithm for different percentages of outliers.

Percentage of ouliers (%) 5 7.5 10 12.5 15 17.5 20 22.5 25

Average relative area difference (%) 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1

Average iterations of RANSAC 174 221 288 386 1246 1534 1739 2351 3364

Average iterations of hybrid (2nd stage) 2.1 2.2 2.4 2.5 2.8 3.0 3.2 3.7 4

Table 2: Failure rates of RANSAC-EIS-Metropolis and the hybrid algorithm.

Inlier noise level σ0 0 .01 .02 .04 .08 .16 .32

RANSAC-EIS-Metropolis failure rate (%) 0 1.5 2.5 7.5 9.5 27.5 36.5

Hybrid algorithm failure rate (%) 0 0 0 0 0 0 .5

Comparison of our method with direct RANSAC
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Figure 6: Comparison of performance (measured in relative area
difference) between RANSAC and the hybrid algorithm, with the
maximum of number of iterations set to 1000.

5.4. Comparison with RANSAC of Guided Sampling. To
further demonstrate the efficacy of our algorithm, especially
its robustness to inlier noise, we compare it with one of the
variations of the RANSAC algorithm: RANSAC with efficient
sampling using Ensemble Inlier Sets [17] (RANSAC-EIS-
Metropolis).

RANSAC-EIS-Metropolis converges very rapidly com-
pared to its predecessors. It works very effectively when the
noise level of inliers is low, as shown in the left hand side
of Figure 7, in which case the inlier noise level is σ0 = 0.02.
However, when the inlier noise level is high and the fraction
of outliers is large, the criterion for evaluating the goodness
of the model (MAD/WMAD) becomes less effective and
there is a high probability that the algorithm will fail to find
the correct model, as shown in the left hand side of Figure 7,
in which case the inlier noise level is σ0 = 0.08 (lower than
all our previous simulations). To show the influence of the

inlier noise level on the effectiveness of the RANSAC-EIS-
Metropolis algorithm, and to demonstrate the robustness of
our algorithm with respect to the inlier noise, we compare
our algorithm to the RANSAC-EIS-Metropolis algorithm in
terms of failure rate under different inlier noise levels. We
use 100 inliers and 80 outliers, with inlier noise level σ0

increasing from 0 to 0.32 and outlier noise level σ1 = 10
fixed. The failure rate is measured as the percentage of fitting
results having relative area difference beyond 0.3 in 200
trials. For the RANSAC-EIS-Metropolis algorithm, we set the
maximum number of iterations as 500, much higher than
the average number of iterations needed for a similar ellipse
fitting problem described in [17]. Keeping everything else
the same, the following results are obtained, as displayed in
Table 2.

For low inlier noise levels, the two algorithms perform
competitively. However, as the inlier noise level increases,
the RANSAC-EIS-Metropolis algorithm fails to find the true
model at a considerable rate, while the hybrid algorithm is
not affected until the noise level is as high as σ0 = 0.32.
Although RANSAC-EIS-Metropolis is superior for low levels
of inlier noise (which is usually the case for computer vision
applications), as demonstrated in [17], it is not very resistant
to the noise on inliers. Our hybrid algorithm, on the other
hand, shows greater robustness to inlier noise level, which
makes it more appropriate for application scenarios like
fitting noisy data generated by radar and sonar.

This simulation results have another implication: if the
model of the inliers is not identical to the true model,
then even if there are no observational errors, there still
exist systematic errors, which can also be a hazard to the
RANSAC-EIS-Metropolis algorithm. Therefore, for applica-
tions in which the inlier data cannot be accurately captured
by the model, it might be safer to use a hybrid algorithm,
which is resistant to inaccuracy in the fitting model.

5.5. Robustness to Different Types of Outliers. Since our
outlier detection algorithm is a hybrid, it is able to tackle a
broad variety of outliers and the fitting error can be bounded.
Here, we run our algorithm for different types of outliers
by adjusting the noise level of outliers σ1 ∈ [0.1, 1.2], with
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Figure 7: Typical fitting results for the RANSAC-EIS-Metropolis
Algorithm. (a): a successful fit after 500 iterations, with inlier noise
level σ0 = 0.02. (b): an unsuccessful fit after 500 iterations, with
inlier noise level σ0 = 0.08.

N = 120, M = 90, σ0 = 0.1, and the true model for the ellipse
unchanged. The interesting results are shown in Figure 8,
where for outliers closer to the inliers as well as outliers
distant from the inliers, our algorithm performs consistently
well, with fitting error tightly bounded below a low level. This
shows the strong robustness of our scheme.

5.6. Generalization to 3-D: Ellipsoid Fitting. The basic set-up
for the ellipsoid fitting simulation is as follows: for inliers,
N = 300 and σ0 = 0.1; for outliers, M = 50 and σ1 = 5; the
ellipsoid takes the standard position, with semiaxis lengths
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Figure 8: The performance of our two-stage algorithm under a
variety of outlier noise levels. Our algorithm performs consistently
well for outliers with very different magnitudes.

a = 5, b = 4, and c = 3. The outlier detection results are as
shown in Figure 9.

6. Conclusion

Proximity-based outlier detection algorithms are good for
situations in which outliers are wildly erroneous and large
in number. However, such algorithms work poorly for
outliers that are close to the inliers, even though these
outliers are obviously not consistent with the model; on
the contrary, model-based algorithms are very good at
detecting a small portion of outliers that are not consistent
with the model. Yet, if the percentage of outliers is high
and the number of parameters for the model is large, the
implementation of model-based algorithms can be costly. In
the problem of curve and surface fitting with many outliers,
by combining these two types of algorithms, we have found
a promising hybrid method that performs robustly with high
accuracy for a variety of types and numbers of outliers. The
hybrid algorithm can effectively reduce the total number of
iterations required for fitting the model to the data (selected
inliers). Consequently, although the proximity based step
requires computation of all pairwise distances among all the
data points, when the model is so complicated that fitting
the model to the data becomes the critical step, the hybrid
algorithm can be more efficient, compared to other outlier
elimination algorithms that require large numbers of model
refittings.

Appendices

A. Derivation of the Bound

Proof. Define an event A as

A = {∀ observation, ∃ a neighbor within distance δ
along the curve direction

}
.

(A.1)
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Figure 9: Outlier detection results for ellipsoid fitting. Similarly
to the ellipse fitting case, the proximity-based algorithm eliminates
most of the distant outliers, yet misclassifies some inliers as outliers,
with several nearby outliers missed, as illustrated in (a). These
errors are corrected by the second stage model-based algorithm, as
shown in (b).

Then by the union bound, and the inequality (1−x)n ≤ e−nx,
we have

P(A) = 1− P(Ac)

≥ 1−N
(

1− δ

L

)N−1

= 1−N(1− α)N−1

≥ 1− Ne−αN

1− α
.

(A.2)

Therefore, the probability of A is lower bounded by 1 − ε,
where ε = Ne−αN /(1− α).

B. Derivation of the Estimates (5) and (6)

Suppose the inliers are independently sampled from a one-
dimensional manifold of length L with probability density
ρ(x). If N observations are sampled, then for any observation
P located at x0, the probability that its nearest neighbor on
the manifold falls outside of the ball By(x0) of radius y is

P
(
Distance to nearest neighbor of P > y

)

=
(

1− ∫ x0+y
x0−y ρ(x)dx

)N−1
.

(B.3)

Then, the probability that a randomly chosen data point has
a nearest neighbor within the radius of y, defined as F(y), is
given by

F
(
y
) =

∫ L

0
ρ(x0)

⎛
⎝1−

(
1−

∫ x0+y

x0−y
ρ(x)dx

)N−1
⎞
⎠dx0. (B.4)

Applying the fact that the integral of the density on the entire
manifold is one, (B.4) can be simplified into

F
(
y
) = 1−

∫ L

0
ρ(x0)

(
1−

∫ x0+y

x0−y
ρ(x)dx

)N−1

dx0. (B.5)

If we assume that y is sufficiently small, then we may make a
series of approximations

F
(
y
) ≈ 1−

∫ L

0
ρ(x0)

(
1− 2yρ(x0)

)N−1dx0

≈ 1−
∫ L

0
ρ(x0)

(
1− 2(N − 1)yρ(x0)

)
dx0

= 2(N − 1)y
∫ L

0
ρ2(x0)dx0.

(B.6)

Notice that
∫ L

0 ρ(x0)dx0 is directly related to the volume of the
manifold. If we assume that the observations are uniformly
distributed, then ρ(x0) = 1/L, and hence

∫ L
0 ρ(x0)dx0 = 1/L.

In this case we have

L ≈ 2(N − 1)y
F
(
y
) . (B.7)

The method above can be directly generalized to the case
of a d-dimensional manifold M, as follows:

P
(
Nearest neighbor distance ≤ y

)
≈ (N − 1)V

(
B(d)
y

) ∫
M ρ2(x)dx,

(B.8)

where V(B(d)
y ) denotes the volume of a d-dimensional ball

with radius y.
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using k-nearest neighbour graph,” in Proceedings of the 17th
International Conference on Pattern Recognition (ICPR ’04), pp.
430–433, Cambridge, UK, August 2004.

[14] Y. Kou, C.-T. Lu, and R. F. Dos Santos Jr., “Spatial outlier
detection: a graph-based approach,” in Proceedings of the
International Conference on Tools with Artificial Intelligence
(ICTAI ’07), vol. 1, pp. 281–288, IEEE Computer Society,
Washington, DC, USA, 2007.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM,
vol. 24, no. 6, pp. 381–395, 1981.

[16] D. Li, D. Winfield, and D. J. Parkhurst, “Starburst: a hybrid
algorithm for video-based eye tracking combining feature-
based and modelbased approaches,” in Proceedings of the
Computer Vision and Pattern Recognition Workshops, p. 79,
IEEE Computer Society, San Diego, Calif, USA, 2005.
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