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A fast and accurate quantization noise estimator aiming at fixed-point implementations of Digital Signal Processing (DSP)
algorithms is presented. The estimator enables significant reduction in the computation time required to perform complex word-
length optimizations. The proposed estimator is based on the use of Affine Arithmetic (AA) and it is presented in two versions: (i)
a general version suitable for differentiable nonlinear algorithms, and Linear Time-Invariant (LTI) algorithms with and without
feedbacks; and (ii) an LTI optimized version. The process relies on the parameterization of the statistical properties of the noise
at the output of fixed-point algorithms. Once the output noise is parameterized (i.e., related to the fixed-point formats of the
algorithm signals), a fast estimation can be applied throughout the word-length optimization process using as a precision metric
the Signal-to-Quantization Noise Ratio (SQNR). The estimator is tested using different LTI filters and transforms, as well as a
subset of non-linear operations, such as vector operations, adaptive filters, and a channel equalizer. Fixed-point optimization
times are boosted by three orders of magnitude while keeping the average estimation error down to 4%.

1. Introduction

The original infinite precision of an algorithm based on
the use of real arithmetic must be reduced to the practical
precision bounds imposed by digital computing systems.
Word-length optimization (WLO) aims at the selection
of the variables’ word-lengths of an algorithm to comply
with a certain output noise constraint while optimizing the
characteristics of the implementation (e.g., area, speed or
power consumption). Normally, the precision loss commit-
ted is computed by using a double precision floating-point
arithmetic description of the algorithm as a reference and,
although there are some works on quantization for custom
floating-point arithmetic [1–3], the common approach is to
implement the system using fixed-point (FxP) arithmetic,
since this leads to lower cost implementations in terms of
area, speed, and power consumption [4–7].

WLO is a slow process due to the fact that the opti-
mization is very complex (NP-hard [8]) and also because

of the necessity of a continuous assessment of the algorithm
accuracy which may involve a high computational load. This
estimation is normally performed adopting a simulation-
based approach [7, 9, 10] which leads to exceedingly long
design times. However, in the last few years, there have
been attempts to provide fast estimation methods based
on analytical techniques. These approaches can be applied
to Linear Time-Invariant (LTI) systems [6, 11] and to
differentiable nonlinear systems [12–15]. As for the noise
metric used, they are based on the peak value [15] and on
the computation of SQNR [6, 11–14]. Since SQNR is a very
popular error metric within DSP systems, our work aims at
fast SQNR estimation techniques for LTI and differentiable
nonlinear systems.

This paper contains the following contributions:

(i) a novel Affine-Arithmetic (AA) SQNR estimator
optimized for LTI algorithms,

(ii) a novel AA-based SQNR estimator for LTI and
differentiable algorithms. Previous approaches were
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not able to deal with feedback systems, or produced
overestimations.

Our approach enables addressing complex WLO tech-
niques, since the computation times are drastically reduced
while providing high levels of accuracy.

The paper is structured as follows. In Section 2, related
work is discussed. Section 3 deals with fixed-point optimiza-
tion. Section 4 presents the grounds of the novel SQNR
estimation proposal. In Section 5, the benchmarks used for
validation are described. Performance results are collected in
Section 6. And finally, Section 7 draws the conclusions.

2. RelatedWork

In this section, we focus on those approaches aiming at
estimating the quantization noise to avoid the execution of
time-consuming simulations [7, 9, 18] and, therefore, that
support fast WLO. We disregard those that are not fully
automated [19–22], but consider those that, even though are
not implemented within an automatic WLO engine, could be
easily integrated within one. Also, we do not consider in this
analysis approaches that focus on error-free implementations
[23–25].

The Signal-to-Quantization Noise Ratio (SQNR) is a
popular quality metric in DSP systems. However, only
recently it has been considered in the development of fast
quantization noise estimators. Approaches such as [19–25]
and also the fully automated [15, 26–28] aim basically at
peak-value estimates. Most of these works are based on
the use of (i) interval arithmetic (IA) [29], which pro-
duces significant overestimations in general, and intolerable
overestimations in the presence of loops; (ii) multi-interval
arithmetic (MIA) [30], which improves the results of IA but
it still performs poorly in the presence of loops; (iii) affine
arithmetic [31], which solves the cancellation problem of
IA, and can alleviate overestimation by applying confidence
intervals; and (iv) the computation of first-order derivatives
[15, 28], mostly combined with a worst-case analysis, that
leads again to overestimation. Due to its interest for DSP
applications, only approaches that consider SQNR as a
quality metric are fully analyzed in this section.

Table 1 contains information about the main approaches
regarding quantization noise fast estimation under the
mentioned premises. The first column holds the reference
to the approach. The second column indicates if LTI or
nonlinear (NL) algorithms are supported. Column 3 shows
if the algorithms are cyclic (i.e., containing loops) or not.
The computational complexity of the noise parameterization
stage, if applicable, is shown in the fourth column. Also,
the computational complexity of the noise estimation itself
is presented in column 5. The last two columns contain
information about the accuracy of the estimates and com-
ments highlighting interesting features or drawbacks of the
approaches.

The approaches in the table have been grouped according
to the type of algorithm being addressed. The first three
rows correspond to approaches aimed at LTI algorithms, the
next three rows to those addressing nonlinear algorithms

(also valid for LTI systems), and the last two rows describe
the features of the two approaches proposed in this paper.

2.1. Linear Time-Invariant Algorithms. Let us start with LTI-
oriented methods. Given an algorithm with |S| signals where
each signal is quantized to ni bits, it is possible to relate
the number of bits to the power of the noise at the output
of the algorithm in steady state by means of the following
expression:
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|S|−1∑

i=0
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where Gi is the transfer function from signal si to output o,
and σ2

i and μi are the variance and mean of the quantization
noise associated to signal si—which is related to ni. This
expression can be rewritten more compactly using vectors
σ2, v, μ, and m as,
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m ≡ 〈G0(1), . . . ,G|S|−1(1)
〉
. (6)

Note that v and m can be computed by means of a graph
analysis, and once they are determined, the output noise
power can be estimated from σ2 and μ.

In [6] a two-step method is applied where, first, vectors
v and m are computed, and then, expression (2) is used to
estimate the output noise variance during WLO. The Parseval
Theorem [32] is applied in order to compute expression
(5), since it is possible to obtain an equivalent expression
that makes use of the impulse response from signal si to the
output of the systems (gi[n]), instead of using Gi. This highly
simplifies the computational cost. If the length of the input
vectors is long enough, expression (1) can be estimated with
high precision leading to highly accurate quantization noise
estimations.

An AA-based approach is presented in [11]. The
approach is based again on the computation of gi[n] for
each signal. Due to the characteristics of AA, it is possible to
compute all gi[n] simultaneously. The process has not been
divided into parameterization (extraction of vectors v and
m) and noise estimation. Instead, everything is computed
at once. It can be seen in Table 1 that the computational
cost is similar to the total cost of [6] (e.g., parameterization
plus estimation times). Also, the quality of the estimates is
high, since they are based on (1). This approach is further
developed in Section 4.3 in order convert it into a two-step
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Table 1: Fast quantization noise estimation approaches.

Approach Type
Cyclic
complexity

Parameterization
complexity

Estimation complexity Accuracy Comments

Constantinides et al. [6] LTI YES |S| × cgn 2× |S|-dot product High Steady state

López et al. [11] LTI YES
|S| × cgn +
2× |S|-dot product

High
Affine arithmetic
steady state

Menard [16] LTI YES ≈ |S| × cgn 2× |S|-dot product High
Graph analysis
steady state

Constantinides [12] NL YES |S| ×MC 2× |S|-dot product
Variance
overestimated

Differentiable
operations 1st
order approx.

Menard [13] and
Rocher et al. [17]

NL NO |S| ×MC
|S|-dot product +
matrix-vector mult.

High
Differentiable
operations 1st
order approx.

Shi and Brodersen [14] NL YES
|S|2/2×MC+
|S|2/2-coeff.
curve-fitting

|S|-dot product +
matrix-vector mult.

High
Differentiable
operations 1st
order approx.

This work (Section 4.3) LTI YES |S| × cgn 2× |S|-dot product High
Affine arithmetic
Steady state

This work (Section 4.2) NL YES Acycilic: ≈ |S| ×MC
dot product +
matrix-vector mult.

High
Affine arithmetic
Differentiable op.
1st-order approx.

cycilic: It depends on
amount of loops and
stimuli size

|S| ≡ number of signals in algorithm.
cgn ≡ computation of g[n].
MC ≡Monte Carlo simulation.

method, thus, allowing faster noise estimation (see Table 1,
this work—LTI).

The approach in [16] also relies on (1) to present a two-
step estimation method. The parameterization is based on
the application of graph transforms that allow to obtain the
vectors v and m (5) and (6). As it can be seen in Table 1, the
performance in terms of computation time and accuracy is
equivalent to the other two approaches.

2.2. NonLinear Systems. The approaches aimed at nonlinear
systems are mainly based on perturbation theory, where
the effect of the quantization of each algorithm’s signal
on the quality of the output signal is supposed to be
small. This allows to apply first-order Taylor expansion
to each nonlinear operation in order to characterize the
effect of the quantization of the inputs of the operations.
This constrains the application to algorithms composed of
differentiable operations. The existent methods enable us to
obtain an expression similar to (2) that relates the word-
lengths of signals to the power—also mean and variance—
of the quantization noise at the output. This will be further
explained in Section 4.2 (19).

In [12] a hybrid method which combines simulations
and analytical techniques to estimate the variance of the
noise is proposed. The estimator is suitable for nonrecursive
and recursive algorithms. The parameterization phase is
relatively fast, since it requires |S| simulations for an

algorithm with |S| variables. The noise model is based on
[33] and second order effects are neglected by applying
first order Taylor expansions. However, the paper seems to
suggest that the contributions of the signal quantization
noises at the output can be added, assuming that the noises
are independent. In nonlinear systems, this is a strong
assumption that leads to variance underestimation. The
accuracy of the method is not supported with any empirical
data.

In [14] another method suitable for nonrecursive and
recursive algorithms is presented. Here, |N|2/2 simulations
as well as a curve fitting technique (with |N|2/2 variables)
are required to parameterize quantization noise. On the
one hand, the noise produced by each signal is modeled
following the traditional quantization noise model from
[34, 35], which is less accurate than [33], and, again,
second order statistics are neglected. On the other hand, the
expression of the estimated noise power accounts for noise
interdependencies, which is a better approach than [12].
The method is tested with an LMS adaptive filter and the
accuracy is evaluated graphically. There is no information
about computation times.

Finally, in [13] the parameterization is performed by
means of |N| simulations and the estimator is suitable only
for nonrecursive systems. The accuracy of this approach
seems to be the highest since it uses the model from
[33] and it accounts for noise interdependencies. Although,



4 EURASIP Journal on Advances in Signal Processing

the information provided about accuracy is more complete,
it is still not sufficient, since the estimator is tested in only a
few SQNR scenarios.

2.3. This Work. As aforementioned, we present two
approaches: one exclusive for LTI algorithms in steady state,
and the other for differentiable algorithms which are a
subset of nonlinear algorithms. The LTI-oriented approach
is based on [11] and it basically enables the division of the
estimation process into two steps. One step is devoted to
parameterization, while the other is dedicated to perform
fast estimations. This method is equivalent to the other
methods present in the literature. The advantage that it
offers is that now it is possible to analyze the most important
finite word-length effects (SQNR analysis, peak value
analysis, dynamic range, limit cycles) using the very same
AA simulation engine.

Regarding nonlinear systems, our approach tries to
overcome most of the drawbacks of the works presented
above. It deals with nonrecursive and recursive systems, using
the accurate noise model from [33] and also accounting for
noise interdependencies. The parameterization time can be
quite long for algorithms that contain loops. However, as
we will see in Section 6, the computation times are within
standard times, and the benefits of fast estimations make up
for the sometimes slow parameterization process.

3. Word-Length Optimization

The starting point of WLO is a signal flow graph G(V , S)
that contains information about the signal FxP formats
and the data dependencies. The FxP formats of signals
enable the computation of the statistical parameters of
the quantization noises introduced by them, and the data
dependencies are essential to obtain a noise model that
relates the signals’ noise parameters with the overall noise at
the output of the algorithm. Set V holds the operations of the
algorithm: additions/subtractions, constant multiplications,
multiplications, divisions, and unit delays. Set S contains
the signals that interconnect these operations. The FxP
format of a number is defined by means of pair (p,n),
where p represents the number of bits from the most
significant bit (MSB) to the binary point, and n is the
number of total bits (see Figure 1). The FxP format of a signal
requires two FxP formats: the format before quantization—
(ppre,npre)—and the format after quantization—(p,n) (see
[6]). The quantization of the signal is performed only if
these two formats are not equal. Initially, the FxP format
of signals is unknown and it is the task of WLO to find a
suitable set that minimizes the total cost. The FxP format,
not only determines the quantization error generated by
a quantized signal, but also the number of bits of each
signal, and, therefore, the size of the required hardware
resources. The size of a resource ultimately determines its
area, delay and, power. During WLO, the optimization is
guided by means of the cost and the output error obtained
from the different FxP formats tried through successive
iterations.

p

n

S .

Figure 1: Fixed-point format.

Figure 2 depicts the WLO approach adopted in this work.
WLO is composed of the stages of scaling, which determines
the set of p, and word-length selection, which determines the
set of n. This subdivision allows to simplify WLO, while still
providing significant cost reductions.

A wrap-around scaling strategy is adopted since it
requires less hardware than other approaches (i.e., saturation
techniques). After scaling, the values of p are the minimum
possible values that avoid the overflow of signals or, at least,
those that reduce the likelihood of overflow to a negligible
value. A simulation-based approach is used to carry out
scaling [7].

Once scaling is performed, the values of p can be fixed
during word-length selection. The right side of Figure 2
shows basic blocks for word-length selection. The main
idea is to iterate trying different word-length (i.e., n)
combinations until the cost is minimized. Each time the
word-length of a signal or a group of signals is changed,
the word-lengths must be propagated throughout the graph,
task referred to as graph conditioning [6], in order to
update the rest of word-lengths. The optimizer control block
selects the size of the word-lengths using the values of the
previous error and cost estimations and decides when the
optimization procedure has finished. The first block in the
diagram is the extraction of the quantization noise model
(parameterization). The role of this block is to generate a
model of the quantization noise at the output due to the FxP
format of each signal. This enables to perform a quick error
estimation within the optimization loop. The implications of
using a fast error estimator are twofold. On the one hand, it
is possible to reduce WLO time. On the other hand, more
complex optimization techniques can be applied in standard
computation times.

4. Quantization Noise Estimation

4.1. Affine Arithmetic. Affine Arithmetic (AA) [31] is an
extension of Interval Arithmetic (IA) [29] aimed at the
fast and accurate computation of the ranges of signals
in a particular mathematical description of an algorithm.
Its main feature is that it automatically cancels the linear
dependencies of the included uncertainties along the com-
putation path, thus, avoiding the oversizing produced by
IA approaches [36]. It has been applied to both, scaling
computation [15, 36, 37], and word-length allocation [1, 15,
36]. Also, a modification called Quantized Affine Arithmetic
(QAA) has been applied to the computation of limit cycles
[38] and dynamic range analysis of quantized LTI algorithms
[37].
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FxP optimization

Begin

Scaling
(range computation)

Set of p

Word-length
selection

Set of n

End

Word-length selection

Begin

Extract noise
model

Optimization
control

Condition SFG
(fixed-point propagation)

End

Change
word-lengths

Error
estimation

Cost
estimation

Figure 2: Fixed-point optimization diagram.

The mathematical expression of an affine form is

x̂ = x0 +
N∑

i=1

xiεi, (7)

where x0 is the central value of x̂, and εi and xi are its ith
noise term identifier and amplitude, respectively. In fact, xiεi
represents the interval [−xi, +xi], so an affine form describes
a numerical domain in terms of a central value and a sum
of intervals with different identifiers. Affine operations are
those which operate affine forms and produce an affine form
as a result. Given the affine forms x̂, ŷ, and ĉ = c0, the affine
operations are

x̂ ± ĉ = x0 ± c0 +
N∑

i=1

xiεi,

x̂ ± ŷ = x0 ± y0 +
N∑

i=1

(
xi ± yi

)
εi,

ĉ · x̂ = c0x0 +
N∑

i=1

c0xiεi.

(8)

These operations suffice to model any LTI algorithm.
Differentiable operations can be approximated using a first-
order Taylor expansion:

f
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)
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x0, y0

)
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N∑
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(
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δ ŷ
· yi

)
εi.

(9)

4.2. Proposed Estimator: General Expression. Here, we present
a method able to estimate the quantization noise power from
a single AA simulation. The noise estimation is not based
on (1), since this equation only applies to LTI algorithms
in steady state and our proposal is more general, since it
covers both LTI algorithms and nonlinear algorithms. Also,
the parameterization method does not lead to (2)–(6), since
these are aimed at LTI algorithms in steady state.

Noise estimation is based on the assumption that the
quantization of a signal si from npre bits to n bits can be
modeled by the addition of a uniformly distributed white
noise with the following statistical parameters [33]:

σ2
i =

22pi

12

(
2−2ni − 2−2n

pre
i

)
,

μi = −2pi−1
(

2−ni − 2−n
pre
i

)
.

(10)

This noise model, which is referred to as the discrete
noise model, is an extension of the traditional modeling
of quantization error as an additive white noise [34, 35]
(continuous noise model). In [33], it is shown that the
continuous model can produce an error of up to 200% in
comparison to the discrete model.

In [11] it was proved that the effect of the deviation from
the original behavior of an algorithm with feedback loops
can be modelled by adding an affine form n̂i[n] to each signal
i at each simulation time instant n. The affine form n̂i models
a quantization noise with mean μi and variance σ2

i , if each
error term ε is assigned a uniform distribution, and it can be
expressed as

n̂i[n] = μi +
√

12σ2εi,n = ε′i,n. (11)
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Table 2: Properties of benchmarks.

Benchmark LTI Cyclic Inputs Outputs Z−1 +/− ∗ ∗K ÷ |S| Input signals

RGB YES NO 3 3 0 4 0 6 0 16 Uniform noise

IDCT8 YES NO 8 8 0 37 0 11 0 48 Uniform noise

IIR2 YES YES 1 1 2 2 0 2 0 8 Uniform noise

LAT3 YES YES 1 1 3 9 0 10 0 24 Uniform noise

DELTA6 YES YES 1 1 6 18 0 29 0 62 Uniform noise

VEC3×3 NO NO 3 3 0 3 3 0 0 12 Uniform noise

VEC8×8 NO NO 8 8 0 8 8 0 0 32 Uniform noise

EQ NO YES∗ 2 2 64 2 3 2 4 81 MIMO channel Tx [41]

POW NO YES 1 1 1 1 1 2 0 7 Synthetic tone

LMS1 NO YES 2 1 3 5 6 3 0 23 Synthetic tone

LMS2 NO YES 2 1 5 7 8 4 0 30 Synthetic tone

LMS5 NO YES 2 1 11 13 14 7 0 51 Synthetic tone

VOL3 NO YES 2 1 2 4 6 4 0 19 Gaussian noise
∗

MAC operations applied to 32-data chunks.

Thus, it is possible to know at each moment the origin
of a particular error term (i) and the moment when it
was generated (n). The AA-based simulation can be made
independent on the particular statistical parameters of each
quantization thanks to error term ε′. This is desirable in
order to obtain a parameterizable noise model. This error
term encapsulates the mean value and the variance of the
error term ε, and now it can be seen as a random variable
with variance σ2

i and mean μi. This is a reinterpretation
of AA, since the error terms are not only intervals, but
they also have a probability distribution associated. Once
the simulation is finished, it is possible to compute the
impact of the quantization noise produced by signal si on
the output of the algorithms by checking the values of xi,n
(see (7)). This enables the parameterization of the noise.
Once the parameterization is performed, the estimation
error produced by any combination of (p,n) can be easily
assessed replacing all ε′i,n by the original expression that
accounts for the mean and variance (μi +

√
12σ2εi,n), thus

enabling a fast estimation of the quantization error. We will
see all the process in the next paragraphs.

The expression of a given output Ŷ of the algorithm with
|S| noise sources is

Ŷ[n] = Y0[n] +
|S|−1∑

i=0

n∑

j=0

Yi, j[n]ε′i, j , (12)

where Y0[n] is the value of the output of the algorithm
using floating-point arithmetic and the summation is the
contribution of the quantization noise sources. Note that
Yi, j[n] is a function that depends on the inputs of the
algorithm.

The error ÊrrY at the output is

ÊrrY [n] = Y0[n]− Ŷ[n] = −
|S|−1∑

i=0

n∑

j=0

Yi, j[n]ε′i, j . (13)

The value of the error is formed by a collection of affine
forms at each time step n. The power of the quantization
noise of the output can be approximated by the Mean Square
Error (MSE), which is estimated as the mean value of the
expectancy of the power of the summations of the uniform
distributions at each time step m as in (14). The estimation
is performed using an AA simulation during K time steps,
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This equation relies on the fact that error terms ε′i,n are
uncorrelated to each other, which is a sensible assumption
in quantized DSP systems [34, 35]. Also, the uncorrelation
between quantization noises enables to express the variance
of a summation of random variables as the summation of
the variance of each random variable. The two main terms in
(14) are developed as follows
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(16)
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Combining (14), (15) and (16):
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ÊrrY [n]
)

= 1
K

K−1∑

m=0

⎛
⎜⎝
|S|−1∑

i=0

σ2
i

m∑

j=0

Y 2
i, j[m] +

⎛
⎝
|S|−1∑

i=0

μi

m∑

j=0

Yi, j[m]

⎞
⎠

2
⎞
⎟⎠.

(17)

Expressions for the mean and variance can be obtained
in a similar fashion:

μÊrrY [n] =
1
K
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(18)

The output noise power (17), as well as the mean and the
variance, can be expressed more compactly by using vectors
v, m, and matrix M as shown in (19)–(23). Once vectors
v, m, and matrix M are computed, the estimation of the
quantization noise does not require a simulation but the
computation of expressions (19)–(21), which is a much faster
process,

Po = 1
K

(
σ2 · vT + μ ·MμT

)
, (19)

μo = 1
K

(
μ ·mT

)
, (20)

σ2
o = Po − μ2

o, (21)
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Y|S|−1, j[n]

〉
, (23)

M ≡

⎡
⎢⎢⎣

m0,0 · · · m|S|−1,0

. . .
m0,|S|−1 · · · m|S|−1,|S|−1

⎤
⎥⎥⎦, (24)

mi1,i2 =
M−1∑

n=0

⎛
⎝

n∑

j1=0

Yi1, j1 [n]
n∑

j2=0

Yi2, j2 [n]

⎞
⎠. (25)

The parameterization process is composed of the follow-
ing steps:

(1) perform a K-step AA simulation adding an affine
form n̂i to each signal i,

(2) compute (22)–(24) using previously collected Yi, j[n].

The error estimation phase can now be executed very
quickly by applying (19)–(21).

Please note that

(i) expressions (17)–(22) can be applied to DSP algo-
rithms including differentiable operations (e.g. mul-
tiplications, divisions, etc.) by mean of (9) due to the
1st order approximation,

(ii) they are exact for LTI systems in steady state (see the
appendix).

4.3. Particularization for LTI Systems. The expressions and
the algorithms from the previous subsection can be applied
to LTI algorithms, but with a high computational load. In
this subsection, we present new expressions to compute the
power, mean and variance of the output error for LTI systems
in steady state that enable fast estimations.

It is possible to simplify the noise estimation by modify-
ing the expression of the noise terms:

n̂s[n] =
⎧
⎨
⎩
μs +

√
12σ2εs,n = ε′s,n, if n = 0,

0, otherwise.
(26)

It can also be inferred that

Yi,0[n] = gi[n]. (27)

Therefore, it is possible to rewrite the set of (A.1)–(A.3)
in order to relate them to the amplitudes of the error terms
at the output of the system Ŷ[n] as shown in the following

σLTI
o

2 = σ2
LTI · vTLTI

μLTI
o = μLTI ·mT

LTI,

PLTI
o = σLTI

o
2

+ μLTI
o

2
,

vLTI =
〈M−1∑

j=0

Y 2
0,0

[
j
]
, . . . ,

M−1∑

j=0

Y 2
0,0|S|−1,0

[
j
]
〉

mLTI =
〈M−1∑

j=0

Y0,0
[
j
]
, . . . ,

M−1∑

j=0

Y|S|−1,0
[
j
]
〉
.

, (28)

5. Benchmarks

This section presents the benchmarks used to test the per-
formance of the SQNR estimator. The following benchmarks
are used:

(i) RGB to YCrCb converter (RGB) [6],

(ii) 8-point IDCT (IDCT8) [26],

(iii) 2nd-order IIR filter (IIR8) [26],

(iv) 3rd-order Lattice filter (LAT3) [39],

(v) 6th-order transposed direct form II delta-operator
filter (DEL6) [40],

(vi) 3× 3 vector scalar multiplication (VEC3×3),

(vii) 8× 8 vector scalar multiplication (VEC8×8),

(viii) MIMO channel equalizer (EQ) [41],

(ix) a mean power estimator based on a 1st IIR filter
(POW),

(x) 1st-order LMS filter (LMS1) [12],

(xi) 2nd-order LMS filter (LMS2) [12],
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Table 3: Performance of the estimation method: Precision.

Estimation error

Benchmark [120,100)1 dB [100,80) dB [80,60) dB [60, 40] dB

(dB)2 (%)3 (dB) (%) (dB) (%) (dB) (%)

RGB 0.11 0.24 0.09 0.09 0.07 0.17 0.07 0.44

IDCT8 0.11 0.11 0.08 0.42 0.21 0.88 0.27 0.68

IIR∗2 0.04 0.03 0.04 0.04 0.06 0.74 0.04 0.09

LAT∗3 0.24 0.69 0.18 0.33 0.20 0.15 0.19 0.46

DEL∗6 0.03 0.01 0.02 0.03 0.03 0.16 0.16 1.16

VEC3×3 0.07 0.54 0.07 0.11 0.06 0.50 0.09 0.72

VEC8×8 0.05 0.57 0.04 0.40 0.04 0.57 0.13 1.19

EQ 0.27 0.98 0.24 0.71 0.29 0.17 0.18 1.52

POW∗ 0.39 5.00 0.17 1.55 0.76 5.96 1.12 12.12

LMS∗1 0.09 0.41 0.14 0.90 0.16 1.74 0.82 6.96

LMS∗2 0.09 0.46 0.08 0.24 0.15 0.78 0.92 3.73

LMS∗5 0.09 0.46 0.08 0.07 0.13 1.08 1.09 5.51

VOL∗3 1.14 3.33 0.49 1.84 0.81 6.70 1.43 16.67

All 1.14 0.20 0.49 0.09 0.81 1.26 1.43 3.52
1
Error constraint, 2|10 log(Pref /Pest )|(max), 3|100((Pref − Pest)/Pref)| (average),
∗ It contains loops.

(xii) 5th-order LMS filter (LMS5) [12],

(xiii) 3rd-order Volterra adaptive filter (VOL3)[42].

The main features of the benchmarks are summarized in
Table 2, which contains the type of algorithm (LTI or nonlin-
ear, with or without loops), the number of inputs/outputs,
the number and type of operations involved, and the total
number of signals (|S|). The set of benchmarks covers
both LTI and nonlinear algorithms, as well as cyclic and
acyclic ones. It must be noted that the set of operations is
quite complete since it includes additions, multiplications,
and also divisions, usually neglected in similar research
studies. In addition to that, it is interesting to highlight
that the algorithms are not limited to linear filtering, but
they also address 4 G MIMO channel equalizing, vector
multiplications and adaptive filtering for both linear and
nonlinear system identification.

All benchmarks are fed with 16-bit inputs and 12-bit
constants and the noise constraint is an SQNR ranging
from 40 to 120 dB. The inputs used to perform the noise
parameterization as well as the fixed-point simulation are
summarized in the last column of the table.

6. Results

The procedure to carry out the tests is as follows:

(1) compute scaling by means of a floating point simula-
tion,

(2) extract noise parameters (22)–(24) performing an
AA-based simulation,

(3) perform a WPO as in Figure 2 using a gradient-
descent approach,

(4) perform a single FxP bit-true simulation and use it as
reference to compute the performance and accuracy
of the estimator.

The accuracy obtained by means of a gradient-descent
optimization [6] under different SQNR constraints—80 in
total, from 40 dB to 120 dB—for the different benchmarks
is presented in Table 3. The first column indicates the
benchmark used. The remaining columns show the accuracy
of the estimations measured in terms of the maximum
absolute value of the relative error in dB, and the average
of the absolute value of the percentage error, for four SQNR
ranges: (120,100) dB, (100,80) dB, (80,60) dB and [60, 40] dB
(see the expressions of the metrics at the bottom of the table).

The results yield that the estimator is extremely accurate
for LTI algorithms. The mean percentage error is smaller
than 1.16%, and the maximum relative error is smaller than
0.24 dB. The quality of the estimates is homogenous within
the range (40, 120) dB.

The accuracy for nonlinear algorithms shows some
degradation. This is expected, since a 1st-order Taylor
approximation has been applied (9) in the computation
of the quantization noise. Moreover, the presence of loops
increases the error in the estimation, since the error due
to neglecting Taylor series terms is amplified through the
feedback loops. The nonlinear algorithms without loops
perform significantly well. The mean percentage error is
smaller than 1.52%, and the maximum relative error is
smaller than 0.3 dB. This performance is similar to that of
LTI algorithms.

The nonlinear algorithms that contain loops have a
clearly different behaviour. The mean percentage error is
smaller than 16.7%, and the maximum relative error is
smaller than 1.43 dB. Now, the accuracy decreases as long
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Table 4: Performance of the estimation method: Computation time.

Bench. FxP Param. Param. No. of estimates Estimation-based optim. Simulation-based optim. Speed-up
Samples Samples time (secs)+ (mean) (secs)+ (secs)+

RGB 20000 1 0.00016 141 0.03 76 x3205

IDCT8 20000 1 0.00031 4575 5.77 13774.81 x2468

IIR∗2 20000 5000 0.88 19 0.02 4.41 x270

LAT∗3 20000 20000 10.80 2276 0.74 2381.51 x3222

DEL∗6 20000 5000 6.31 3930 3.47 11206.08 x3235

VEC3×3 20000 20000 59 150 0.03 66.86 X2122

VEC8×8 20000 20000 330 1739 1.72 2331.79 x1377

EQ 16000 16000 61.64 231 0.12 105.78 x904

POW∗ 20000 20000 546.14 97 0.02 21.93 x1048

LMS∗1 5000 5000 908.02 712 0.42 163.73 x394

LMS∗2 5000 5000 592.11 1032 0.94 310.93 x331

LMS∗5 5000 5000 1646.38 2547 7.26 1611.46 x221

VOL∗3 5000 5000 212.72 673 0.29 151.13 x526

All — — — — — — x1486
∗

It contains loops,
+Using 1.66 GHz Intel Core Duo processor and 1 GB of RAM.

as the error constraints get looser. This is due to the
aforementioned amplification of the Taylor error terms and
also to the fact that the uniformly distributed model for
the quantization noise does not remain valid for small
SQNRs. The errors due to the quantization noise model
introduced by the SQNR ranges used for these experiments
are minimum, but, after being propagated through the
feedback loops and amplified due to nonlinearities, they
become much more noticeable. Anyway, the quality of the
estimates is still very high.

The average percentage error is 3.52% which confirms
the excellent accuracy obtained by our estimator.

Table 4 holds the performance results in terms of com-
putation times. The first column shows the names of the
benchmarks. The second and third columns show the length
of the input vectors required for a fixed-point simulation
and for the parameterization process. The parameteriza-
tion time is in the fourth column. The average number
of iterations required during the optimization process is
in the fifth column. The next two columns present the
computation time required to perform the gradient-descent
optimization using our estimation-based proposal and using
a classical simulation-based approach. The computation
time for the simulation-based approach is, in fact, an
estimation, based on multiplying the average number of
optimization iterations by the computation time of a single
fixed-point simulation. Finally, the speed-up obtained by our
estimation-based approach is presented in the last column.

The parameterization time goes from 160 μsecs. to
28 mins. (1646 secs.), and it depends on the size of the input
data, the complexity of the algorithm (i.e., number and
types of operations), and the presence of loops. The LMS
benchmarks clearly show how the parameterization time is
increased as long as the number of delays, and therefore
loops, increases. These times might seem quite long, but it

must be born in mind that the parameterization process is
performed only once, and after that the algorithm can be
assigned a fixed-point format as many times as desired using
the fast estimator.

The mean number of estimates in the fifth column is
shown to give an idea of the complexity of the optimization
process. A simulation-based optimization approach would
require that very same number of simulations, thus taking
a very long time. For instance, the optimization of LMS5

would approximately require 2500 FxP simulations of 5000
input data. Considering the number of estimations required,
the optimization times are extremely fast, ranging from
0.02 secs to 7.26 secs. The speedups obtained in comparison
to a simulation-based approach are staggering; boosts from
x221 to x3235 are obtained. The average boost is x1486
which proves the advantage of our approach in terms of
computation time.

In summary, results show that our approach enables
fast and accurate WLO of both LTI and nonlinear DSP
algorithms.

7. Conclusions

A novel noise estimation method based on the use of Affine
Arithmetic has been presented. This method allows to obtain
fast and accurate estimates of the quantization noise at the
output of the FxP description of a DSP algorithm. The
estimator can be used to perform complex WLO in standard
time, leading to significant hardware cost reductions. The
method can be applied to differentiable nonlinear DSP
algorithms with and without feedbacks.

In brief, the main contributions of the paper are

(i) the proposal of a novel AA-based quantization noise
estimation for LTI algorithms,
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(ii) the proposal of a novel AA-based quantization noise
estimation for nonlinear algorithms with and with-
out feedbacks,

(iii) the average estimation error for LTI systems is smaller
than 2%,

(iv) the average estimation error for nonlinear systems is
smaller than 17%,

(v) the computation time of WLO is boosted up to x3235
(average of x1486),

The reduction of the computation time of the noise
parameterization process, specially in the presence of loops,
is to be approached in the near future. Also, the improvement
of the quantization model for nonlinear operations is
perceived as an interesting research line.

Appendix

Validity of General Expression for
Steady-State LTI Algorithms

Expressions (17)–(22) can be applied to DSP algorithms
including differentiable operations (e.g., multiplications,
divisions, etc.) by means of (9), due to the 1st-order
approximation. However, they should be exact for LTI
systems and match the well-known expressions for LTI
algorithms in steady state,

μLTI =
|S|−1∑

i=0

μi ·Gi(1) =
|S|−1∑

i=0

μi

∞∑

n=0

gi[n], (A.1)

σ2
LTI =

|S|−1∑

i=0

σ2
i ·

1
2π

∫ π

−π

∣∣∣Gi(e jΩ)
∣∣∣

2
dΩ

=
|S|−1∑

i=0

σ2
i
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n=0

g2
s [n],

(A.2)

PLTI = σ2
LTI +

(
μLTI

)2

=
|S|−1∑

i=0

σ2
i
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n=0

g2
s [n] +

⎛
⎝
|S|−1∑

i=0

μi

∞∑

n=0

gi[n]

⎞
⎠

2

,
(A.3)

where Gi(Z) and gi[n] are the transfer function and the
impulse response from signal i to the output of the algorithm,
respectively. The LTI system is supposed to be causal
(for all n < 0, gi[n] = 0) and stable (gi[n]|→∞ = 0).

In LTI systems, the coefficients Yi, j[n] multiplying each
ε′i, j depend only on gi[n] and are equal to

YLTI
i, j [n] =

⎧
⎨
⎩
gi
[
n− j

]
, if n > 0,

0, otherwise.
(A.4)

Equation (17) turns into

PLTI
ÊrrY

= 1
K

K−1∑

m=0

⎛
⎜⎝
|S|−1∑

i=0

σ2
i

n∑

j=0

g2
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[
n− j

]
+

⎛
⎝
|S|−1∑

i=0

μi

n∑

j=0

gi[n− j]

⎞
⎠

2
⎞
⎟⎠.

(A.5)

Note that (A.1)–(A.3) assume that the LTI system is
in steady state. Therefore, the transient must be removed
from the computation of the MSE. Hereby, (A.5) only
matches (A.3), if the affine simulation is performed during
M iterations (M 	 K + K ′), where K ′ is such that for all
n > K ′, gi[n] ≈ 0, and the first K iterations (K > K ′) are
removed from the computation. Thus,
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= 1
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(A.6)

Similarly, (18) can be matched to (A.1) and (A.2),
respectively, thus validating the approach for LTI algorithms.
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