
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 172703, 13 pages
doi:10.1155/2010/172703

Research Article

Robust Blind Frequency and Transition Time Estimation for
Frequency Hopping Systems

Kuo-Ching Fu and Yung-Fang Chen

Department of Communication Engineering, National Central University, no.300, Jung-da Road, Jung-li City, Taoyuan 32001, Taiwan

Correspondence should be addressed to Yung-Fang Chen, yfchen@ce.ncu.edu.tw

Received 27 April 2010; Revised 24 September 2010; Accepted 5 November 2010

Academic Editor: Kutluyil Dogancay

Copyright © 2010 K.-C. Fu and Y.-F. Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In frequency hopping spread spectrum (FHSS) systems, twomajor problems are timing synchronization and frequency estimation.
A blind estimation scheme is presented for estimating frequency and transition time without using reference signals. The scheme
is robust in the sense that it can avoid the unbalanced sampling block problem that occurs in existing maximum likelihood-based
schemes, which causes large errors in one of the estimates of frequency. The proposed scheme has a lower computational cost
than the maximum likelihood-based greedy search method. The estimated parameters are also used for the subsequent time and
frequency tracking. The simulation results demonstrate the efficacy of the proposed approach.

1. Introduction

Frequency hopping spread spectrum (FHSS) techniques are
widely used in military communications for combating
narrowband interference and for security purposes. The two
parameters that are required for the estimation in FHSS
are transition time and hopping frequency. Regular syn-
chronization is divided into two stages—coarse acquisition
and fine tracking [1]. Reference signals may be used to
estimate the parameters [2–6], but they may not be available
in all cases. Moreover, since the usage of reference signals
requires bandwidth, it reduces the bandwidth efficiency. To
improve spectral utilization, several researchers [7–13] have
proposed some algorithms for blind estimation. Liang et al.
[7] proposed a revisable jump Markov chain Monte Carlo-
(RJMCMC-) based algorithm for estimating frequency and
timing parameters. However, it requires that the hyperpa-
rameter is known in advance. Liu et al. [8] used an antenna
array and the expectation-maximization (EM) algorithm
to estimate multiple FH signals, but the computational
complexity was high. Mallat and Zhang [10] used the
matching pursuit (MP) method that decomposes the signal
into a linear expansion of time-frequency components;
however, this algorithm needs to select a discrete subset of

possible dictionary functions for practical implementation
[10]. Liu et al. [11] proposed a joint hop-timing and
frequency estimationmethod that was based on the principle
of dynamic programming (DP) coupled with 2D harmonic
retrieval (HR) using antenna arrays. The complexity of
the DP algorithm is roughly a fourth-order polynomial
in the number of temporal signal snapshots. A stochastic
modeling and particle filtering-based algorithm has been
proposed by using a state-space model to solve nonlinear
and non-Gaussian signals [12]. Ko et al. [13] proposed a
blind maximum likelihood- (ML-) based iterative algorithm
for frequency estimation and synchronization using a two-
hop model; however, it yielded more than one solution,
raising the problem of convergence to the solution that is
associated with the hopping frequency. The authors [8] also
pointed out that whether the approach of Ko et al. [13]
can guarantee identifiability for the frequency estimation.
Additionally, in the ML-based estimation approach, if the
transition time in the processing data block between two
hopping frequencies is close to the boundary value, then
the data block is in an unbalance situation of sampled
signals in the frequency components. In this scenario, the
performance of one estimation of frequency is severely
degraded.
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This investigation presents a blind frequency estimation
and timing synchronization algorithm. The approach is
resistant to the aforementioned problem of unbalance. It
reduces the computational load by using a proposed iterative
method compared to a maximum likelihood-based greedy
search method.

The rest of this paper is organized as follows. Section 2
introduces signal model and the problem formulation. In
Section 3, the proposed algorithm for estimating frequen-
cies and transition time is derived. Section 4 presents the
computational complexity. Section 5 presents the computer-
simulated results. Finally, Section 6 draws conclusions.

2. Signal Model and Problem Formulation

In this section, the signal model of FHSS is analyzed and
the mathematical form of a likelihood function is derived.
The two-hop signal model for frequency hopping can be
expressed as

s(n) =
⎧
⎨

⎩

e jω1nTs , n = 0, . . . ,M − 1,

e jω2(n−M)Ts , n =M, . . . , 2M − 1,
(1)

where ω1 and ω2 are the hopping frequencies, Ts is the
sampling period, andMTs is the hopping period [13].

The received signal in an interval of MTs can be written
as

x(n) =
⎧
⎨

⎩

a1e jω1(M−K−1+n)Ts + v(n), n = 1, . . . ,K ,

a2e jω2(n−K−1)Ts + v(n), n = K + 1, . . . ,M,
(2)

where aq, q = 1, 2 represent the channel gains of the qth hop
through the transmitting path and v(n) is an added white
Gaussian noise (AWGN) with zero mean and variance σ2.
The problem of determining K in (2) is thus equivalent to
solving the timing synchronization problem.

Rewriting the received signal in vector form yields

x = s + v, (3)

where

x = [x(1), . . . , x(M)]T ,

s =
[

a1e
jω1(M−K)Ts , . . . , a1e jω1(M−1)Ts ,

a2, . . . , a2e jω2(M−K−1)Ts

]T
,

v = [v(1), . . . , v(M)]T .

(4)

To simplify the analysis, x can be partitioned into two
components that correspond to individual hops as follows:

x1

x2
=
⎡

⎣
a1s1

a2s2

⎤

⎦ +

⎡

⎣
v1

v2

⎤

⎦, (5)

where

x1 = [x(1), . . . , x(K)]T ,

x2 = [x(K + 1), . . . , x(M)]T ,

s1=
[

e jω1(M−K)Ts , . . . , e jω1(M−1)Ts

]T
,

= e jω1(M−K)Ts

[

1, . . . , e jω2(K−1)Ts

]T

s2 =
[

1, . . . , e jω2(M−K−1)Ts

]T
,

v1 = [v(1), . . . , v(K)]T ,

v2 = [v(K + 1), . . . , v(M)]T .

(6)

The likelihood function of the received signal is

L(a1,ω1, a2,ω2,K) = 1
(√

2πσ
)M e−(1/2σ

2)‖x−s‖2

= 1
(√

2πσ
)M e−(1/2σ

2)(‖x1−a1s1‖2+‖x2−a2s2‖2).

(7)

The parameters (a1,ω1, a2,ω2,K) can be estimated by max-
imizing (7), which is equivalent to minimizing the objective
function

ϕ(a1,ω1, a2,ω2,K) = ‖x1 − a1s1‖2 + ‖x2 − a2s2‖2

= ϕ1(a1,ω1,K) + ϕ2(a2,ω2,M − K),
(8)

where

ϕ1(a1,ω1,K) = ‖x1 − a1s1‖2, (9)

ϕ2(a2,ω2,M − K) = ‖x2 − a2s2‖2. (10)

Since ϕ1 and ϕ2 of (8) are positive, minimizing (8) after
some manipulation yields the estimated frequency ω̂1:

ω̂1 = arg
ω1

⎧
⎪⎨

⎪⎩
max

⎛

⎜
⎝

∥
∥
∥ŝH1 x1

∥
∥
∥
2

K

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (11)

where

ŝ1 = e jω̂1(M−K)Ts

[

1, . . . , e jω̂1(K−1)Ts

]T
. (12)

Similarly, minimizing (10) yields ω̂2:

ω̂2 = arg
ω2

⎧
⎪⎨

⎪⎩
max

⎛

⎜
⎝

∥
∥
∥ŝH2 x2

∥
∥
∥
2

(M − K)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (13)

where

ŝ2 =
[

1, . . . , e jω̂2(M−K−1)Ts

]T
. (14)



EURASIP Journal on Advances in Signal Processing 3

Equations (11) and (13) indicate that frequencies ω̂1

and ω̂2 can be estimated by maximizing ‖ŝH1 x1‖2/K and

‖ŝH2 x2‖2/(M − K), respectively. The maximization of the
two functions can be regarded as finding ω̂1 and ω̂2 that
maximize the values of ŝ1, ŝ2 projected into the received
signals x1 and x2.

Finally, given the derived equations (11) and (13), the
objective function of minimizing (8) is equivalent to the
maximization of the objective function

ϕ(ω̂1, ω̂2) = ϕ1 + ϕ2, (15)

where

ϕ1 =
∥
∥
∥ŝH1 x1

∥
∥
∥
2

K
,

ϕ2 =
∥
∥
∥ŝH2 x2

∥
∥
∥
2

(M − K)
.

(16)

Since the transition time K is not known in advance,
every possible K = 1, . . . ,M and the estimates of the two
frequencies ω̂1, ω̂2 should be tried inML-based greedy search
approaches. TheML estimation of K can be performed using

K̂ = argmax
K

[
ϕ(ω̂1, ω̂2)

]
. (17)

3. Proposed Estimation Algorithm Based on
Maximum Likelihood Principle

The blind estimation scheme is developed in this section.
The processing of the proposed scheme is divided into the
synchronization phase and the tracking phase for parameter
estimation. The details are as follows.

3.1. Synchronization Phase. Based on the analysis in
Section 2, solving (8) is clearly a multivariable estimation
problem (K , ω1 and ω2). To estimate frequencies ω1 and ω2

accurately,K must be estimated correctly. On the other hand,
the accurate estimation of K depends on sufficiently accurate
estimates of frequencies ω1 and ω2. The most fundamental
approach for solving this problem is a maximum likelihood-
based greedy search approach, in which estimates are
made by scanning the frequency and the transition time
simultaneously, and finding the values of the frequency and
time thatmaximize (8). However, the greedy search approach
has an extremely large computational complexity although it
may yield the optimal solution in some sense.

To deliver competitive performance but reduce the
computational load, the proposed algorithm is developed
as an iterative approach by modifying the concept of
the alternative projection algorithm that was proposed by
Ziskind and Wax [14]. Essentially, the approach converts
a multivariable problem into a single variable problem
and thereby reduces the computational load. The algorithm
differs from that of Ziskind and Wax [14] and must be
adapted to the FHSS problem. The proposed approach does
not depend the complex matrix inverse calculation but

simply applies a basic vector computation (inner product),
which further reduces the computational complexity.

In iterating the proposed scheme, the maximization is
only conducted on one variable while the other variables are
held constant. For instance, K may be fixed first and the ω1

and ω2 that maximize the objective function are computed;
after ω1 and ω2 have been estimated, ω1 and ω2 are fixed and
then K is estimated. After many iterations, the estimates of
ω̂1, ω̂2, and K̂ can be obtained.

Since the transition time K is unknown in advance, an
initial value of K , denoted as K̂ (0), is set, where the number
in the superscript bracket stands for the iteration number
and the overscript with the sign of a hat stands for “estimated
value.” For example, K̂ (0) denotes the estimated value of K in
the initialization. Since K is unknown in advance, the initial
estimate K can be selected based on the minimization of the
initial estimation mean squared error in a statistical sense.
K is a random variable with a uniform distribution. The
expectation of the random variable is μ = E[K] = (M+1)/2.
Therefore, the initial estimate μminimizes the mean squared
error. The initial value K̂ (0) can be set to �(M + 1)/2�.

With the initial value of K known, the estimated values
of ω(1)

1 and ω(1)
2 can be obtained by the maximization as

ω̂(1)
1 = max

ω1

∥
∥
∥sH1

(

K̂ (0),ω1

)

x1
∥
∥
∥
2

K̂ (0)
,

ω̂(1)
2 = max

ω2

∥
∥
∥sH2 (M − K̂ (0),ω2)x2

∥
∥
∥
2

(

M − K̂ (0)
) .

(18)

Next, the estimated frequencies ω̂(1)
1 and ω̂(1)

2 are fixed, and
K̂ (1) is calculated by

K̂ (1) = argmax
K

[

ϕ(1)
(

K (1), ω̂(1)
1 , ω̂(1)

2

)]

, (19)

where

ϕ(1)
(

K (1), ω̂(1)
1 , ω̂(1)

2

)

= ϕ(1)
1

(

K (1), ω̂(1)
1

)

+ ϕ(1)
2

(

M − K (1), ω̂(1)
2

)

,
(20)

ϕ(1)
1

(

K (1), ω̂(1)
1

)

=
∥
∥
∥sH1

(

K (1), ω̂(1)
1

)

x1
∥
∥
∥
2

K (1)
,

ϕ(1)
2

(

M − K (1), ω̂(1)
2

)

=
∥
∥
∥sH2

(

M − K (1), ω̂(1)
2

)

x2
∥
∥
∥
2

(M − K (1))
.

(21)

Based on the above development, K̂ , ω̂1, and ω̂2 can be
estimated by fixing the values of the other parameters in
each iteration. Notably, the value given by (20) obtained by
utilizing the proposed processing procedure is monotonically
increasing during the iteration. After a few iterations, it
converges to a local maximum, and the local maximum may
or may not be the global maximum.

3.2. Robust Estimation in the Synchronization Phase.
Although the estimates of K , ω1, and ω2 can be obtained
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Figure 1: Situation with real K and estimated K̂ .

using the proposed scheme or otherML-based schemes, such
as the exhaustive search method, if the transition time of the
received signal is close to the boundary of the sampling data
block, then one of the frequency estimation errors would
be large, because the samples used in the estimation of one
frequency are small. To eliminate this problem and improve
performance, an attempt can be made to shift the sampling
data block for processing in each iteration. This action is
equivalent to adjusting the transition time K by shifting,
and this value is expected to be close toM/2 as in a balanced
situation. In each iteration, the sampling position of the data
block is shifted by

ΔK (i) = K (i) − M

2
. (22)

When the difference between the initial values of K̂
and true K is large, the estimation may be erroneous. For
example, only one estimated frequency would be obtained
because the duration of the signal with a single frequency
component would dominate the whole sample block. The
problem is remedied by making the following proposed
modification. Since (11) and (13) are derived by assuming
that the true K is known, both equations can be treated
as two separated functions of only one frequency signal in
each subblock such that ω1, ω2 can be estimated using (11)
and (13), respectively. However, in practice, the transition
time K in (11) and (13) is obtained from the estimation of
K̂ . If K̂ /=K , then one of the two subblocks contains both
frequencies ω1 and ω2 and the other subblock contains only
one frequency component. With reference to Figure 1, if K̂ >
K , (11) and (13) become

ω̂1 = arg
ω1

⎧
⎪⎨

⎪⎩
max

⎛

⎜
⎝

∥
∥
∥ŝH1 x1

∥
∥
∥
2

K̂

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (23)

ω̂2 = arg
ω2

⎧
⎪⎨

⎪⎩
max

⎛

⎜
⎝

∥
∥
∥ŝH2 x2

∥
∥
∥
2

(

M − K̂
)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (24)

where

x1 =
[
x1, x2,1

]T ,

x2,1 =
[

x(K + 1), . . . , x
(

K̂
)]T

,

x2 =
[
x2,2

]T ,

x2,2 =
[

x
(

K̂ + 1
)

, . . . , x(M)
]T

,

x2 =
[
x2,1, x2,2

]T ,

(25)

Since x1 in (23) contains both frequencies ω1 and ω2, the
expression in the maxω1{·} operation of (23) becomes

max
ω1

⎡

⎢
⎣

∥
∥
∥ŝH1 x1

∥
∥
∥
2

K̂

⎤

⎥
⎦

= max
ω1

⎡

⎢
⎣

∥
∥
∥ŝH1 [x1, x2,1]

T
∥
∥
∥
2

K̂

⎤

⎥
⎦

= max
ω1

⎡

⎢
⎢
⎢
⎣

∥
∥
∥
∥

∑K
k1=1 ŝ

H
1 (k1)x(k1) +

∑K̂
k2=K+1 ŝ

H
1 (k2)x(k2)

∥
∥
∥
∥

2

K̂

⎤

⎥
⎥
⎥
⎦

= max
ω1

⎡

⎢
⎢
⎣

∥
∥
∥
∥

∑K
k1=1 ŝ

H
1 (k1)(a1s1(k1)+v1(k1))

K̂

+

∑K̂
k2=K+1 ŝ

H
1 (k2)(a2s2(k2)+v2(k2))

∥
∥
∥
∥

2

K̂

⎤

⎥
⎥
⎥
⎦
.

(26)

According to (26), when K̂ /=K , the expression contains the
desired signal x1, noise, and an interference portion x2,1.
Therefore, if ω̂1 is estimated using (26), then the estimation
frequency error would depend on the difference |K̂ − K|
and the noise. Additionally, since (26) contains both ω1 and
ω2, two peaks that correspond to ω1 and ω2 are identified
in frequency scanning. Therefore, the initial value K̂ would
affect the performance of the estimation. To solve this
problem, K̂ can be adjusted close to K . The task is achieved
by performing the following operation.

If K̂ > 2K (or M − K̂ > 2(M − K)), then the estimate
of ω1 from the signal subblock may becomes ω2 (or ω2 to be
estimated erroneously as ω1). The results of the estimation
would have approximately the same value: ω̂1 ≈ ω̂2, (if
the channel gains of the two frequencies are assumed to be
approximately the same as for regular applied systems). To
solve the problem of ω̂1 ≈ ω̂2, a method is proposed in which
the valueK (0) is adjusted close toM/2 by shifting forward and
backward the received signal x with ΔK (0) = M/4, when the
frequency estimation condition ω̂1 ≈ ω̂2 is met. (The reason
for choosing ΔK (0) =M/4 will be explained below.)

Consider the situation K̂ > 2K . Since the goal is to obtain
K̂ = M/2 for a balanced situation, K̂ = M/2 is substituted
into K̂ > 2K yielding the inequality K < M/4. Hence, the
situation of ω̂1 ≈ ω̂2 may occur if K < M/4. The transition
time K of the received signal in a selected sample block
is a random variable. When 0 ≤ K ≤ M/4, the received
signal block should be adjusted backward by M/4 samples.
Following this adjustment, the transition time may fall in
the range of M/4 ≤ K ≤ M/2; a similar adjustment can be
applied when M − K̂ > 2(M − K). Substituting K̂ = M/2
yields 3M/4 ≤ K ≤ M. The received signal block should
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Figure 2: Received signal samples in registers.

be adjusted forward by M/4 samples, and the transition time
may fall in the rangeM/2 ≤ K ≤ 3M/4.

Finally, when ω̂1 ≈ ω̂2, K̂ > 2K or M − K̂ > 2(M − K)
may occur. The forward and backward adjustments of the
received signal block with ΔK (0) = M/4 yield the two shifted
versions of x:

x(0)f =
[

x
(

1− ΔK (0)
)

, . . . , x
(

M − ΔK (0)
)]T

,

x(0)b =
[

x
(

1 + ΔK (0)
)

, . . . , x
(

M + ΔK (0)
)]T

.

(27)

The block that has two peaks with similar power in the
frequency domain may be chosen to determine whether K (0)

is close to M/2 for the sample block. The decision rule is
expressed as

x(0)adj = Pxb1 − Pxb2
x(0)f
≷
x(0)b

Px f1 − Px f2 , (28)

where Pxb1 , Pxb2 , Px f1 , and Px f2 are the first and the second
largest power values in blocks xb and x f , respectively. The
estimates can be made by performing the DFT operations.

3.3. Tracking Phase. Once the timing of the received signal
is determined, the frequency can be estimated by receiving
every upcoming M sample. However, Owing to timing
jitter and possible hostile communication scenarios, it is
necessary to track the timing and frequencies of upcoming
data samples. The following processing step is proposed.
Figure 2 presents the process in which the received signal is
fed into the registers. The registries contain M samples and
two buffers, each associated with M/2 samples, which are
used to adjust ΔK (i).

Since the parameters ω̂1, ω̂2, and K̂ in the preceding block
are obtained, ω̂2 in the previous block becomes ω̂1 in the
upcoming data block. Hence, the estimated ω̂2 and K̂ are
adopted in the following estimation operation:

x(0) = [x(1), . . . , x(M)]T , (29)

K̂ (0) = M

2
, (30)

ω̂(1)
2 = arg

ω2

⎧
⎪⎨

⎪⎩
max

⎛

⎜
⎝

∥
∥
∥ŝH2 x2

∥
∥
∥
2

(

M − K̂ (0)
)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (31)

K̂ (1) = argmax
K

[

ϕ(1)
(

K (1), ω̂1, ω̂
(1)
2

)]

, (32)

ΔK (1) = K̂ (1) − K̂ (0) = K̂ (1) − M

2
, (33)

x(1) = [x(1 + ΔK), . . . , x(M + ΔK)]T . (34)

Since K̂ is adjusted close to M/2 in the synchronization
phase, in this phase, the received signal x has a balanced
block, and the iteration number i = 1 can be set. The
previous estimate of ω̂2 is used to estimate ω̂1 in the upcom-
ing block. Therefore, the estimation of ω̂1 is eliminated.
Notably, in (32), only M/2 samples are utilized to estimate
the frequency to reduce the computational load and save
time for the subsequent system operation. (In the hostile
communication environment, e.g., a jammer/interfering
operation may follow the estimation task.) However, if
accuracy of the frequency estimation is paramount, then
all M samples may be adopted to perform the frequency
estimation. It would rely on the type of the application, and
using whole M or M/2 sample for estimation is a trade-off
between the computational complexity and the estimation
accuracy.

Algorithm Summary. The steps in the proposed algorithm
are summarized as follows.

Step 1 (synchronization phase). (1) Receive 2M signal
samples [x(−(1/2)M), . . . , x(1(1/2)M)]T and input the data
to the registers and the buffers.

(2) Perform the preprocessing procedure to estimate
frequencies and K .

(A) Set K̂ (0) = M/2 and estimate the frequencies that
maximize

ω̂(1)
1 = max

ω1

⎛

⎜
⎝

∥
∥
∥sH1

(

K̂ (0),ω1

)

x1
(

K̂ (0)
)∥
∥
∥
2

K̂ (0)

⎞

⎟
⎠,

ω̂(i)
2 = max

ω2

⎛

⎜
⎝

∥
∥
∥sH2

(

M − K̂ (0),ω2

)

x2
(

M − K̂ (0)
)∥
∥
∥
2

(

M − K̂ (0)
)

⎞

⎟
⎠.

(35)

(B) If ω̂1 ≈ ω̂2, then shift x(0) forward and backward,
yielding two blocks,

x(0)f =
[

x
(

1− ΔK (0)
)

, . . . , x
(

M − ΔK (0)
)]T

,

x(0)b =
[

x
(

1 + ΔK (0)
)

, . . . , x
(

M + ΔK (0)
)]T

,

(36)

where ΔK (0) = M/4. Then, select one of the two
blocks by applying the following decision rule:

x(0)adj = Pxb1 − Pxb2
x(0)f
≷
x(0)b

Px f1 − Px f2 . (37)

Go to (A).
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(C) Estimate K using

K̂ (1) = argmax
K (1)

[

ϕ(1)
(

K (1), ω̂(1)
1 , ω̂(1)

2

)]

, (38)

where

ϕ(1)
(

K (1), ω̂(1)
1 , ω̂(1)

2

)

= ϕ(1)
1

(

K (1), ω̂(1)
1

)

+ ϕ(1)
2

(

M − K (1), ω̂(1)
2

)

.
(39)

(D) Shift by ΔK =M/2− K̂ (1)

x(1) = [x(1 + ΔK), . . . , x(M + ΔK)]T . (40)

(3) For i = 2 ∼ I , perform iterations to estimate
frequencies and K

(A) Set K̂ (i−1) = M/2 and estimate the frequencies that
maximize

ω̂(i)
1 = max

ω1

⎛

⎜
⎝

∥
∥
∥sH1

(

K̂ (i−1),ω1

)

x1
(

K̂ (i−1)
)∥
∥
∥
2

K̂ (i−1)

⎞

⎟
⎠,

ω̂(i)
2 = max

ω2

⎛

⎜
⎝

∥
∥
∥sH2

(

M − K̂ (i−1),ω2

)

x2
(

M − K̂ (i−1)
)∥
∥
∥
2

(

M − K̂ (i−1)
)

⎞

⎟
⎠.

(41)

(B) Estimate K using

K̂ (i) = argmax
K

[

ϕ(i)
(

K (i), ω̂(i)
1 , ω̂(i)

2

)]

, (42)

where

ϕ(i)
(

K (i), ω̂(i)
1 , ω̂(i)

2

)

= ϕ(i)
1

(

K (i), ω̂(i)
1

)

+ ϕ(i)
2

(

M − K (i), ω̂(i)
2

)

.

(43)

(C) Shift by ΔK =M/2− K̂ (i)

x(i) = [x(1 + ΔK), . . . , x(M + ΔK)]T . (44)

Step 2 (tracking phase). (1) Input the nextM samples to the
registers.

(2) Use the estimated parameter K̂ (0) = K̂ and ω̂1 (which
is set to the estimated ω̂2 of the previous block) to compute
the following.

(A) Find the frequency estimate that maximizes

ω̂(1)
2 = max

ω2

⎛

⎜
⎝

∥
∥
∥sH2

(

M − K̂ (0),ω2

)

x2
(

M − K̂ (0)
)∥
∥
∥
2

(

M − K̂ (0)
)

⎞

⎟
⎠. (45)

(B) Next, fix the frequency estimates and find K that
maximizes

K̂ (1) = argmax
K

[

ϕ(1)
(

K (1), ω̂1, ω̂
(1)
2

)]

. (46)

(C) Shift by ΔK =M/2− K̂ (1) to obtain

x(1) = [x(1 + ΔK), . . . , x(M + ΔK)]T . (47)

4. Analysis of Computational Complexity

The Big-Oh notation is a well-accepted approach for ana-
lyzing the computational complexities of algorithms and is
adopted. The computational complexity is analyzed in detail
as follows. Let N be the number of frequency scanning
points, which is related to the frequency scanning resolution
and is typically much larger thanM.

In the ML greedy search scheme, every possible K =
1, . . . ,M and the estimates of the two frequencies ω̂1, ω̂2

should be tried. For each possible transition time that is
used to evaluate maxK [ϕ(ω̂1, ω̂2)] in (17), the computational
complexity of the multiplication operations is O(N{(M −
K) + K}) = O(MN), where N is the number of points and
the two subvectors of sizes (M − K) and K are involved in
the operation. The computational complexity of the addition
operations is O(N × N) = O(N2) by evaluating ϕ1 + ϕ2
with all paired combinations of the arguments ω̂1 and ω̂2.
The selection of arguments in the maximum operation and
the other operations has lower complexities and can be
neglected when the Big-Oh notation is used. Accordingly,
the total computational complexity of the multiplication
operations is O(M2N) and that of the addition operations
is O(N2M).

The proposed approach consists of the synchronization
phase and the tracking phase. The multiplication and addi-
tion operations in the synchronization phase of the proposed
approach are analyzed as follows. Referring to the algorithm
summary, Step (A) has a computational complexity of
O(NM) and Step (B) has a computational complexity of
O(M2). Step (B) of the preprocessing adjustment requires
an extra O(M logM) complexity because of the two M-
point FFT operations. The iterations stop after a fixed small
number, which can be regarded as a constant I . Therefore,
the total computational complexity is O(M2 + MN) ≈
O(MN). The computational complexity is lower than that
of the ML-based method. Since the transition time K of
a received signal is random between 1 and M, wrong
estimates can be made in the unbalanced situation. Thus,
the adjustment scheme is proposed herein to prevent such
a situation.

Similarly, the computational complexity of the scheme in
the tracking phase isO(MN). Although it has the same order
of the computational complexity as the synchronization
phase; however, K has been adjusted close to M/2, and
only one frequency estimation task is performed. The
computational complexity is further reduced, since we can
estimate one frequency instead of two frequencies and search
for K that is aroundM/2 instead of all possibleM’s.

Real-time computing refers to hardware and software
systems that are subject to a real-time constraint. The Big-
Oh notation is well accepted for analyzing the computational
complexity of algorithms. The true computing time of an
algorithm varies with the processor, architecture, memory,
and operating system used to execute it. Additionally, the
computing power of processors continues to increase owing
to progress in VLSI technology. When the computational
complexity of an algorithm is polynomial time instead of
exponential time, that algorithm is feasible for real-time
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Figure 3: Number of iterations versus estimation error with K = 120. (a) Frequency estimation error. (b) K estimation error.

application. Therefore, the concept of computational com-
plexity is adopted herein to judge whether an algorithm
is a real-time algorithm. A similar evaluation approach
can be found in the literature. The use of parallel pro-
cessing can also reduce computing time. For example, if
N processers are used, each may be assigned to evaluate
the cost function of each frequency estimate, as in (18),
which can be done separately and in parallel. As analyzed
in this investigation, the computational complexity of the
proposed scheme isO(NM), which is polynomial time rather
than exponential time. An algorithm with a complexity of
O(MN) can be treated as feasible for real-time applica-
tion.

5. Simulations Results

In this section, numerous simulations are conducted to
demonstrate the efficiency of the proposed scheme. The
hopping frequencies are set to [30k 13k 23k 40k]Hz, and
the channel gains are set to [0.75 + 0.02i 0.8 − 0.05i 0.83 +
0.10i 0.79 + 0.02i]. The sampling frequency is fs = 100 kHz
and the hopping period isM = 128. The scanning frequency
resolution is 50Hz. To illustrate the convergence property
of the proposed algorithm, Figure 3 presents the frequency
error and the error in the estimation of the transition time
K versus the number of iterations for K = 120. The
simulation results indicate that it converges after about two
iterations.

To evaluate performance, the transition time is set to
three conditions, K = 56, K = 120, and random K ,
generated randomly between 1 and M with a uniform

distribution. The Cramer Rao lower bound (CRLB) for the
balance block (K = M/2) is also provided for comparison.
(It is derived in the appendix.).

Figure 4 compares the performance of the proposed
method with that of the ML-based greedy search method.
It reveals that the proposed algorithm has comparable
performance to that of the ML algorithm for a balanced
block with K = 56. Figure 4(a) shows that the proposed
method performs better than the ML algorithm in esti-
mating the f1 frequency, because the proposed algorithm
adjusts the sampling position to M/2 = 64, whereas
the ML algorithm has a sample length of 56 for the
estimation. The two algorithms perform similarly in this
balanced block situation. However, the proposed algorithm
outperforms the ML-based greedy search method in the
following unbalanced block situation and in cases of random
K .

Figure 5 presents the performance of the proposed
scheme and the ML-based algorithm for a transition time
close to the boundary of the data block, K = 120. As
indicated in the result, because of the lack of samples, the
ML-based algorithm yields large estimation errors, revealed
in Figure 5(b), while the proposed algorithm performs stably
as in the case of K = 56. In particular, in Figure 5(a), the
estimation error of the ML-based method is lower than the
CRLB because the data length K = 120 exceeds that, K = 64,
used in the CRLB.

In practice, transition time is a random variable for a
sampling data block. The transition time K is set randomly
between 1 and M with a uniform distribution. As indicated
in Figure 6, the performance of the proposed algorithm is
similar to that with K = 56.
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Figure 4: Root mean square estimation error versus SNR with K = 56. (a) RMSE of f1 estimate, (b) RMSE of f2 estimate, (c) RMSE of K
estimate, and (d) error probability of K .

To demonstrate the tracking capability of the pro-
posed processing scheme, the following simulation is per-
formed with a sequence of ten frequencies. The hopping
frequencies are [30k 13k 23k 40k 21k 45k 17k 31k 10k 37k
12k 29k]Hz. The complex channel gains for these fre-
quencies are [0.79 + 0.02i, 0.80 − 0.05i, 0.83 + 0.10i,
0.65 + 0.55i, 0.78 + 0.04i, 0.77 − 0.32i, 0.73 − 0.34i,
0.81 + 0.03i, 0.68 − 0.42i, 0.75 − 0.22i, 0.81 + 0.20i,
0.76 + 0.33i]. The channel gains are generated using the
expression (0.8 + a1) + (0.8 + a2)i, where a1 and a2 are
normally distributed with zero mean and a variance of 0.05.

The initial transition time K is set randomly between 1
and M. As shown in Figure 7, the frequency estimation
errors are less than 100Hz over the range of the evalua-
tion.

Figures 8(a) and 8(b) compare the experimental com-
plexities. The CPU is Intel(R) Core(TM)2 CPU 6320 at
1.86GHz, and the computing time of the proposed algo-
rithm is much lower than that of the ML-based greedy search
scheme. Notably, the computing time can be reduced by opti-
mizing the program codes and designing special computer
architectures for implementing the proposed scheme.
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Figure 5: Root mean square estimation error versus SNR with K = 120. (a) RMSE of f1 estimate, (b) RMSE of f2 estimate, (c) RMSE of K
estimate, and (d) error probability of K .

6. Conclusions

A robust blind frequency and timing estimation algorithm
is developed for frequency hopping systems. The proposed
scheme has a lower computational load than the ML-
based greedy search algorithm. The multivariable search
problem is reduced to a single variable search problem. The
algorithm does not require the simultaneous search of all
times and frequencies, and its performance is comparable
with that of the ML-based greedy search algorithm. The

problem of unbalanced situations (where K is close to
the boundary) is solved using the proposed algorithm.
The simulation results indicate that the performance is
relatively independent of transition time K , whereas the
pure ML-based algorithm fails to estimate the parameters.
The proposed algorithm can be adapted for tracking. The
tracking performance is also demonstrated by utilizing the
estimated parameters of K̂ and ω̂1 in the previous data block
and the computational task of estimating ω̂1 is omitted to
reduce complexity.
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Figure 6: Root mean square estimation error versus SNR with K = random. (a) RMSE of f1 estimate, (b) RMSE of f2 estimate, (c) RMSE of
K estimate, and (d) error probability of K .

Appendix

The likelihood function of the received signal is

L(a1,ω1, a2,ω2,K) = 1
(√

2πσ
)M e−(1/2σ

2)‖x−s‖2

= 1
(√

2πσ
)M e−(1/2σ

2)‖x1−a1s1‖2+‖x2−a2s2‖2 .

(A.1)

The random sizes of the subvectors that are associated with

the random parameter K make the derivation of the CRLBs
for all estimates very complicated. Alternatively, if the goal
is to put the received block into a balanced situation, K =
M/2 is assumed. The M-sample block is divided into two
M/2-sample blocks. Hence, the likelihood function can be
expressed as

L1(a1,ω1) = 1
(√

2πσ
)M/2 e

−(1/2σ2)‖x1−a1s1‖2 ,

L2(a2,ω2) = 1
(√

2πσ
)M/2 e

−(1/2σ2)‖x2−a2s2‖2 .
(A.2)
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Figure 7: Root mean square estimation error versus tracking frequency with initial K = random. (a) Frequency tracking and (b) RMSE of
frequency tracking.

The log-likelihood functions are

lnL1 = const− M

2
ln σ − 1

2σ2
‖x1 − a1s1‖2, (A.3)

lnL2 = const− M

2
ln σ − 1

2σ2
‖x2 − a2s2‖2. (A.4)

Equations (A.3) and (A.4) have similar forms. The CRLB that
is associated with (A.3) is derived as follows. (That associated
with (A.4) can be derived similarly). Differentiation of (A.3)
with respect to ω1 yields

∂ lnL1
∂ω1

= ∂

∂ω1

(

const− M

2
ln σ − 1

2σ2
‖x1 − a1s1‖2

)

= − 1
2σ2

(
∂(x1 − a1s1)

H

∂ω1
(x1 − a1s1)

+(x1 − a1s1)
H ∂(x1 − a1s1)

∂ω1

)

= − 1
2σ2

(

− a∗1
(

− jsH1 C
)

(x1 − a1s1)

+(x1 − a1s1)
H(−a1 jCs1

))

= − 1
2σ2

(

ja∗1 s
H
1 Cx1 − ja1a

∗
1 s

H
1 Cs1 − ja1xH1 Cs1

+ ja1a∗1 s
H
1 Cs1

)

= − 1
2σ2

(

ja∗1 s
H
1 Cx1 − ja1xH1 Cs1

)

= 1
2σ2

(

ja1xH1 Cs1 − ja∗1 s
H
1 Cx1

)

,

(A.5)

where

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

0 2 · · · 0

...
...

. . .
...

0 0 · · · K

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, K = M

2
. (A.6)

Further differentiating (A.5) yields

∂2 lnL1
∂ω2

1
= ∂

∂ω1

1
2σ2

(

ja1xH1 Cs1 − ja∗1 s
H
1 Cx1

)

= 1
2σ2

(

ja1xH1 C
(
jCs1

)− ja∗1
(

− jsH1 C
)

Cx1
)

= −1
2σ2

(

a1xH1 CCs1 + a∗1 s
H
1 CCx1

)

.

(A.7)
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Figure 8: Comparison of CPU time. (a) FixedM = 128 and N = 500 ∼ 4000 and (b) fixed N = 1000 andM = 128 ∼ 1024.

Substituting (A.7) into the Fisher information function
yields

I(ω1) = −E
[
∂2 lnL1
∂ω2

1

]

= 1
2σ2

E
[

a1xH1 CCs1 + a∗1 s
H
1 CCx1

]

= 1
2σ2

[

a1a
∗
1 s

H
1 CCs1 + a∗1 s

H
1 CCa1s1

]

= a21s
H
1 CCs1
σ2

= a21
σ2

K∑

k=1
k2

= a21
σ2

(
K(K + 1)(2K + 1)

6

)

.

(A.8)

Finally, the CRLB is given by

varCRLB = 1
I(ω1)

= −σ2

a21

(
6

K(K + 1)(2K + 1)

)

.

(A.9)
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