
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 172751, 12 pages
doi:10.1155/2010/172751

Research Article

Optimized Paraunitary Filter Banks for Time-Frequency
Channel Diagonalization

Ziyang Ju, Thomas Hunziker, and Dirk Dahlhaus

Communications Laboratory, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
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We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generaliza-
tion of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers,
the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent
error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive
a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS) channels,
which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of
tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of
windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem.
The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors,
and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed
channel diagonalization is discussed which may be essential for future reconfigurable radio systems.

1. Introduction

Motivated by the heterogeneity of today’s world of wireless
communications—which includes cellular mobile radio sys-
tems of the second and third generations and beyond, wire-
less local and personal area networks, broadband wireless
access systems, digital audio and video broadcast, emerging
peer-to-peer radio, and so forth—particular attention is
given to reconfigurable radio architectures. Essential in
this context are radio resource management solutions on
the higher layers and the ability to comply with a range
of different air interfaces on the physical layer. Devices
comprising the logic for handling multiple air interfaces in
the form of parallel implementations are widely available.
However, in view of the still increasing number of standards,
monolithic transceiver architectures are desirable which
enable a uniform processing of different signals by means of
reconfigurable multipurpose signal processing units.

A major challenge in the design of a universal baseband
receiver architecture is posed by the dispersive radio channel.
For dealing with signal dispersion, fundamentally different

approaches are followed in traditional radios depending on
the type of modulation. Receivers for single-carrier signals
typically model the channel as a tapped delay line. For
known coefficients of the delay line, the information in the
transmitted signal can be recovered by means of a matched
filtering followed by a sequence detector or using instead an
equalizer followed by a simple detector. The complexity of
the coefficient estimation and detection schemes increases
with the delay dispersion and thus with the number of taps.
Orthogonal frequency-division multiplexing (OFDM) can
evade the need for complex equalizers in high data rate
systems. The cyclic extensions in OFDM signals facilitate a
frequency domain representation of the multipath channel
in the form of parallel single-tap lines. On the basis of the fre-
quency domain signal description resulting from the block-
wise Discrete Fourier Transform (DFT), the signal mapping
by multipath channels can be represented as diagonal matri-
ces. This channel diagonalization enables straightforward
demodulation and coefficient estimation and has, along with
the availability of Fast Fourier Transform (FFT) algorithms,
led to the popularity of OFDM.
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The aforementioned approach for a simple channel
inversion based on a frequency domain description is not
limited to OFDM receivers. Single-carrier modulation with
frequency domain equalization (FDE) can achieve similar
performance as OFDM if a proper cyclic prefix is appended
to each block of signals [1]. In [2] the computational
complexities of time and frequency domain equalizers are
compared and it is shown that FDE is simpler when the
length of the stationary channel impulse response exceeds
the sample time by a factor of 5 or more. Processing signals
without cyclic prefix result in errors at the block boundaries.
These errors have a limited impact at sufficiently large block
sizes, which makes FDE an interesting alternative for code-
division multiple access receivers [3, 4].

The limitations of OFDM receivers and FDE to time-
invariant channels and certain signal formats can be over-
come by resorting to alternative signal representations. A
natural choice for the signal transform is the discrete-time
Gaborexpansion[5]basedonasystemoftime-frequency (TF)
shifted versions of a certain window function. Even though a
TF domain channel diagonalization based on such a Gabor
expansion is approximative in the general case of time-
variant channels and aperiodic signals, for the typical under-
spread channels encountered in mobile radio scenarios the
inherent model error can be limited to a usually acceptable
level by choosing an adequate window underlying the signal
transform [6].

The transform of discrete-time signals into the TF
domain can be accomplished by DFT filter banks, for which
similarly efficient FFT-based implementations are available
as for plain DFTs [7]. There is plenty of literature on
filter bank design in the context of generalized multicar-
rier/multitone modulation in wireless/wired communica-
tions. Replacing the block-wise inverse DFT and DFT in the
transmitter and receiver, respectively, by more general filter
banks is a way to get rid of the rigid framework of rectangular
windows and cyclic prefixes in OFDM systems. Interference
between adjacent sub-bands or multicarrier symbols can be
avoided, or at least limited, by choosing appropriate transmit
pulses. Filter banks for transmission over dispersive channels
with limited interchannel and intersymbol interference are
designed in [8–14].

The optimization of filter banks for specific objective
functions and constraints can sometimes be formulated as
a convex optimization (CO) problem [12]. In [15], CO
methods are employed for the design of a two-channel
multirate filter bank, in [16] for the design of pulse shapes
which minimize intercarrier interference due to frequency
offsets in OFDM systems, in [17] for finding optimized
prototype filters for filtered multitone modulation used in
digital subscriber line systems, and in [18] for the design of
filter banks for sub-band signal processing under minimal
aliasing and induced distortion. Semidefinite program-
ming (SDP), a branch of CO for which efficient numerical
solution methods are available, was employed in [19] for the
design of a linear phase prototype filter with high stopband
attenuation for cosine-modulated filter banks. In [20] two-
channel filter banks are optimized under similar criteria by
SDP.

In this paper we are not concerned with the design
of transmit pulses. Rather, we optimize filter banks in
the context of channel diagonalization. We are interested
exclusively in paraunitary filter banks, which are related to
the concept of tight Gabor frames [21]. The signal transform
associated with discrete-time tight Gabor frames fulfills Par-
seval’s identity. This property is crucial for flexible receivers
as it lets the correlation between two time domain signals be
computed based on the respective TF signal representations.
A main concern of this paper is the design of tight Gabor
frames facilitating TF domain channel diagonalization with
minimal model error for given channel conditions. More
specifically, we minimize the mean-squared error (MSE)
resulting from the diagonalization of random channels with
known second-order statistical properties, complying with
the wide-sense stationary uncorrelated scattering (WSSUS)
model, with respect to the TF window function. As we
showed in [6], window functions minimizing the MSE
appearing in the TF domain can be computed by SDP. In this
paper we directly focus on the more relevant MSE in the time
domain signal. We show that for weak assumptions on the
channel statistics, the optimization problem can likewise be
turned into a tractable form through semidefinite relaxation.
In order to be able to constrain the windows to constitute
tight frames, we extend the parameterization of tight Gabor
frames presented in [22]. Optimized windows can then be
computed off-line for different channel conditions encoun-
tered by reconfigurable receivers, such as the generic matched
filter-based inner receiver discussed in this paper.

1.1. Outline of This Paper. In Section 2, the mathematical
concepts for TF representation and processing of signals
are introduced. A parameterization of tight Gabor frames,
needed for the constrained optimization in Section 5 is
presented in Section 3. In Section 4, TF domain channel
diagonalization is discussed, resulting in a certain error in the
case of doubly dispersive channels. As shown in Section 5,
semidefinite relaxation lets the window design problem be
formulated as a CO problem. Numerical results are shown
in Section 6 for different channel conditions. In Section 7, a
generic matched filter architecture incorporating the channel
diagonalization is presented. Finally, conclusions are drawn
in Section 8.

1.2. Notation. We enclose the arguments of functions
defined on a discrete domain Λ in square brackets in order to
distinguish them from functions defined on Rn. The Hilbert
space of the square summable functions f : Λ → C is
denoted as L2(Λ), and the associated inner product 〈 f , g〉
and L2-norm ‖ f ‖ are given by

∑
i∈Λ f [i]g∗[i] and

√
〈 f , f 〉,

respectively, where the asterisk in the superscript denotes
complex conjugation. Furthermore, we use ∗ to denote
convolution, and � for the one-by-one multiplication of
two compatible functions f and g, that is, h = f � g
corresponds to h[i] = f [i]g[i] for all i ∈ Λ. Vectors and
matrices are denoted by boldface characters. The transpose
and Hermitian transpose of a matrix X are denoted as
XT and XH , respectively, X̃(z) stands for the paraconjugate
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of a polynomial matrix X(z) (X̃(z) is obtained from X(z)
by transposing it, conjugating all of the coefficients of the
rational functions in X(z), and replacing z by z−1 [7].), tr(·)
for the trace, and IN denotes the identity matrix of size N .
The nth element of the mth row of a matrix X is represented
as [X]m,n. Also, E[·] denotes the expected value, R(·) and
I(·) represent the real and imaginary parts, respectively, of
complex arguments, mod the modulo operation, j �

√−1,
and 
x� � max{n ∈ Z : n ≤ x}.

2. DFT Filter Banks and Discrete-Time
Gabor Frames

In this section, we introduce signal representation concepts
needed subsequently. Some important properties of discrete-
time Gabor frames are recapitulated with an emphasis on
tight frames and the relationship to DFT filter banks. For
more insight into Gabor analysis and filter bank theory the
reader is referred to the rich literature, for instance [7, 23–
26].

Let N and K be two positive integer constants and
Λ � Z×{0, . . . ,K − 1}. Given a window function g ∈ L2(Z),
the set

{
g�,m[k] : (�,m) ∈ Λ

}
(1)

with

g�,m[k] � g[k − �N] exp
(
j2π(k − �N)m

K

)

(2)

is referred to as a Gabor system in L2(Z). The elements of
the Gabor system can be associated with the grid points
{(�N , 2πm/K) : (�,m) ∈ Λ} of a lattice overlaying the TF
plane Z× [0, 2π). If there exist two positive constants A0 and
B0 such that

A0‖x‖2 ≤
∑

(�,m)∈Λ

∣
∣
〈
x, g�,m

〉∣
∣2 ≤ B0‖x‖2 ∀x ∈ L2(Z),

(3)

then (1) represents a discrete-time Gabor frame. A necessary
condition for (3) is that N/K ≤ 1.

For an arbitrary signal x ∈ L2(Z) the inner products
of x[k] with every element of the system (1) form a
linear TF representation. In the following, the corresponding
transform onto L2(Λ) is represented by the analysis operator

G : x �−→ X , X[�,m] = 〈x, g�,m
〉

, (�,m) ∈ Λ. (4)

The mapping (4) can be implemented by a K-channel DFT
(analysis) filter bank with a prototype filter with impulse
response g∗[−k] followed by a down-sampling by a factor
N [21]. Conversely, a synthesis operator G∗ can be defined
based on (1) which maps an arbitrary TF representation
Y ∈ L2(Λ) onto an element of L2(Z) according to

G∗ : Y �−→
∑

(�,m)∈Λ
Y[�,m]g�,m[k]. (5)

The signal synthesis (5) can be implemented by an up-
sampling by a factor N followed by a K-channel DFT
(synthesis) filter bank with a prototype filter with impulse
response g[k].

If (3) holds with A0 = B0 = 1 then (1) represents a
(normalized) tight Gabor frame and G∗(Gx) = x for all
x ∈ L2(Z). These special Gabor frames obey a generalized
Parseval’s identity

‖x‖2 = ∥∥Gx∥∥2 ∀x ∈ L2(Z). (6)

Furthermore, the inner product 〈x, y〉 of any two x, y ∈
L2(Z) can be computed on the basis of the respective TF
representations Gx and Gy, that is,

〈x, y〉 = 〈Gx,Gy
〉 ∀x, y ∈ L2(Z). (7)

Henceforth we assume that (1) represents a tight Gabor
frame. We note that the range Fg � {(Gx)[k] : x ∈ L2(Z)}
of the operator G is a subspace of L2(Λ), and the mapping
G : L2(Z) → Fg is an isometry. If N/K < 1 the operator GG∗

represents the orthogonal projection from L2(Λ) onto Fg . As
a direct consequence,

∥
∥G∗X

∥
∥2 ≤ ‖X‖2 ∀X ∈ L2(Λ) (8)

and ‖g‖2 = N/K .
Tight Gabor frames are associated with paraunitary DFT

filter banks. To enable the design of windows with favorable
properties, for instance in regard to TF concentration, it
is often necessary to indeed choose N < K , resulting
in oversampled filter banks. Besides of available efficient
implementations of paraunitary DFT filter banks, the prop-
erties (6) and (7) are of prime interest for reconfigurable
baseband receivers since they allow operations for the signal
demodulation, such as signal energy computations and
crosscorrelations with reference waveforms, to be performed
directly in the TF domain.

3. Parameterization of Tight Gabor Frames

The conditions under which (1) represents a tight Gabor
frame can be formulated via the polyphase representation.
Let M denote the least common multiple of N and K , and
define L and J such that LN = M and JK = M. The
M-component polyphase representation of the z-transform
G(z) =∑∞

k=−∞ g[k]z−k of the window g[k] reads

G(z) =
M−1∑

j=0

z− jRj

(
zM
)

, (9)

where

Rj(z) =
∑

k∈Z
g
[
j + kM

]
z−k. (10)

Furthermore, the polyphase matrix GP(z) of size K × N
associated with the DFT filter bank implementing (4) can be
expressed as [22]

GP(z) = FKV(z) (11)
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with FK denoting the DFT matrix of size K (defined as
[FK ]m,n = e−j2π(m−1)(n−1)/K ) and

V(z)

�

⎡

⎢
⎣IK · · · IK︸ ︷︷ ︸

J

⎤

⎥
⎦diag

(
R0

(
zL
)

, . . . ,RM−1

(
zL
))

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IN

z−1IN

...

z−(L−1)IN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(12)

Here, diag(d1, . . . ,dN ) is the diagonal matrix with diagonal
elements d1, . . . ,dN . The Gabor system (1) represents a tight
frame in L2(Z) if and only if the polyphase matrix GP(z)
is paraunitary with G̃P(z)GP(z) = IN . Or, equivalently, if
and only if the polynomial matrix V(z) is paraunitary with
Ṽ(z)V(z) = K−1IN , since FHK FK = KIK .

We observe that [V(z)]m,n = 0 if ((m − n) mod B) /= 0,
where B = N/J = K/L. Consequently, V(z) is paraunitary
if and only if the B matrices V0(z), . . . ,VB−1(z) of size
L× J , which comprise the possibly nonzero elements of V(z)
according to [Vb(z)]m,n = [V(z)]1+B(m−1)+b,1+B(n−1)+b, are
all paraunitary. As follows from (12) the elements of the B
matrices are given as

[Vb(z)]m,n = z−
 f (m,n)/J�RB f (m,n)+b

(
zL
)

, b = 0, . . . ,B − 1

(13)

with f (m,n) � ∑J−1
j=0

∑L−1
�=0 (m + jL − 1)δm+ jL,n+�J and δi, j

denoting the Kronecker delta.
Note that if the sequences (
 f (m,n)/J�)m=1,...,L were

identical for all column indices n = 1, . . . , J except for
differing offsets, then the factor z−
 f (m,n)/J� could be omitted
in (13) without affecting the condition Ṽb(z)Vb(z) = K−1IJ .
Replacing some Rm(zL) by the equivalent z−LRM+m(zL) is a
way to align the sequences. Having this in mind, we define B
matrices W0(z), . . . ,WB−1(z) of size L× J according to

[Wb(z)]m,n = RB f ′(m,n)+b(z), b = 0, . . . ,B − 1 (14)

with the index map

f ′(m,n) �

⎧
⎪⎨

⎪⎩

f (m,n) if f (m,n) ≥ f (1,n)

f (m,n) +
M

B
if f (m,n) < f (1,n).

(15)

Since the polynomial matrices V0(z), . . . ,VB−1(z) are
paraunitary if and only if the modified matrices
W0(z), . . . ,WB−1(z) are paraunitary, the Gabor system
(1) represents a tight frame in L2(Z) if and only if

W̃b(z)Wb(z) = K−1IJ ∀b ∈ {0, . . . ,B − 1}. (16)

We note that the size of each polynomial matrix Wb(z),
their number B, and the index map f ′(m,n) are fully
determined by N and K . Given the latter two constants,
any tight Gabor frame is uniquely defined by an instance

P = 1:

P = 2:

0 B 10B 20B 30B
k

Figure 1: Support of the window functions g[k] representable by
matrices W0(z), . . . ,WB−1(z) with maximal polynomial order P − 1
for J = 3, L = 4, P = 1, 2.

of W0(z), . . . ,WB−1(z) satisfying (16), where the association
of the elements of the B matrices with the samples of the
window g[k] is defined by (14) and (10). The length of the
window is related to the polynomial orders of the matrices
W0(z), . . . ,WB−1(z). We define P as the maximal polynomial
order of the B matrices plus 1. Thus, in the case P = 1, all
elements of the matrices are scalars, and the support of the
representable functions g[k] is limited to {B f ′(m,n) + b :
m = 1, . . . ,L;n = 1, . . . , J ; b = 0, . . . ,B−1}. This set is usually
not of the form Z ∩ [a0, b0] for some a0 ≤ b0 but exhibits
“gaps” as illustrated in the example of Figure 1. By increasing
P longer windows can be found.

4. Time-Frequency Channel Diagonalization

The mapping H : L2(Z) → L2(Z) of an input signal x[k]
onto the signal y[k] � (Hx)[k] at the output of a linear
time-variant channel can be expressed as

y[k] =
∞∑

q=0

cH
[
k, q
]
x
[
k − q

]
, (17)

where cH [k, q] denotes the time-variant impulse response.
We consider random channels where cH [k, q] represents
a two-dimensional zero-mean random process complying
with the WSSUS model. The second-order statistics of
cH [k, q] are determined by the time correlation function
φt[kΔ] and the delay power spectrum Sdelay[q] according to

E
[
cH
[
k, q
]
c∗H
[
k′, q′

]] = φt[k − k′]Sdelay
[
q
]
δq,q′ . (18)

The delay power spectrum is related to the frequency
correlation function φf (ωΔ) through

φf (ωΔ) =
∞∑

q=0

Sdelay
[
q
]
e−jωΔq. (19)

Of interest in the context of TF signal processing is the
time-variant transfer function

CH (k,ω) =
∞∑

q=0

cH
[
k, q
]
e−jωq, (20)

reflecting the TF selectivity of a channel realization. In a
digital receiver a realization of a doubly dispersive channel
can be represented by a sampled versionH[�,m] ofCH (k,ω),
defined by

H[�,m] = CH

(

�N ,
2πm
K

)

, (�,m) ∈ Λ. (21)
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x[k]
G̃0(z) N ↓

G̃1(z) N ↓
...

...
...

G̃K−1(z) N ↓

Analysis filter bank

H(l, 0)

H(l, 1)
...

H(l,K − 1)

N ↑

N ↑
...

N ↑

G0(z)

G1(z)

...

GK−1(z)

ŷ[k]

Synthesis filter bank

...

Figure 2: TF domain channel diagonalization with Gk(z) �
G(zej2πk/K ), k = 0, . . . ,K − 1.

For compatibility with the TF signal representations intro-
duced in Section 2, the sampling intervals N and 2π/K
are chosen in line with those for the Gabor system (1).
The time-variant transfer function represents the complex-
valued channel gain over time and frequency. Hence, given
the TF representation X � Gx of a signal x[k] at the channel
input, it is straightforward to approximate the signal y[k] at
the channel output as

ŷ = G∗(H � X). (22)

The approximation of a linear operator by G∗(H � G(·)),
that is, a concatenation of an analysis operation, an element-
wise multiplication, and a synthesis operation, appears in
the literature under the name Gabor multiplier [27]. Such an
approximation is suitable for operators that do not involve
TF shifts of large magnitude (i.e., underspread operators).
Figure 2 shows an implementation of (22) by filter banks,
where G(z) denotes the z-transform of g[k]. The TF channel
diagonalization offers several advantages. The flexibility in
the choice of the sampling intervals N and 2π/K can be
used for the adaptation to different channel conditions
or signal formats, or the limitation of the effort for the
coefficient estimation in certain receivers. Furthermore,
the channel diagonalization facilitates scalable and efficient
receiver processing known from OFDM.

As a result of the sampling of CH (k,ω) the model (22)
is usually only approximative, and ŷ[k] is an approximation
of the channel output. The accuracy of ŷ[k] depends on the
channel characteristics and the underlying Gabor frame. We
may expect the model error to be limited if every elementary
function g�,m[k] is concentrated around (�N , 2πm/K) in the
TF plane such that CH (k,ω) is essentially constant within
the sphere of g�,m[k]. Window functions fulfilling this can be
designed for the typical underspread channels encountered
in mobile radio scenarios by CO, as shown in Section 5.

The error from the channel diagonalization is given by

ŷ[k]− y[k] = (G∗(H � Gx
))

[k]− (Hx)[k]. (23)

In order to remain general in regard to signal and channel
properties, we consider the error signal under the assump-
tions of

(i) a white random signal at the channel input,

(ii) a random channel H complying with the WSSUS
model and unit average channel gain (i.e., φf (0) =
φt[0] = 1).

To formulate the resulting MSE, we introduce the random
signal xQ[k] being subject to E[xQ[k]] = 0 and

E
[
x∗Q[k]xQ[k′]

]
=

⎧
⎪⎨

⎪⎩

δk,k′ for k, k′ ∈
[

−Q

2
,
Q

2

]

0 otherwise
(24)

with Q an even integer. The error signal corresponding to the
truncated white random input signal xQ[k] reads

εQ[k] �
(
G∗
(
H � GxQ

))
[k]− (HxQ

)
[k]. (25)

The error signal sample energy relative to the unit average
sample energy of the desired signal, in the following
termed relative mean-squared sample error (RMSSE), can be
expressed as

εRMSSE
(
g
)= lim

Q→∞
E

⎡

⎣ 1
Q

Q/2∑

k=−Q/2

∣
∣εQ[k]

∣
∣2

⎤

⎦

= lim
Q→∞

E

⎡

⎣ 1
Q

Q/2∑

k=−Q/2

∣
∣
∣
∣
∣
∣

∑

(�,m)∈Λ
H[�,m]

〈
xQ, g�,m

〉

×g�,m[k]− (HxQ
)
[k]

∣
∣
∣
∣
∣

2
⎤

⎦.

(26)

Making use of the above assumptions, the RMSSE can be
written as

εRMSSE
(
g
) = 1 +

K

N

⎛

⎝
∑

(�,m)∈Λ
φt[�N]φf

(
2πm
K

)
∣
∣
〈
g, g�,m

〉∣
∣2

−2R
(〈(

g ∗ Sdelay

)
� φt, g

〉)
⎞

⎠

(27)

as shown in the appendix. Having formulated both condi-
tions for the window g[k] to define a tight Gabor frame
(in Section 3) and the error resulting from the channel
diagonalization based on g[k], we can now turn to window
optimization.

5. WindowDesign

Let us represent the window to be optimized in vector form
g � [g[a0] · · · g[b0]]T, choosing a0, b0 ∈ Z such that [a0, b0]
comprises the support of g[k] expressed in Section 3. We
consider only real-valued windows. Additionally, in order to
eventually arrive at a CO problem, we impose the following
restrictions on the channel statistics.

(i) The time correlation function is subject to φt[�] ≥ 0
for all � ∈ Z, as being the case for two-sided
exponentially decaying and many other symmetrical
Doppler power spectra.
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(ii) The frequency correlation function fulfills
φf (2πm/K) + φf (−2πm/K) ≥ 0 for all
m ∈ {0, . . . ,K − 1}, as, for instance, in the case
of exponentially decaying delay power spectra.

We note that |〈g, g�,m〉|2 can be expressed as (gTR(C�,m)g)2 +
(gTI(C�,m)g)2 and R(〈(g∗Sdelay)�φt, g〉) as gTR(D0)g with
appropriate square matrices C�,m and D0. As a consequence,
the objective function (27) can be expressed in the form

εRMSSE
(
g
) =

F∑

k=1

ck
(
gTCkg

)2
+ gTDg + 1 (28)

for some F ∈ N depending on the support of g[k], where
C1, . . . ,CF ,D are real matrices and the constants c1, . . . , cF are
positive given the above restrictions.

Next, we need to incorporate the constraints under which
εRMSSE(g) will be minimized. In order to formulate the
constraints (16) on the window in the time domain, it is
helpful to permute the samples in g. Let us introduce a
window (h[0], . . . ,h[T − 1]) of length T = LJPB defined as

h[k] = g
[
B f ′(m,n) + b + Mp

]
, k = 0, . . . ,T − 1 (29)

with m = (k mod L) + 1, n = 
(k mod LJ)/L� + 1,
p = 
(k mod LJP)/(LJ)�, and b = 
k/(LJP)�. The matrices
W0(z), . . . ,WB−1(z) and the samples of the permuted win-
dow are related through

[Wb(z)]m,n =
P−1∑

p=0

h
[
L
(
J
(
bP + p

)
+ n− 1

)
+ m− 1

]
z−p.

(30)

With (30) we can now translate the polyphase domain
constraints (16) into constraints on the permuted window
defined by h � [h[0] · · ·h[T − 1]]T .

(1) Case B = 1. There are J constraints of form
hTA�h = K−1. The �th diagonal matrix A� of size LJP × LJP
is defined as

[A�]m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m = n,

m ∈
⋃

p=0,...,P−1

{(
pJ + � − 1

)
L + 1,

. . . ,
(
pJ + �

)
L
}

,

0 otherwise,

(31)

with � ∈ {1, . . . , J}. Additionally, there are J2P − (J + 1)J/2
constraints of form hTA�h = 0. The corresponding matrices
AJ+1, . . . ,AJ2P−(J−1)J/2 can be defined as the elements of the set
resulting from deleting duplicate elements and zero-matrices
from
{
A ∈ RLJP×LJP given as [A]m,n

= [A�]m− jL,n + [A�]m,n− jL : j = 1, . . . , JP; � = 1, . . . , J
}

(32)

where in (32) we let [A�]m,n equal zero if either
m /∈{1, . . . ,LJP} or n /∈{1, . . . ,LJP}.

(2) Case B > 1. From each of the above-defined matrices
A1, . . . ,AJ2P−(J−1)J/2, B unique block diagonal matrices of
dimension T × T are reproduced which contain the original
matrix as one of the B diagonal blocks of dimension
LJP × LJP. Hence, there are W � B(J2P − (J − 1)J/2)
constraints in total. The constraint matrices are mutually
orthogonal in the sense that tr(A�AT

m) = 0 for � /=m.
We can now formulate the optimization problem in the

form

min
h∈RT

F∑

k=1

ck
(
hT Ĉkh

)2
+ hTD̂h

subject to hTA�h = d� , � = 1, . . . ,W ,

(33)

where Ĉ1, . . . , ĈF , D̂ are the matrices resulting from
C1, . . . ,CF ,D by permuting the rows and columns in
accordance with (29), and d� ∈ {K−1, 0}. This problem is
difficult to tackle for large T . Let us thus introduce H � hhT

and reformulate the optimization problem as

min
H∈ST

F∑

k=1

cktr2
(
HĈk

)
+ tr
(
HD̂
)

subject to

⎧
⎨

⎩

tr(HA�) = d� , � = 1, . . . ,W

rank(H) = 1,

(34)

where ST denotes the vector space of symmetric matrices of
dimensionT×T . In (34) we have a convex objective function,
however, the set {H ∈ ST : rank(H) = 1} is nonconvex.
Resorting to semidefinite relaxation, we obtain

min
H∈ST

F∑

k=1

cktr2
(
HĈk

)
+ tr
(
HD̂
)

subject to

⎧
⎨

⎩

tr(HA�) = d� , � = 1, . . . ,W

H � 0

(35)

with H � 0 denoting that H is positive semidefinite. Since
{H ∈ ST : H � 0} is a convex subset of ST , we now
have a CO problem [28]. Having found a matrix H0 ∈ ST

corresponding to a global minimum of (35), we have two
possible cases. If rank(H0) = 1, a solution h0 of (33) is
readily obtainable from h0hT0 = H0 and the optimal window
gCO[k] is found through (29). If rank(H0) > 1, which we
observe in most of the cases, rank reduction methods must
be employed. We compute a possibly suboptimal window
gCO[k] by the following three steps.

(i) In order to reduce the rank to 1, we resort to the
matrix Ĥ0 = (N/K)v0vH0 composed by the dominant
eigenvector v0 of H0, since Ĥ0 is the matrix nearest to
H0 in terms of the Frobenius norm [29].

(ii) We translate
√
N/Kv0 into a window ĝ[k] taking the

sample permutation defined in (29) into account.

(iii) We finally obtain gCO[k] by the algorithm [30], which
yields a window defining a tight frame and at the
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same time minimizes the distance to a given window
(i.e., ĝ[k]) in terms of the L2-norm.

Employing steepest descent methods for solving (35)
may result in very slow convergence, whereas alternative
methods may not be applicable when the number of dimen-
sions is large. Neglecting the quadratic terms in the objective
function leads to the simplified optimization problem

min
H∈ST

tr
(
HD̂
)

subject to

⎧
⎨

⎩

tr(HA�) = d� , � = 1, . . . ,W

H � 0.

(36)

As shown in [6], the linear objective function tr(HD̂)
reflects the mean-squared deviation of H �Gx from G(Hx),
that is, the model error in the TF domain. Problems of
the form (36) are dealt with by SDP, a subfield of CO.
For the efficient solution of these optimization problems
a number of sophisticated software packages are widely
available. However, because generally (H�Gx−G(Hx)) /∈Fg

the windows resulting from solving (36) do not minimize
the time domain error signal, the magnitude of which
determines the performance of the channel diagonalization.

6. Numerical Results

We consider a WSSUS channel with an exponentially decay-
ing delay power spectrum, the sampled version of which
reads

Sdelay
[
q
] = u

(
q
)
(

1− exp
(

− 1
τRMS

))

exp
(

− q

τRMS

)

(37)

with u(q) denoting the unit step function and τRMS the root
mean-squared (RMS) delay spread [31]. As for the Doppler
power spectrum, a two-sided exponentially decaying shape is
assumed, which results in the time correlation function

φt[kΔ] = 1

1 + 2π2ν2
RMS|kΔ|2

, (38)

where νRMS represents the RMS Doppler spread. Since
choosing an oversampling factor K/N larger than one
increases the degrees of freedom in the window design, we
restrict our attention to scenarios with K > N , involving
oversampled filter banks. Figure 3 shows optimized window
functions for different channel conditions and their Fourier
transforms. The waveforms were obtained numerically by
solving (35) using interior point methods [28] for N = 24,
K = 32, P = 2 amounting to a window length of 240
samples. An RMS delay spread τRMS of 3 samples and
an RMS Doppler spread νRMS of 0.001 samples−1 were
assumed in Figure 3(a), while τRMS = 3, νRMS = 0.01
in Figure 3(b). The two shown optimized windows achieve
RMSSEs (27) of −16.01 dB and −8.44 dB. Figures 3(c) and
3(d) show the Fourier transforms of the optimized pulses
in (a) and (b), respectively, versus the normalized frequency
ω/2π. Obviously, the optimized waveforms become more

concentrated in time domain as the Doppler spread increases
(see Figure 3(b) versus Figure 3(a)). For increasing Doppler
spreads the coherence time of the channel decreases, and the
temporal support of the optimized window is reduced in
order to limit the RMSSE.

The RMSSEs (27) achievable by optimized windows
are shown in Figure 4 for the same lattice constants and
similar types of delay/Doppler power spectra. The RMS
delay spread τRMS ranges between 0.5 and 8 samples while
the RMS Doppler spread νRMS equals 0.01 samples−1. For
every considered τRMS a window gCO[k] was obtained by
numerically solving the CO problem (35), and a window
gSDP[k] by solving (36) through SDP, where both approaches
required the above-mentioned additional steps for rank
reduction. The global minimum of the objective function in
(35) at H = H0, that is prior to the rank reduction, serves
as a lower bound in the figure. The offsets of εRMSSE(gCO)
and εRMSSE(gSDP) from the lower bound reflect the impact
of the rank reduction. Additionally, the figure shows the
RMSSEs resulting from choosing a window gRRC[k] with a
root-raised-cosine (RRC) shaped magnitude spectrum with
width 2π/K and roll-off factor K/N − 1. We choose this
window function for comparison because it does constitute a
tight Gabor frame while exhibiting superior TF localization
properties compared to rectangularly shaped windows for
instance. Finally, for the verification of εRMSSE(gCO) the
signals y = Hx and ŷ = G∗(H � (Gx)) were also obtained
by simulations involving filter banks based on the optimized
windows gCO[k] and random signal and WSSUS channel
generators, and the resulting error signal analyzed.

Obviously, solving (35) leads to better windows than
solving (36). The considerable offset of the RMSSEs from
the lower bound for smaller τRMS indicates that here the
rank reduction has a significant impact on the windows. We
observe that rank reduction generally has a limited effect
when the delay and Doppler spreads are of similar extent,
that is, when in the TF plane the delay spread relative to the
sampling interval in time (i.e., τRMS/N) is of the same order
of magnitude as the Doppler spread relative to the sampling
interval in frequency (i.e., νRMS/K−1).

The relatively high RMSSEs found in Figure 4 are a
result of the product τRMSνRMS being in the order of 10−2, a
much larger value than encountered in typical mobile radio
scenarios. In environments with such severe dispersion in
both time and frequency, the model error performance can
actually be improved by increasing the oversampling factor
K/N . This can be seen in Table 1, showing some εRMSSE(gCO)
observed under the same conditions as above except for
choosing different lattice constants. An RMS delay spread of
1 sample is assumed here. The performance clearly improves
with the oversampling factor.

7. Generic Matched Filter Receiver

The considered TF channel diagonalization does not rely on
a particular signal format, making it suitable for application
in multimode receivers [32]. The burst structures defined
in the various standards for wireless communications differ
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Figure 3: Examples of optimized window functions in time domain ((a) and (b)) and in frequency domain ((c) and (d)) for different
channel statistics: τRMS = 3, νRMS = 0.001 (in (a) and (c)), τRMS = 3, νRMS = 0.01 (in (b) and (d)).

Table 1: Model error for different oversampling factors.

N K Oversampling factor εRMSSE(gCO)

24 32 4/3 −9.49 dB

20 32 8/5 −11.78 dB

16 32 2 −14.83 dB

12 32 8/3 −18.57 dB

8 32 4 −22.43 dB

4 32 8 −23.25 dB

substantially. However, commonly the bursts incorporate
preamble signals for the channel estimation along with
information-bearing signals which are usually subject to
a linear modulation scheme. The transmitted baseband
signals generally follow the form t[k] = ∑I

i=1 sizi[k]
with z1[k], . . . , zI[k] representing I elementary waveforms,

possibly complex exponentials such as in the case of OFDM,
or pseudo-noise sequences as in the case of direct-sequence
spread-spectrum systems. For performing channel estima-
tion and information recovery the receiver needs to estimate
the signals s1, . . . , sI on the basis of the known waveforms
z1[k], . . . , zI[k]. To this end, the inner receiver correlates the
received signal r[k] with the elementary signals as appearing
at the channel output, resulting in

ui = 〈r,Hzi〉, i = 1, . . . , I. (39)

For example, in the case of signal decoding in the presence
of additive white Gaussian noise, u1, . . . ,uI represent a
sufficient statistic. In other situations, such as for the channel
parameter estimation (Efficient parameter estimators which
are applicable in the context of filter bank-based multicarrier
transmission are presented in [33].), H is unknown.
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Figure 4: Model errors by windows gCO[k] and gSDP[k] optimized
through CO and SDP, respectively, and by window gRRC[k] with
RRC-shaped magnitude spectrum versus τRMS at νRMS = 10−2.

The generic matched filter sketched in Figure 5 aims to
compute u1, . . . ,uI in the TF domain. The TF represen-
tation R of the received signal r[k] is obtained from an
analysis filter bank, while TF representations Z1 � Gz1, . . . ,
ZI � GzI of the elementary waveforms are provided by a
local repository [32]. These are mapped to the TF repre-
sentations (H � Z1), . . . , (H � ZI) of (Hz1)[k], . . . , (HzI)[k]
by means of the channel diagonalization (22) discussed in
Section 4. Finally, taking advantage of Parseval’s identity,
ûi = 〈R,H � Zi〉 is computed for i = 1, . . . , I .

The impact of the TF channel diagonalization on the ith
matched filter output can be formulated as

ûi − ui = 〈R,H � Zi〉 − 〈r,Hzi〉 (40)

= 〈R,GG∗(H � Zi)
〉− 〈r,Hzi〉 (41)

= 〈r,G∗(H � Zi)
〉− 〈r,Hzi〉 (42)

= 〈r,G∗(H � Zi)−Hzi
〉 = 〈r, ei〉, (43)

where for obtaining expression (41) we exploit that R ∈ Fg

while GG∗ represents the orthogonal projection from L2(Λ)
onto Fg . The error signal ei[k] = (G∗(H � Gzi))[k] −
(Hzi)[k] is in line with the error signal definition (25).
Under the assumptions that the relation between εQ[k] and
(HxQ)[k] found in Section 4 carries over to the relation
between ei[k] and (Hzi)[k], and that r[k] represents a
random signal with E[|〈r,Hzi〉|2] = E[‖r‖2]E[‖Hzi‖2]
and E[|〈r, ei〉|2] = E[‖r‖2]E[‖ei‖2], the RMSSE εRMSSE(g)
determines the signal-to-noise ratio E[|ui|2]/E[|ûi − ui|2] =
E[‖Hzi‖2]/E[‖ei‖2] at the matched filter output. Since the

pulse (Hzi)[k] is typically a component of r[k], the afore-
mentioned assumptions, however, do not hold in general.
Nevertheless, εRMSSE(g) may in practice serve as a rough
characterization of the performance of the matched filter
in Figure 5. The performance of the TF domain matched
filtering in a reconfigurable receiver architecture configured
to the reception of direct-sequence spread-spectrum signals
is studied in [32].

8. Conclusions

We have derived paraunitary filter banks facilitating diago-
nalization of doubly dispersive channels at limited inherent
MSE. Making use of a suitable parameterization of tight
frames, we have shown that the optimization of parau-
nitary DFT filter banks for given channel statistics and
oversampling factors can be formulated as a CO problem.
An investigation of the MSE performance achieved by the
optimized windows shows that the windows obtained by CO
are more favorable than conventional windows with an RRC
spectrum. However, in certain configurations the necessary
rank reduction following the CO has a significant impact
on the window shapes. The induced potential degradation
of the MSE performance may be evaded by choosing
appropriate lattice constants N and K , specifying the down-
sampling factor and the number of sub-bands, respectively,
or by alternative rank reduction procedures which are yet
to be devised. In general, the MSE performance can be
improved at the cost of a higher complexity in terms
of numbers of coefficients by increasing the oversampling
factor.

In this paper our main concern was mathematical
techniques for designing optimized filter banks in the
context of channel diagonalization. Reconfigurable radios
are clearly a prospective field of application. Since tight
frames are natural generalizations of orthonormal bases
used for the signal transform in OFDM receivers, the
efficient handling of dispersive channels in OFDM can be
inherited by receivers not limited to signals with cyclic
extensions. Flexible radio architectures which incorporate
the channel diagonalization considered in this paper have
been investigated within the IST project URANUS (Universal
RAdio-link platform for effieNt User-centric accesS) [34].
In this project the performance of such flexible receiver
architectures has been studied in the context of differ-
ent air interfaces and on different levels, from the inner
receiver performance with perfect and imperfect channel
estimation to the link level performance. While channel
diagonalization by means of properly designed filter banks
has been shown to have a great potential, there are a
number of related issues that need to be addressed on
the way to practical solutions, such as adequate chan-
nel estimation methods, synchronization, radio resource
management, and others. A comparison of the perfor-
mance of flexible receivers taking advantage of the chan-
nel diagonalization as compared to conventional receiver
architectures has therefore been out of the scope of this
paper.
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Figure 5: Generic TF domain matched filter.

Appendix

A. Derivation of RMSSE Formula

The RMSSE can be written as

εRMSSE
(
g
) = ϕ1

(
g
)

+ ϕ2
(
g
)− 2ϕ3

(
g
)
, (A.1)

where
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and

ϕ3
(
g
)

� lim
Q→∞

E

⎡

⎣ 1
Q

Q/2∑

k=−Q/2
R

⎛

⎝
∞∑
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[
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Both the input signal power and the gain of the channel
are normalized to unity, and therefore ϕ2 = 1.

Furthermore, ϕ1 can be expressed as

ϕ1 = lim
Q→∞

1
Q

Q/2∑

k=−Q/2
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(�,m)∈Λ
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where ΛQ = {−
Q/2N�, . . . , 
Q/2N�} × {0, . . . ,K − 1}. To
obtain (A.5) from (A.4) we apply (21), (20), and (24), and to
arrive at (A.6) we use (18). Using (2) and (19), ϕ1 can now
be expressed as
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Finally ϕ3 can be rewritten as
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We use (24) to obtain (A.9) from (A.8), and for the
derivation of (A.10), (18) is applied. Thus, the RMSSE is
given by
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