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In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes
use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA
(Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading
code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design
a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An
additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these
intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that
compose a chord and the estimation of the polyphony number.

1. Introduction

In this paper, we deal with a main stage of automatic music
transcription systems [1]. We are refering to the detection of
the notes that sound simultaneously in each of the temporal
segments in which the musical piece can be divided. More
precisely, we deal with the multiple fundamental frequency
(F0) estimation problem in audio signals composed of piano
chords. Therefore, the objective in this paper is to robustly
determine the notes that sound simultaneously in each of the
chords of a piano piece.

The approach employed in this paper is rather different
from other proposals that can be found in the literature
[1, 2]. In the paper by Goto [3], a multiple F0 estimation
method based on a MAP approach to detect melody and
bass lines is described. In the contribution by Klapuri [4, 5] a
multiple F0 estimation method based on the iterative estima-
tion of harmonic amplitudes and cancellation is presented.
Kashino et al. [6, 7] propose a Bayesian approach to estimate
notes and chords. Dixon [8] uses heuristics in the context
of the Short Time Fourier Transform (STFT) to find peaks in
the power spectrum to define musical notes; also tracking the
detected peaks in consecutive audio segments is considered.

In the paper by Tolonand and Karjalainen [9], a multipitch
analysis model for audio and speech signals is proposed
with some basis on the human auditory model. Vincent and
Plumbley [10] propose an F0 extraction technique based on
Bayesian harmonic models. Marolt [11, 12] uses a partial
tracking technique based on a combination of an auditory
model and adaptive oscillator networks followed by a time-
delay neural network to perform automatic transcription of
polyphonic piano music.

In this paper, we consider a different point of view. The
audio signal to be analyzed will be considered to have certain
similarities with the communications signal of a 3G mobile
communications system. In this system, the communications
signal is a code division multiple access (CDMA) signal
[13]. This means that multiple signals from different users
are transmitted simultaneously after a spreading process
[14] that makes them approximately orthogonal signals.
So, our model will consider each piano note as a CDMA
user. We consider that the sinusoids with the frequencies
of the partials of each note define a signal composed of
approximately orthogonal components. In this signal, some
of the sinusoidal components of the model, the effect of
windowing, the time-variant nature of the music signal,
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and other effects can be included in the concepts of noise
and interference, that makes the different notes loose the
property of orthogonality. So, each note will add interference
(non orthogonal components) to other notes in a music sig-
nal in which several notes are simultaneously played. Then,
the detection of the different notes played simultaneously can
be considered as the problem of simultaneously removing the
interference from the different notes and, then, deciding the
notes played. The process is similar to the way in which a PIC
receiver removes the interference from the multiple users to
perform the symbol detection. In our context, the spreading
codes will be the spectral patterns of the different notes.
These patterns will include both the inherent characteristics
of the piano and the style of the interpretation.

Turning back to the communications framework, it is
clear that the most favorable and simplest case in CDMA
systems is the one in which the spreading codes are
orthogonal; that is, the cross-correlation between them is
zero. In this case, it is known that the optimum detector
is the conventional correlator. Then, the receiver can be
easily implemented as a bank of filters adapted to the users’
spreading codes [15]. Nevertheless, real CDMA systems do
not fulfill the orthogonality condition; so the design of
advanced detectors, like the PIC receiver, is required to cope
with the interference due to the lack of orthogonality and
to the multiuser access. In the context of musical signals,
regarding the problem of detection of the notes that compose
a musical chord, the orthogonality condition between the
spectral patterns of the different notes cannot be achieved.
This is due to the harmonic relations that exist between the
notes of the equal-tempered musical scale typically used in
Western music, specially between octaves and fifths (despite
inharmonicity and stretched tuning [16]).

In order to perform the detection of the notes that sound
in a certain segment or window of a musical audio signal,
we have considered the CDMA detection technique called
Parallel Interference Cancellation (PIC). We have selected
PIC detection among other techniques [14, 15, 17] because
it has been observed that PIC detection obtains very good
performance in different CDMA system configurations [18]
and it can be reasonably adapted to our problem. The PIC
detector is aimed to simultaneously remove, for each user,
the interference coming from the remaining users of the
system. In the specific case of the music signal, regarding
each piano note, the interference (parts or components of
a note that are not orthogonal to other notes) caused by
the rest of the notes should be simultaneously removed to
allow the simultaneous detection of the different notes. A
brief overview of the PIC detector for piano chords will be
given in Section 2.

The paper is organized as follows. Section 2 will present
a general view of the structure of the proposed PIC detector
for piano chords. Section 3 will present the music signal
model employed and the preprocessing techniques required,
paying special attention to the similarities to CDMA signals.
Section 3.1 will describe the process of estimation of the note
patterns required to perform interference cancellation and
detection and Section 3.2 will show the preprocessing tasks
to be applied to the input signals before the interference
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Figure 1: General structure of the PIC detector for piano chords.

cancellation process. Section 4 will describe in detail the
structure of the interference cancellation stage of the parallel
interference cancellation (PIC) detector adapted to the piano
signal. Next, Section 5 will propose a method to finally decide
the notes played using the outputs of the PIC. This section
will cover not only the direct detection of notes but also
specific tests to properly deal with their octaves and fifths.
Section 6 will present some results and comparisons of the
performance of the detection system. Finally, Section 7 will
draw some conclusions.

2. Overview of the PIC Detector for
Piano Chords

In this section, a general overview of the structure of a PIC
Detector for piano chords is given. Figure 1 shows a general
PIC structure in which the interference cancellation stage is
the heart of the detector. The detector is defined upon three
different stages.

The first stage (Preprocessing) obtains a representation of
the chord (chord(t)) to be analyzed in the frequency domain
so that its representation matches the signal model used in
the system. Then, the preprocessed signal, W, passes through
the parallel interference cancellation (PIC) block. This stage
obtains an output for each of the notes of any piano (L = 88
notes for a standard piano). These values are related to the
probability of having played each of the notes of the piano.
To perform the parallel detection of interference, the note
patterns (P) estimated from the musical signal model, taken
as spreading codes, will be used. Finally, making use of the
outputs of the PIC stage, y, it must be decided which are
the notes that are actually present in the chord. This is the
task of the final decision stage (Note Decision). This stage
performs the decision using previously precomputed generic
thresholds, U, together with a method of discrimination
between actually played notes and octaves and fifths.

3. Music Signal Model

In this section, the music signal model considered to allow
interference cancellation is presented. Also, marked similari-
ties between the CDMA mobile communications signal and
the audio signals are outlined. Recall that the music signals
that will be handled by the proposed detector will be piano
chords, that is, waveforms that contain the contribution of
one or more notes that sound simultaneously. Consider a
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piece (window) of the waveform of the music audio signal.
This signal, say chord(t), can be expressed, in general, as
follows:

chord(t) =
M∑

n=1

Anbnpn(t) + n(t), (1)

where M, is the number of all the notes that can sound in
the window (88 notes for a standard piano), An, represents
the global amplitude of the nth note that may sound in the
chord, bn ∈ {1, 0}, indicates whether the note sounds (the
note was played), bn = 1, or not, bn = 0, pn(t), stands for
the representative waveform of the nth note in the chord,
with normalized energy, and n(t), represents additive white
Gaussian noise (AWGN) with variance σ2.

More details on this model will be given shortly, but
before that, let’s turn our sight to the mobile communica-
tions context. In such context, a certain window of a CDMA
signal model can be expressed as follows [18]:

r(t) =
K∑

k=1

Akbkck(t) + n(t), (2)

where K , is the number of simultaneous active users, Ak, is
the amplitude of the kth user’s signal, bk ∈ ±1, is the bit
transmitted by user k, ck(t), represents the spreading code
assigned to user k with energy normalized to one, and n(t),
represents AWGN with variance σ2.

A comparison of (1) and (2) reveals that they share
the same formulation, but also some differences must be
observed. In (2), the bits transmitted by user k, bk , are
represented by ±1, while in (1) the values that bn may take
are 1 or 0. Moreover, at the sight of the two equations, the
definition of chord(t) takes into account all the possible notes
that can be played, while r(t), in (2), only includes the active
users in the communications system (note that the number
of possible user codes can be very high). Then, the problem of
the detection of the notes played in a window of the available
waveform, becomes the problem of deciding if bn is 0 or 1
in (1), while the receiver of the communication system must
detect the bits that have been transmitted by each active user,
that is, to decide if bk is 1 or −1. In spite of these differences,
the similarity between (1) and (2) is enough to encourage
us to consider the adaptation of advanced communication
receivers to the detection of the notes in our musical context.

A main requirement of any CDMA detector is the
following: the detector needs to know the spreading codes of
the users, ck(t). In our context, according to (1), the partial
waveforms of the notes, pn(t), are required, these will be
called time patterns of the notes. But the same formulation is
also valid in the frequency domain, then, the discrete power
spectrum of chord(t), can be expressed as follows:

W(k) =
M∑

n=1

A2
nb

2
nPn(k) + N(k), (3)

where Pn(k) is the kth bin of the power spectrum, Pn,
(Pn = [Pn(0), . . . ,Pn(k), . . . ,Pn(N−1)]T), of pn(t), and N(k)
represents the power spectrum of the additive noise n(t).

It is clear that (3) is also similar to (2), in which the
CDMA signal model is shown. If we consider a type of
CDMA receiver adapted to our context, it will require to
know the power spectrum, Pn(k), of each of the notes that
can sound in order to be able to perform the detection of
the notes. These functions will be used to define the spectral
patterns of the notes that will become the note patterns.

The audio signal model in the frequency domain will be
used to design our system and the spectral patterns will be
selected to represent the different notes just like spreading
codes represent different users. The procedure to define
the note patterns and the preprocessing stage required at
the input of our PIC detector are described in the next
subsections.

3.1. Determination of Note Patterns. In order to detect each
note correctly, the detector needs to know the note patterns
just like any CDMA detector needs to know the spreading
codes of the users [19]. Also, these patterns should be as
independent as possible of the piano and of the technique
employed in the performance. Since the chord detection
system will work in the frequency domain, spectral patterns
of the notes will be used to play the role of the CDMA
spreading codes in communication systems.

The representative spectral pattern of each note is
obtained as the average power spectrum of 27 different
waveforms of the possible performances in which each note
can be played: three different playing techniques (Normal,
Staccato and Pedal) in three different dynamics (Forte,
Mezzo and Piano) and three different pianos. These samples
are taken from the RWC data base [20], in which the audio
signals are sampled at a frequency rate of 44.1 kHz and
quantized with 16 bits. The length of the analysis windows,
N , is also the number of bins of the power spectrum and
it ranges between 214 and 217, which results in analysis
windows of duration between 371 ms and 2.97 s. These
window lengths have been found adequate for a polyphonic
music transcription system, showing a good compromise
between time and frequency resolution [21]. The analysis
windows are obtained applying a rectangular windowing
function (simple truncation) to the signal waveform after the
onset of the sound [22]. Note patterns are normalized to have
unit energy so that they can be easily used in the interference
cancellation stage (Section 4). With all this, each note pattern
is a N-dimensional vector defined as:

Pl =
1
Zl

Np∑

i=1

Pl,i, (4)

where Pl,i, is the vector that contains the N points of the
power spectrum of the i-st performance of the l-st note of
the piano, Np, is the number of waveforms considered for
each note (27 different performances per note), Zl, is the
normalization constant, defined as

Zl =

√√√√√
⎛
⎝

Np∑

i=1

Pl,i

⎞
⎠
T

·
⎛
⎝

Np∑

i=1

Pl,i

⎞
⎠. (5)
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In this way, general note patterns that take into account
the positions of the partials and their relative power are
obtained. These patterns can be used to detect the notes
played in an analysis window regardless the piano employed
and the interpretation technique. The set of patterns calcu-
lated for all piano notes will be denoted by P:

P =
[
P1 P2 · · · PM

]
. (6)

This set of patterns will be used in the PIC detector as it will
be described in Section 4.

The required signal preprocessing stage according to this
audio signal model, is presented in the next subsection.

3.2. Preprocessing of Analysis Windows. Taking into account
that the interference cancellation stage will perform in the
frequency domain using the defined spectral note patterns,
the detection system needs a stage to extract a representation
of the signal that will be usable in the cancellation stage. This
is the task of the preprocessing block in Figure 1.

The preprocessing stage obtains the discrete power
spectrum of the windowed waveform under analysis (3)
with length N , where N ranges between 214 and 217, as
in the process of determination of the note patterns (the
windowing function used in this stage is the same that is used
for the determination of the note patterns). The samples of
the power spectrum are stored in the vector:

W = [W(0), ...,W(N − 1)]T . (7)

This vector constitutes the input to the parallel interference
cancellation stage.

4. Parallel Interference Cancellation (PIC)

Once the note patterns are defined and stored in the pattern
matrix P, and after the description of the preprocessing stage,
the core of the detector, will be described.

A general description of the structure and behavior of
PIC structures in communication systems together with
comments on certain issues regarding to the cancellation
policy, the receiver power of different users (notes in our
context) and the number of cancellation stages can be found
in [17]. Now, we will draw a description of the system
specifically adapted to our context.

Figure 2 depicts the general structure of a linear mul-
tistage PIC detector, with m stages, for the detection of L-
notes. Note that in our case L = M. This choice means that
we will consider all the notes that can be played in a standard
piano (88 notes from A0 to C8), unlike other authors that
often do not consider the lowest and the highest octaves of
the piano [4] (in [4] the range of notes detected is from E1 to
C7). A general description of the behavior follows. Each note
that sounds in the window under analysis (chord(t)), (W
after preprocessing) introduces disturbance (interference) to
the process of detection of each of the remaining L − 1
notes that may sound at the same time. Then, it should be
possible to create replicas of the L − 1 notes detected to
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Figure 2: General structure of the PIC detector.

be simultaneously subtracted from the input signal (W) to
remove their contribution (disturbance or interference) and
to allow better performance of the note detection process at
the next stage. This process is performed using the scheme in
Figure 3. This figure will be described in detail later.

Note that if the initial detections are correct, then
the replicas reconstructed could be perfect. This scheme
would offer complete interference cancellation in one stage.
On the other hand, if a note is detected, but it was not
really sounding, a replica, created using the note patterns,
subtracted from the input signal, adds additional disturbance
(interference) to the process of detection of other notes. Also,
any mismatch between a note pattern and the preprocessed
waveform of that note may introduce interference into the
detection process of other notes. This is a main reason
why a more conservative procedure, in which interference
is partially removed at successive interference cancellation
stages, was proposed [23] and selected to deal with our
problem (Figure 3). In this structure, as the stages progress,
the detections should be more reliable and the cancellation
process should be more accurate. Also, the unavoidable dif-
ference between the note patterns and the preprocessed note
contributions to the chords discourages us from attempting
to perform total interference cancellation.

Specifically, a multistage partial PIC detector structure
has been chosen [17, 23, 24]. In this detector, the parameter
μm, see Figures 2 and 3, represents the maximum amount
of interference due to each note that will be canceled.
In the context of digital communications systems, this
strategy attains good performance with a small number of
interference cancellation stages (between 3 and 7) when the
weights of each stage, μm, are correctly chosen [18].

The interference cancellation structure, in our case, is
analogous to the one presented in [18, 23]. Note that at the
PIC front-end, an initial detection of the notes is performed
using a bank of correlators. For each note l, the centered
correlation between the preprocessed input signal, W, and
the corresponding note pattern, Pl, is calculated, y0,l (see
Figure 2). The value obtained is used as input to the first
cancellation stage (Figure 2).
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Now, the proper cancellation process starts. At each stage
of the multistage PIC detector, for each note l, the process
shown in Figure 3 is performed. In this figure, the following
notation is employed.

(i) Thick lines represent vectors of length N , the length
of the power spectrum considered.

(ii) Thin lines represent scalar values.

(iii) Pl is the pattern of the lth note of the piano, calculated
using (4).

(iv) l = 1, 2, . . . ,L, where L is the number of piano notes
considered (88 notes in our case).

(v) μm is the cancellation parameter for stage m. This
parameter controls the amount of cancellation done
at each stage. Usually, this parameter grows as the
number of stage increases [25]. The reason for this
choice is based on the expected improvement of the
decision statistics obtained after each PIC stage as
the signal goes through the interference cancellation
system. Under this assumption, interference cancel-
lation can be performed with lesser error in the
successive stages.

(vi) ym,l is the decision statistic obtained for note l after
the cancellation stage m.

(vii) Correlator calculates the centered correlation
between the input signal and the note pattern Pl.

(viii) P̂m,l represents the linear regeneration made at stage
m of the possibly played note l. P̂m,l is given by

P̂m,l = ym−1,lPl . (8)

As it can be observed in Figure 3, the output at each
stage m for each note l is obtained by removing, from the
preprocessed input W, the regeneration of the remaining
(L − 1) notes of the piano weighted by the cancellation
parameter μm. The larger μm, the larger is the interference
canceled.

Errors in the detections make the system add addi-
tional interference, instead of removing interference. The

Energy
thresholding

Note decision

Harmonic
tests

y Notesyu

U

Figure 4: Structure of the Note Decision stage.

interference added in this case grows with the cancellation
parameter. Therefore, the choice of cancellation weights is
essential for the proper performance of the PIC. In Section 6,
a comparison between different sets of weights and different
number of stages shows the importance of the choice of these
parameters.

The output of the PIC for the detection of each note will
be stored in the vector y (see Figures 1 and 2). This vector
will contain the L decision statistics of the notes of the piano:

y = [ym,1, . . . , ym,L
]T
. (9)

This vector must be analyzed to decide which notes were
played.

5. Played Note Decision

Making use of the PIC outputs, the system must decide
which notes were played in the window under analysis.
Ideally, the elements in y that correspond to the notes that
were actually played, should be positive values and zero
elsewhere. Unfortunately, this does not happen because of
the windowing, the way in which the note patterns are
defined, noise and because of the equal-tempered music
scale, used in Western music. Note that assuming ideal
harmonicity, the equal-tempered scale sets many nonorthog-
onal frequency relationships between different notes, being
the most outstanding of them the octave and perfect fifth
[21]. All these issues make appear significant values at the
positions of the decision statistics obtained by the PIC for
notes that were not actually played. The task of the Note
Decision stage is to deal with this problem to make a decision
on the notes played.

In Figure 4, the structure of the Note Decision stage is
shown. This stage consists of two distinct blocks: Energy
Thresholding and Harmonic Tests.

5.1. Energy Thresholding. The objective of this block is to
identify the notes that definitely were not played. This
initial decision is based on the comparison of the estimated
energy of the contribution of each possible note to the
(preprocessed) input signal W, versus a threshold. In order
to do this, all the decision statistics in y are compared with a
threshold.

Now, the thresholds must be defined. In order to
properly define them, we must first notice that before the
normalization (see (5)), the note patterns of the different
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notes do not have the same energy. The energy of the
contribution of each note to the input signal will show the
same behavior. So, the thresholds must take into account
this feature. To this end, we decided to define thresholds for
groups of notes clustered according to the mean energy of the
samples available in our databases.

Let g denote the number of groups or clusters. We
will define a matrix of thresholds, U, for all the piano
notes clustered in g groups. Note that these thresholds will
be valid for all the notes regardless of the piano and the
interpretation, just like the note patterns previously defined.

A detailed description of the process of creation of the
groups of notes, the definition of the thresholds and how
these thresholds are employed is now given:

Creation of the Clusters of Notes. First, we have to define
the groups of notes that we will consider according to their
expected mean energy. Recall that we refer to the selected
representation of the notes in our system, not to the note
waveforms. The mean energy of each note is calculated
from the recorded samples of pianos 1 to 3 of the Musical
Instrument Data Base RWC-MDB-1-2001-W01 [20]. We
calculate the energy of each piano note played with different
performance techniques and, then, the mean is obtained.
Second, the notes are ordered according to their energy, in
descendant order. The largest mean energy, Me, is selected
and the following energy interval is defined: [0.66Me,Me]
(the coefficient 0.66 has been experimentally obtained). The
notes whose mean energy is in this interval compose the first
group of notes. Then, these steps are recursively performed
with the remaining notes until all the notes are grouped.
After the completion of this process, g = 6 groups of notes
are obtained.

Definition of Thresholds. We consider two types of threshold:
one type of threshold for notes in the same group i
(autothreshold, represented as uii) and the other one for the
notes in the other groups j, where the group j has more
energy than group i (it will be denoted crossthreshold and
it will be represented as ui j).

Autothresholds, uii, are calculated as follows: the notes
with the largest and the lowest energy in the group i are
selected (let iE and ie represent the indexes of these notes in
the group i, resp.) and a composed signal formed summing
the patterns of these notes (PiE and Pie resp.) weighted by the
square root of their corresponding energy is obtained:

Cii = ZiEPiE + ZiePie , (10)

where Zx was defined in (5).
Then, this composed signal passes through the PIC

detector (Figure 2). The vector obtained at the output of the
PIC, y, is normalized by the value of its largest element. Then,
autothresholds are defined by the element in the normalized
vector y that corresponds to the note with the lowest energy.

Crossthresholds, ui j , are calculated in a similar way as
autothresholds but different notes are selected as reference.
Specifically, the note with the largest energy in the group j

( jE) and the note with the lowest energy in the group i(ie)
are selected. Then, the composed signal is defined as follows:

Ci j = ZjEP jE + ZiePie . (11)

This signal, Ci j , passes through the PIC structure and, then,
the threshold is defined as in the previous case.

Construction of the Matrix of Thresholds. All the thresholds
defined are stored in a matrix with the following structure:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u11 u22 · · · ugg

u21 u22 · · · ugg

...
. . .

...

ug1 ug2 · · · ugg

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where each column represents all the thresholds found for a
dominant group, j.

Usage of the Matrix of Thresholds. The group d, that contains
the note with the largest value at the output of a PIC stage, y,
is selected. Then, the corresponding column of the matrix U,
[udd, . . . ,ugd]T , is used for thresholding.

Once the threshold column is selected, the elements in
y under the corresponding thresholds are removed and the
final decisions will be taken with the remaining elements.

The output of the energy thresholding block is denoted
yu. This vector contains all the notes that were possibly
sounding in the window under analysis. However, additional
tests, that take into account harmonic relations among the
notes, must be performed to avoid false positives.

5.2. Harmonic Tests. The last block of the note decision stage
includes some harmonic tests to perform the final decision.
One of the problems in polyphonic detection is the detection
of the octave and perfect fifth since many errors occur due
to either missing notes or, especially, to the appearance
of false positives [26, 27]. This is due to the overlapping
between harmonic partials of different sounds. Assuming
ideal harmonicity, it is known that harmonic partials of two
sounds coincide if and only if the fundamental frequencies
of the two sounds are in rational number relations [28, 29].
When the harmonicity is not ideal, the overlapping continues
since the partials of the notes may exhibit appreciable
bandwidth. On the other hand, an important principle in
Western music is that simple harmonic relationships are
favored over dissonant ones in order to make the sounds
blend better [21]. This is the case of octaves and fifths. These
intervals are the ones whose harmonious relationships are
the simplest (2 : 1 and 3 : 2) and these are also the two most
frequent intervals in Western music [30].

The objective of the harmonic tests is to decide if the
possibly played notes in yu were actually played or if those
are due to perfect octaves or perfect fifths. Finally, it is worth
mentioning that this stage includes the estimation of the
polyphony number in each chord.

In Figure 5, the general structure of the final stage is
presented. The notation used in the figure is as follows.
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Figure 5: Structure of the harmonic tests.

(i) yu is the vector that contains all the possibly played
notes. It was obtained after the energy thresholding
stage.

(ii) E is the vector that contains the mean energy of the
88 piano notes.

(iii) P is the note pattern matrix.

(iv) N8 is the set of notes that do not pass the octave test.

(v) yuN8
is obtained removing from yu the notes in N8.

(vi) N5 is the set of notes that do not pass the fifth test.

(vii) Notes is the final vector of notes detected.

As it can be seen in Figure 5, the decision process is as
follows: first, all the possible notes with octave relations are
considered and it is checked whether they are actually played
notes. The notes that do not pass this test, N8, are removed
from yu to define yN 8

. Then, all the possible notes with fifth
relation in yN8

, are considered and, then, it is checked if they
are really played notes. Again, the notes that do not pass
the test, N5, are removed from yN8

to give a vector of notes
detected (Notes).

5.2.1. Octave/Fifth Test. The octave and the fifth relation tests
are similar, the only difference among them is the relation
between the notes involved and the thresholds. Figure 6
shows the block diagram employed in the octave/fifth tests.

The notation used in Figure 6 is described now.

(i) yu is the vector that contains all the possibly played
notes.

(ii) yx is the vector that contains a subset of notes from yu

or yN8
that fulfill the criteria of octave or fifth relation.

(iii) (1/Zu
x )
∑L

j=1, j∈yx EjP j is the signal composed with the
patterns of the notes to check (P j) weighted by their
corresponding energy (Ej), in order to properly cope
with low- and high-energy notes, and normalized to
unit energy using the normalization constant:

Zu
x =

√√√√√√√√

⎛
⎜⎜⎜⎝

L∑

j=1
j∈yx

EjP j

⎞
⎟⎟⎟⎠

T

·

⎛
⎜⎜⎜⎝

L∑

j=1
j∈yx

EjP j

⎞
⎟⎟⎟⎠

(13)

(iv) ug,x is the threshold vector for the octave/fifth-related
notes.

(v) Nx is the set of notes that do not pass the octave (x =
8)/fifth (x = 5) tests.

The operations performed in these tests are similar to those
in the process of estimation of the thresholds ug,x . The
description of this process follows: a synthetic signal is
composed with the patterns of the notes weighted by their
corresponding energy. The synthetic signal is normalized
to have unit energy. The composed signal passes through
the PIC detector and the outputs are normalized by the
maximum value of the outputs. Then, the output of the
PIC, that correspond to the notes under test, are used as
new thresholds for these notes. If a decision statistic of a
note does not pass the new threshold, then the note will be
removed from the set of possibly played notes since the value
of the decision statistic found at the output of the PIC stage
is considered to be due to some octave/fifth relation.

6. Results

The evaluation of the performance of the PIC detector for
piano chords described in this paper and the comparison of
the result versus a selected technique in [4] have been done
using samples taken from different sources.

(i) Independent note samples: these samples correspond
to pianos 1 to 3 of the Musical Instrument Data
Base RWC-MDB-1-2001-W01 [20] and home-made
recordings of two different pianos (Yamaha and
Kawai).

(ii) Chord recordings: these samples are home made
recordings of the two different pianos (Yamaha and
Kawai).

The total number of samples available was over 4200.
Note that the patterns are defined using a database which
is different from the one used in the evaluation. The pianos
used for the chord recordings are a Yamaha Clavinova CLP-
130 and a Kawai CA91 played in a concert room.

The chords used to validate the system correspond, to the
real chords frequently used in Western music. All the chords
have been recorded in all the piano octaves and with different
octave separations between the notes that constitute the
chord. The recorded chords, as a function of the polyphony
number, are as follows:

(i) chords of two notes: intervals of second, third, fourth,
fifth and octaves as well as their extension with one,
two, three and four octaves,

(ii) chords of three notes: perfect major and perfect
minor chords with different order of notes,

(iii) chords of four notes: perfect major and perfect minor
chords with duplication of their fundamental or their
fifth, as well as, major 7th and minor 7th chords,

(iv) chords of five notes: perfect major and perfect minor
chords with duplication of their fundamental and
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Figure 6: Block diagram of the octave/fifth test.

their fifth, as well as major 7th and minor 7th chords
with duplication of their fundamental,

(v) chords of six notes: perfect major and perfect minor
chords with duplication of their fundamental, their
fifth and their third, as well as major 7th and minor
7th chords with duplication of their fundamental and
their fifth. These chords have been always played with
both hands and with a minimum separation of two
octaves between the lowest note and the highest note.
In most cases, this separation is four or five octaves,
so the coincidences between partials of sounds with
octave or fifth relation are smaller and the octave and
fifth tests attain better performance.

The recorded chords satisfy the statistical profile dis-
covered by Krumhansl in classical Western music [30], that
is, octave relationships are the most frequently, followed by
consonant musical intervals (perfect fifth, perfect fourth)
and the smallest probability of occurrence is given to
dissonant intervals (minor second, augmented fifth, etc.).
Note that these are the types of chords actually used in
Western music. In general, these chords are more difficult to
resolve that the chords that are just composed with dissonant
intervals [21].

The error measure employed is the note error rate
(NER) metric. The NER is defined as the mean number of
erroneously detected notes divided by the number of notes
in the chords [21]:

NER = SE + DE + IE
NN

, (14)

where Substitution errors (SE): happen when a note, that
does not exist in the chord, is detected as played note,
Deletion errors (DE): appear when the number of detected
notes is smaller than the number of notes in a chord,
Insertion errors (IE): appear when the number of detected
notes is larger than the number of notes in a chord, NN:
represents the number of notes in the chords.
It is worth mentioning that insertion errors (IE) never
occurred in the proposed PIC detector in the tests done and
the deletion errors only occur when the polyphony number
is estimated.

Concerning the temporal resolution, windows with N =
214 samples were chosen. This choice gives a temporal
resolution of about 371 ms and a spectral resolution of
2.69 Hz, which is the minimum resolution to distinguish the
fundamental frequencies of the lowest notes of the piano.
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Figure 7: Comparison of note error rates for different sets of can-
cellation parameters and different number of parallel interference
cancellation stages.

After several tests, and according to the results obtained
for the CDMA signal in [18], a 3-stage PIC was chosen
whose cancellation parameters are μ = [0.5, 0.7, 0.9] [23]. It
has been observed that this choice provides a good balance
between performance and complexity. A comparison of note
error rates for PIC with 3, 5, or 7 stages and using 4 different
sets of cancellation parameters are presented in Figure 7. The
sets of cancellation parameters evaluated are as follows:

(i) “1 set”: in this set, all the cancellation parameters are
1 (total interference cancellation is attempted at each
stage) [31].

(ii) “0.5 set”: in this set all the cancellation parameters are
0.5.

(iii) “Tardón set”: in this set the cancellation parameters
are defined as [25]:

μk =
1
2
k

K
, (15)

where k is the stage and K the number of stages of the
receiver.

(iv) “Divsalar set”: in this set the cancellation parameters
are μ = [0.5, 0.7, 0.9] [23].

Figure 7 shows that the cancellation parameters proposed
by Divsalar attain the best NER. On the other hand, for “1
set” the NER increases with the number of stages, this is
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Figure 8: Comparison of note error rates for different polyphony
numbers using the proposed PIC detector and the selected reference
method proposed in [4]. Polyphony number known in both
methods.

due to the errors cancellation errors are accumulated because
the cancellation in each stages is 100%. However, for “0.5
set” and “Tardón set” the NER decreases with the number
of stages because the cancellation in each stage is small
enough so that the cancellation errors do not negatively affect
the detection performance of subsequent stages. Note that
these sets require many interference cancellation stages (large
computational burden) to attain the optimum performance
which is attained with K → ∞. However, the “Divsalar
set”, with interference cancellation stages, attains better
performance than the other two sets of parameters with
seven stages.

In Figure 8, a comparison of the NER for different
polyphony numbers using the proposed PIC detector and the
iterative estimation and cancellation reference method pro-
posed in [4] is presented. In this case the polyphony number
is known. Note that the method selected for comparison in
[4] performs the detection of the notes in a successive way
using a band wise F0 estimation for general purpose multiple
F0 detection. However, our method performs the detection
in a parallel way using specific note patterns. The dataset
employed in the comparison was described at the beginning
of this section.

It is worth mentioning that the errors are just sub-
stitution errors in both methods because the polyphony
number is known. In this case, the output vector (Notes)
is completed, if it is necessary, with the discarded notes in
N8 and N5 for which the PIC output are larger. Recall that
the proposed PIC detector never shows insertion errors and
the deletion errors only occur when the polyphony number
is estimated. As it can be observed in Figure 8, the NER
increases with the polyphony number for both methods,
however the proposed PIC detector gets better results and
it can also deal with the low and high octaves of the piano.
Note that the evaluation of the system in [4] is restricted
to the range E1 to C7, because the F0s of the input dataset
are restricted to that range. In this paper, we have evaluated,
tuned and compared the systems in the range defined by all
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Figure 9: Note error rates for octaves, perfect fifths and other
intervals using the proposed PIC detector when the polyphony
number is 2.

the piano notes. According to this choice, 12.5% of the notes
are out of the range originally evaluated in [4].

There exists a gap in the performance between polyphony
4 and polyphony 5. This is due to the octave and fifth
relations between the notes in these chords. In this case, the
octave and fifth test sometimes fail when the chord includes
several octaves and perfect fifths all together, because of the
overlapping between the partials of more than three notes.
On the other hand, the NER for a polyphony number of 6
is smaller than for polyphony number 5, the reason for this
is the following: these chords have been always played with
both hands and with a minimum of two octaves of separation
between the lowest note and the highest note. In most cases,
this separation is four or five octaves, so the coincidences
between partials with octave or fifth relation are smaller and
the octave and fifth test attain better performance.

If we also compare these results with the ones presented
in [32], it should be taken into account that the evaluation of
the system presented by Shi et al. [32] is made with sounds
generated by mixing the sounds of different notes played
solely and after a normalization of their amplitude to make
the different notes of the same amplitude. However, the PIC
detector proposed has been tested on recorded chords in
which the different notes can be of different amplitudes and
in which the chords are selected to be coherent and relevant
from the musical point of view, as it has been presented at
the beginning of this section.

Regarding the performance of the octave and fifth tests,
Figure 9 represents the NER for octave, perfect fifth intervals
and other intervals using the proposed PIC detector when the
polyphony number is 2. In this figure, it can be observed that
the NER for perfect fifth chords is smaller than the NER for
octave intervals and other types of intervals.

Note that the fifth test performs better than the octave
test because the overlap of the partials of the note patterns of
notes with octave relation is larger than in the case of notes
with fifth relation. Also, fifth test is performed after octave
test. On the other hand, the NER for octaves is the same as
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for other types of intervals. These results show that the octave
and fifth tests are efficient, making the errors to become
almost independent of the type of interval that composed the
chord under analysis.

Figure 10 shows the NER of the PIC detector when
the polyphony number is estimated in the note decision
block. As it can be observed, the NER is not significantly
increased with respect to the case in which the polyphony
number is known. In this figure, substitution and deletion
errors are shown because, when the polyphony number is
estimated, deletion errors can appear. It can be observed
that the deletion errors are less than substitution errors.
If we compare these results with the ones presented in
Figure 8, it is clear that the increase of NER found when the
polyphony number is estimated is mainly due to deletion
errors.

If we compare the results in Figure 10 with the ones
presented in [21] for the different polyphony estimation
strategies, it can be observed that the proposed PIC detector
attains better NER. Also, the difference in the performance
between the cases in which the polyphony number is known
and the cases in which it is estimated is smaller. This is

an indication of the robustness of the proposed detection
system both as note detector and as estimator of the degree
of polyphony.

Figure 11 shows the note error rates in different levels of
noise for different polyphony numbers using the proposed
PIC detector when the polyphony number is estimated.
No differences between substitution and deletion errors are
shown because the percentage of deletion and substitution
errors are the same as in Figure 10.

The noise variance has been selected so that the signal
to noise ratio (SNR) is adjusted as in [21]. This figure
shows that despite the NER increases with the noise, the
proposed PIC system performs quite robustly in noisy
cases. Again, the NER for a polyphony number of 6 is
smaller than for polyphony number 5 because these chords
have been always played with both hands, as previously
described.

7. Conclusions

In this paper, a piano chords detector based on the idea
of parallel interference cancellation has been presented. The
proposed system makes use of the novel idea of modeling
a segment of music as a third generation CDMA mobile
communications signal. The model proposed considers each
piano note as a CDMA user in which the spreading code
is replaced by a representative note pattern defined in the
frequency domain. This pattern is calculated by averaging the
power spectral densities of different piano notes interpreted
in various styles and with different pianos. This choice allows
to attain good detection performance using these patterns
regardless of the piano used to play the chord to be analyzed.

The structure of a multistage weighted PIC detector has
been presented and it has been shown that the structure
gets perfectly adapted to the purpose of the detection of the
notes played in a chord. Since the spectral patterns of the
notes are not orthogonal to each other, due to the harmonic
relationships between the notes, and the different notes in a
chord have different energies, a specific thresholding matrix
has been designed for the task of deciding whether the PIC
outputs correspond to real notes composing the chord. This
matrix of thresholds is designed to be usable for any chord in
any piano.

Finally, an additional stage that performs an octave test
and a fifth test has been included. This stage eliminates false
positives produced by the appearance of octave and fifth
relations between the notes performed in the chord. It has
been checked that these tests make the error rates in the
detection of octaves and fifths to become similar to the ones
found in the detection of any other type of interval.

The proposed system attains very good results in both
the detection of the notes that compose a chord and the
estimation of the polyphony number. Moreover, it has been
observed that the detection performance is not noticeably
affected by the estimation of the polyphony number with
respect to the situations in which the polyphony number is
known.
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