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The particle filter (PF) has during the last decade been proposed for a wide range of localization and tracking applications. There
is a general need in such embedded system to have a platform for efficient and scalable implementation of the PE One such
platform is the graphics processing unit (GPU), originally aimed to be used for fast rendering of graphics. To achieve this, GPUs are
equipped with a parallel architecture which can be exploited for general-purpose computing on GPU (GPGPU) as a complement
to the central processing unit (CPU). In this paper, GPGPU techniques are used to make a parallel recursive Bayesian estimation
implementation using particle filters. The modifications made to obtain a parallel particle filter, especially for the resampling step,
are discussed and the performance of the resulting GPU implementation is compared to the one achieved with a traditional CPU
implementation. The comparison is made using a minimal sensor network with bearings-only sensors. The resulting GPU filter,
which is the first complete GPU implementation of a PF published to this date, is faster than the CPU filter when many particles
are used, maintaining the same accuracy. The parallelization utilizes ideas that can be applicable for other applications.

1. Introduction

The signal processing community has for a long time been
relying on Moore’s law, which in short says that the computer
capacity doubles for each 18 months. This technological evo-
lution has been possible by down-scaling electronics where
the number of transistors has doubled every 18 months,
which in turn has enabled more sophisticated instructions
and an increase in clock frequency. The industry has now
reached a phase where the power and heating problems have
become limiting factors. The increase in processing speed of
the CPU (central processing unit) has been exponential since
the first microprocessor was introduced in 1971 and in total
it has increased one million times since then. However, this
trend stalled a couple of years ago. The new trend is to double
the number of cores in CMP (chip multicore processing),
and the number of cores is expected to follow Moore’s law
for the next ten years [1]. The software community is now
looking for new programming tools to utilize the parallelism

of CMPs, which is not an easy task [2]. The signal processing
community has also started to focus more on distributed and
parallel implementations of the core algorithms.

In this contribution, the focus is on distributed particle
filter (PF) implementations. The particle filter has since its
introduction in its modern form [3] turned into a standard
algorithm for nonlinear filtering, and is thus a working horse
in many current and future applications. The particle filter is
sometimes believed to be trivially parallelizable, since each
core can be responsible for the operations associated with
one or more particles. This is true for the most characteristic
steps in the PF algorithm applied to each particle, but not for
the interaction steps. Further, as is perhaps less well known,
the bottle neck computation even on CPU’s is often not the
particle operations but the resampling [4], and this is not
obvious to parallelize, but possible.

The main steps in the PF and their complexity as a
function of the number N of particles are summarized below,
and all details are given in Section 3.



(i) Initialization: each particle is sampled from a given
initial distribution and the weights are initialized to a
constant; parallelizable and thus ©O(1).

(ii) Measurement update: the likelihood of the obser-
vation is computed conditional on the particle;
parallelizable and thus O(1).

(iii) Weight normalization: the sum of the weight is
needed for normalization. A hierarchical evaluation
of the sum is possible, which leads to complexity
O (log(N)).

(iv) Estimation: the weighted mean is computed. This
requires interaction. Again, a hierarchical sum eval-
uation leads to complexity @ (log(N)).

(v) Resampling: this step first requires explicitly or
implicitly a cumulative distribution function (CDF) to
be computed from the weights. There are different
ways to solve this, but it is not obvious how to
parallelize it. It is possible to make this a @ (log(N))
operation. There are other interaction steps here
commented on in more detail later on.

(vi) Prediction: each particle is propagated through a
common proposal density, parallelizable and thus
O(1).

(vii) Optional steps of Rao-Blackwellization: if the model
has a linear Gaussian substructure, part of the state
vector can be updated with the Kalman filter. This is
done locally for each particle, and thus @ (1).

(viii) Optional step of computing marginal distribution of
the state (the filter solution) rather than the state
trajectory distribution. This is @ (N?) on a single core
processor, but parallelizable to O (N). It also requires
massive communication between the particles.

This suggests the following basic functions of complexity
for the extreme cases single core, M = 1, and complete
parallelization, M/N — 1:

Single-core : fi(N) = ¢; + &»N,

(1)
Multicore(% — 1) : fu(N) = 63 + ¢4 log(N).

For a fixed number of particles and sufficiently large number
of cores the parallel implementation will always be more
efficient. In the future, we might be able to use N = M.
However, for the N that the application requires, the best
solution depends on the constants. One can here define a
break-even number

N = sI(\;l{f](N) = fu(N)}. (2)

This number depends on the relative processing speed of the
single and multicore processors, but also on how efficient the
implementation is.

It is the purpose of this contribution to discuss these
important issues in more detail, with a focus on general
purpose graphical processing units (GPGPUs). We also provide
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TaBLE 1: Table describing how the number of pipelines in the GPU
has changed. (The latest generation of graphics cards form the
two main manufacturers, NVIDIA, and ATI, have unified shaders
instead of specialized ones. These are marked with *.)

Model Vertex pipes  Frag. pipes  Year
NVIDIA GeForce 6800 Ultra 6 16 2004
ATI Radeon X850 XT PE 6 16 2005
NVIDIA Geforce 7900 GTX 8 24 2006
NVIDIA Geforce 7950 GX2 16 48 2006
ATI Radeon X1900 XTX 8 48 2006
NVIDIA GeForce 8800 Ultra 128" 128" 2007
ATT Radeon HD 2900 XT 3201 3201 2007
NVIDIA GeForce 9800 GTX+ 128" 1281 2008
ATI Radeon HD 4870 X2 2 % 800" 2% 800" 2008
NVIDIA GeForce 9800 GT2 2 % 1281 2% 128" 2008
NVIDIA GeForce 295 GTX 2 x 2401 2% 2407 2009
ATI Radeon HD 5870 16007 16007 2009
NVIDIA GeForce 380 GTX 5121 5121 2009

the first complete GPGPU implementations of the PF, and
use this example as a ground for a discussion of N.

Multicore implementations of the PF has only recently
been studied. For instance, [5] presents a GPU PF for visual
2d tracking, [6] focusing on doing parallel resampling on a
FPGA, and [7, 8] relating to this work. To the best of the
authors’ knowledge no successful complete implementation
of a general PF algorithm on a GPU has previously been
reported.

The organization is as follows. Since parallel program-
ming may be unfamiliar to many researchers in the signal
processing community, we start with a brief tutorial in
Section 2, where background material for parallel program-
ming, particularly using the graphics card, is reviewed. In
Section 3 recursive Bayesian estimation utilizing the particle
filter is presented for a GPU implementation. In Section 4
a simulation study is presented comparing CPU and GPU
performance. Finally, Section 5 summarizes the results.

2. Parallel Programming

Nowadays, there are many types of parallel hardware
available; examples include multicore processors, field-
programmable gate arrays (FPGAs), computer clusters, and
GPUs. GPUs offer low-cost and easily accessible single
instruction multiple data (SIMD) parallel hardware—almost
every new computer comes with a decent graphics card.
Hence, GPUs are an interesting option not only for speeding
up algorithms but also for testing parallel implementations.

The GPU architecture is also attractive since there is a lot
of development going on in this area, and support structures
are being implemented. One example of this is Matrix
Algebra on GPU and Multicore Architectures (MAGMAs), [9],
which brings the functionality of LAPACK to the GPU. There
are also many success stories, where CUDA implementations
of various algorithms have proved several times faster than
normal implementations [10].
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FiGure 1: The graphics pipeline. The vertex and fragment proces-
sors can be programmed with user code which will be evaluated in
parallel on several pipelines. In the latest GPUs these shaders are
unified instead of specialized as depicted.

2.1. Graphics Hardware. Graphics cards are designed to pri-
marily produce graphics, which makes their design different
from general purpose hardware, such as the CPU. One
such difference is that GPUs are designed to handle huge
amounts of data about an often complex scene in real time.
To achieve this, the GPU is equipped with a SIMD parallel
instruction set architecture. The GPU is designed around
the standardized graphics pipeline [11] depicted in Figure 1.
It consists of three processing steps, which all have their
own purpose when it comes to producing graphics, and
some dedicated memory units. From having predetermined
functionality, GPUs have moved towards providing more
freedom for the programmer. Graphics cards allow for
customized code in two out of the three computational units:
the vertex shader and the fragment shader (these two steps
can also be unified in one shader). As a side-effect, general-
purpose computing on graphics processing units (GPGPUs) has
emerged to utilize this new source of computational power
[11-13]. For highly parallelizable algorithms the GPU may
outperform the sequential CPU.

2.2. Programming the GPU. The two programmable steps
in the graphics pipeline are the vertex processor and the
fragment processor, or if these are unified. Both these
processors can be controlled with programs called shaders.
Shaders, or GPU programs, were introduced to replace fixed
functionality in the graphics pipeline with more flexible
programmable processors.

Some prominent differences between regular program-
ming and GPU programming are the basic data types which
are available, colors and textures. In newer generations of
GPUs 32 bit floating point operations are supported, but the
rounding units do not fully conform to the IEEE floating
point standard, hence providing somewhat poorer numerical
accuracy. Internally the GPU works with quadruples of
floating point numbers that represent colors (red, green,
blue, and alpha) and data is passed to the GPU as textures.
Textures are intended to be pictures that are mapped onto
surfaces given by the vertices.

In order to use the GPU for general purpose calculations,
a typical GPGPU application has a program structure similar
to Figure 2.

Initialize GPU

2
Upload program
> Upload suitable shader code to
vertex and fragment shaders
J
Upload data
Upload textures containing the
data to be processed to the GPU

2

Run program

Draw a rectangle covering
as many pixels as there are
parallel computations to do

|2

Download data

Download the result from
the render buffer to the CPU

J

FIGURE 2: Work flow for GPGPU programming using the OpenGL
shading language (GLSL).

2.3. GPU Programming Language. There are various ways
to access the GPU resources as a programmer. Some of the
available alternatives are

(i) OpenGL [14] using the OpenGL Shading Language
(GLSL) [15],

(ii) C for graphics (Cg) [16],
(iii) DirectX High-Level Shader Language (HLSL) [17],
(iv) CUDA [18] if using a NVIDIA graphics card.

Short descriptions of the alternatives are given in [8], and
more information about these and other alternatives can
be found in [11, 13, 16]. CUDA presents the user with a
C language for direct application development on NVIDIA
GPUs.

The development in this paper has been conducted using
GLSL.

3. A GPU Particle Filter

3.1. Background. The particle filter (PF) [3] has proven to
be a versatile tool applicable to surveillance [19], fusion
of mixed sensors in wireless networks [20], cell phone
localization [21], indoor localization [22], and simulta-
neous localization and mapping (SLAM) [23]. It extends
to problems where nonlinearities may cause problems for
traditional methods, such as the Kalman filter (KF) [24] or
banks of KFs [25, 26]. The main drawback is its inherent
computational complexity. This can, however, be handled
by parallelization. The survey in [27] details a general
PF framework for localization and tracking, and it also
points out the importance of utilizing model structure using
the Rao-Blackwellized particle filter (RBPF), also denoted
marginalized particle filter (MPF) [28, 29]. The result is a



PF applied to a lowdimensional state vector, where a KF
is attached to each particle enabling efficient and real-time
implementations. Still, both the PF and RBPF are computer
intensive algorithms requiring powerful processors.

3.2. The Particle Filter Algorithm. The general nonlinear
filtering problem is to estimate the state, x¢, of a state-space
system

Xt+1 = f(xt)wt))
(3)
e = h(xe) + ey,

where y; is the measurement and w, ~ p,(w;) and ¢ ~
pele;) are the process and measurement noise, respectively.
The function f describes the dynamics of the system, h
the measurements, and p,, and p. are probability density
functions (PDFs) of the involved noise. For the important
special case of linear-Gaussian dynamics and linear-Gaussian
observations the Kalman filter [24, 30] solves the estimation
problem in an optimal way. A more general solution is the
particle filter (PF) [3, 31, 32] which approximately solves the
Bayesian inference for the posterior state distribution [33]
given by

plxr | Vo) = j Pt | x)p(xr | Yo)dxs,

4
p(ye | ) ploee | Yio1) “)

p(yel Y1)

P(Xt | Yy) =

where Y, = {y;}{_, is the set of available measurements. The

PF uses statistical methods to approximate the integrals. The
basic PF algorithm is given in Algorithm 1.

To implement a parallel particle filter on a GPU there are
several aspects of Algorithm 1 that require special attention.
Resampling is the most challenging step to implement in
parallel since all particles and their weights interact with
each other. The main difficulties are cumulative summation,
and selection and redistribution of particles. In the following
sections, solutions suitable for parallel implementation are
proposed for these tasks. Another important issue is how
random numbers are generated, since this can consume
a substantial part of the time spent in the particle filter.
The remaining steps, likelihood evaluation as part of the
measurement update and state propagation as part of the
time update, are only briefly discussed since they are parallel
in their nature.

The resulting parallel GPU implementation is illustrated
in Figure 3. The steps are discussed in more detail in this
section.

3.3. GPU PF: Random Number Generation. State-of-the-art
graphics cards do not have sufficient support for random
number generation for direct usage in a particle filter, since
the statistical properties of the built-in generators are too
poor.

The algorithm in this paper therefore relies on random
numbers generated on the CPU to be passed to the GPU.
This introduces substantial data transfer, as several random
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(1) Let t := 0, generate N particles: {x(()i)}fil ~ p(xp).

(2) Measurement update: Compute the particle weights
i i ()
o = ply: | ")/ S pye | 7).
(3) Resample:
(a) Generate N uniform random numbers
{u"}, ~ U(o,1).
(b) Compute the cumulative weights:
i i (j
CE) = Z}:1 “)t]>- _ _
(c) Generate N new particles using u” and ¢’
; ; (D) i(0)
{x)}N | where Pr(x!) = Iy = W,
(4) Time update:
(a) Generate process noise {wi’)}ﬁl ~ pw(wy).
(b) Simulate new particles X = f (x4,
(5) Let t := t + 1 and repeat from 2.

AvrcoriTHM 1: The Particle Filter [3].

numbers per particle are needed in each iteration of the
particle filter. Uploading data to the graphics card is rather
quick, but performance is still lost. Furthermore, this makes
generation of random numbers a @ (N) operation instead of
a O (1) operation, as would be the case if the generation was
completely parallel.

Generating random numbers on the GPU suitable for use
in Monte Carlo simulations is an ongoing research topic, see,
for example, [34-36]. Implementing the random number
generation in the GPU will not only reduce data transfer
and allow for a standalone GPU implementation, an efficient
parallel version will also improve the overall performance as
the random number generation itself takes a considerable
amount of time.

3.4. GPU PF: Likelihood Evaluation and State Propagation.
Both likelihood evaluation (as part of the measurement
update) and state propagation (in the time update) of
Algorithm 1, can be implemented straightforwardly in a
parallel fashion since all particles are handled independently.
Consequently, both operations can be performed in O(1)
time with N parallel processors, that is, one processing
element per particle. To solve new filtering problems, only
these two functions have to be modified. As no parallelization
issues need to be addressed, this is easily accomplished.
In the presented GPU implementation the particles x
and the weights @ are stored in separate textures which
are updated by the state propagation and the likelihood
evaluation, respectively. One texture can only hold four-
dimensional state vectors in a natural way, but using multiple
rendering targets the state vectors can be extended when
needed without any major changes to the code. The idea
is then to store the state in several textures. For instance,
with two textures to store the state, the state vector can grow
to eight states. With the multitarget capability of modern
graphics cards the changes needed are minimal.

When the measurement noise is lowdimensional (groups
of at most 4 dependent dimensions to fit a lookup table in a
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FiGgure 3: GPU PF algorithm. The outer boxes make up the CPU
program starting the inner boxes on the GPU in correct order.
The figure also indicates what is fed to the GPU; remaining data
is generated on it.

uniform vec2 y;

uniform sampler2D x, w, pdf;

uniform mat2 sqrtSigmainv;

const vec2 S; =vec2(l.,0);

const vec2 S, =vec2(-1.,0);

void main(void)

{

vec2 xtmp=texture2D(x, gl _TexCoord[0]. st ). xy;
vec2 e = y-vec2(distance(xtmp, S,), distance (xtmp, S,));
e=sqrtSigmainv * e +vec2(.5,.5);

gl _FragColor.x = texture2D(pdf, e).x

*  texture2D(w, gl_Texcoord[0].st).x;

¥

ListiNG 1: GLSL coded fragment shader: measurement update.

texture) the likelihood computations can be replaced by fast
texture lookups utilizing the fast texture interpolation. The
result is not as exact as if the likelihood was computed the
regular way, but the increase in speed is often considerable.
Furthermore, as discussed above, the state propagation
uses externally generated process noise, but it would also be
possible to generate the random numbers on the GPU.

Example (Shader program). To exemplify GLSL source code,
Listing 1 contains the code needed for a measurement update
in the range-only measurement example in Section 4.

5
Original data Cumulative sum
51 2 3 04— 1=3-2 3 6=10-410%
PN/ / N
Tl1+233 3+4=7 ——>  3=10-7 /,10 g
2
: g ———— 10 2
S 3+7=10 g
M

FIGURE 4: A parallel implementation of cumulative sum generation
of the numbers 1, 2, 3, and 4. First the sum, 10, is calculated using a
forward adder tree. Then the partial summation results are used by
the backward adder to construct the cumulative sum; 1, 3,6, and
10.

The code is very similar to C code, and is executed once
for each particle, that is, fragment. To run the program a
rectangle is fed as vertices to the graphics card. The size of
the rectangle is chosen such that there will be exactly one
fragment per particle, and that way the code is executed once
for every particle.

The keyword uniform indicates that the following vari-
able is set by the API before the program is executed. The
variable y is hence a two-component vector, vec2, with the
measurement, and S; and S, contain the locations of the
sensors. Variables of the type sampler2D are pointers to
specific texture units, and hence x and w point out particles
and weights, respectively, and pdf the location of the lookup
table for the measurement likelihood.

The first line of code makes a texture lookup and retrieves
the state, stored as the two first components of the vector
(color data) as indicated by the xy suffix. The next line
computes the difference between the measurement and the
predicted measurement, before the error is scaled and shifted
to allow for a quick texture look up. The final line writes the
new weight to the output.

3.5. GPU PF: Summation. Summation is part of the weight
normalization (as the last step of the measurement update)
and the cumulative weight calculation (during resampling)
of Algorithm 1. A cumulative sum can be implemented
using a multipass scheme, where an adder tree is run
forward and then backward, as illustrated in Figure 4. This
multipass scheme is a standard method for parallelizing
seemingly sequential algorithms based on the scatter and
gather principles. In [11], these concepts are described in the
GPU setting. In the forward pass partial sums are created
that are used in the backward pass to compute the missing
partial sums to complete the cumulative sum. The resulting
algorithm is @ (log N) in time given N parallel processors and
N particles.

3.6. GPU PF: Resampling. To prevent sample impoverish-
ment, the resampling step of Algorithm 1 replaces unlikely
particles with likelier ones. This is done by drawing a new
set of particles {xﬁf)} with replacement from the original
particles {x'} in such a way that Pr(x\) = x0)) = @),
Standard resampling algorithms [31, 37] select new particles



FIGURE 5: Particle selection by comparing uniform random num-
bers () to the cumulative sum of particle weights (-).
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FIGURE 6: Particle selection on the GPU. The line segments are made
up by the points N¢~1 and N®, which define a line where every
segment represents a particle. Some line segments have length 0,
that is, no particle should be selected from them. The rasterizer
creates particles x according to the length of the line segments. The
line segments in this figure match the situation in Figure 5.

using uniformly distributed random numbers as input to the
inverse CDF given by the particle weights

. (i) . (i
xfi) = xEJ ), with j = P‘l(u(f())), (5)

where P is the CDF given by the particle weights.

The idea for the GPU implementation is to use the
rasterizer to do stratified resampling. Stratified resampling
is especially suitable for parallel implementation because it
produces ordered random numbers, and guarantees that if
the interval (0, 1] is divided into N intervals, there will be
exactly one random number in each subinterval of length
N~1. Selecting which particles to keep is done by drawing a
line. The line consists of one line segment for each particle in
the original set, indicated by its color, and where the length
of the segments indicate how many times the particles should
be replicated. With appropriate segments, the rastering will
create evenly spaced fragments from the line, hence giving
more fragments from long line segments and consequently
more particles of likelier particles. The properties of the
stratified resampling are perfect for this. They make it
possible to compute how many particles have been selected
once a certain point in the original distribution was selected.
The expression for this is

N® = [Nc(i) - u(“\'c(i)”], (6)

where N is the total number of particles, ¢ = Zj’:l w

is the ith cumulative weight sum, and N the number
of particles selected when reaching the ith particle in the
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FIGURE 7: A range-only sensor system, with 2D-position sensors in
S; and S, with indicated range resolution.
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Figure 8: Comparison of time used for GPU and CPU.

original set. The expression for stratified resampling is vital
for parallelizing the resampling step, and hence to make a
GPU implementation possible. By drawing the line segment
for particle i from N~V to N, with N = 0, the particles
that should survive the resampling step correspond to a
line segment as long as the number of copies there should
be in the new set. Particles which should not be selected
get line segments of zero length. Rastering with unit length
between the fragments will therefore produce the correct
set of resampled particles, as illustrated in Figure 6 for the
weights in Figure 5. The computational complexity of this
is @(1) with N parallel processors, as the vertex positions
can be calculated independently. Unfortunately, the used
generation of GPUs has a maximal texture size limiting the
number of particles that can be resampled as a single unit.
To solve this, multiple subsets of particles are simultaneously
being resampled and then redistributed into different sets,
similarly to what is described in [38]. This modification of
the resampling step does not seem to significantly affect the
performance of the particle filter as a whole.

3.7. GPU PE: Computational Complexity. From the descrip-
tions of the different steps of the particle filter algorithm it is
clear that the resampling step is the bottleneck that gives the
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Time spent (%)
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Number of particles
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(a) GPU

F1Ggure 9: Comparison of the relative time spent in the different steps particle filter, in the GPU and CPU implementation, respectively.

time complexity of the algorithm, @(logN) for the parallel
algorithm compared to @(N) for a sequential algorithm.

The analysis of the algorithm complexity above assumes
that there are as many parallel processors as there are
particles in the particle filter, that is, N parallel elements.
Today this is a bit too optimistic, there are hundreds of
parallel pipelines in a modern GPU, hence much less than the
typical number of particles. However, the number of parallel
units is constantly increasing.

Especially the cumulative sum suffers from a low degree
of parallelization. With full parallelization the time com-
plexity of the operation is @ (logN) whereas a sequential
algorithm is O (N), however the parallel implementation
uses O (2N) operations in total. That is, the parallel imple-
mentation uses about twice as many operations as the
sequential implementation. This is the price to pay for the
parallelization, but is of less interest as the extra operations
are shared between many processors. As a result, with few
pipelines and many particles the parallel implementation
will have the same complexity as the sequential one, roughly
O (N/M) where M is the number of processors.

4. Simulations

Consider the following range-only application as depicted in
Figure 7. The following state-space model represents the 2D-
position

lloc: — Sl||2 (7)
= + ey,
llxe = Sl

7
9
=
2,
°
E
I
16 256 4096 65536 1048576
Number of particles
[ Estimate I Resample
[ Measurement update [l Random numbers
I Time update
(b) CPU
TaBLE 2: Hardware used for the evaluation.
GPU CPU
NVIDIA GeFORCE Intel Xeon
Model: 7900 GTX Model: 5130
Driver: 2.1.2NVIDIA 169.09  Clock speed: 2.0GHz
. PCI Express, .
Bus: 14.4 GB/s Memory: 2.0GB
Clock 650 MHz 0s: CentOS
speed: 5.1,
Processors: 8/24 64 bit
© (vertex/fragment) (Linux)

where S; and S, are sensor locations and x; contains the 2D-
position of the object. This could be seen as a central node
in a small sensor network of two nodes, which easily can be
expanded to more nodes.

To verify the correctness of the implementation a particle
filter, using the exact same resampling scheme, has been
designed for the GPU and the CPU. The resulting filters
give practically identical results, though minor differences
exist due to the less sophisticated rounding unit available
in the GPU and the trick in computing the measurement
likelihood. Furthermore, the performance of the filters is
comparable to what has been achieved previously for this
problem.

To evaluate the complexity gain obtained from using
the parallel GPU implementation, the GPU and the CPU
implementations of the particle filter were run and timed.
Information about the hardware used for this is gathered in
Table 2. Figure 8 gives the total time for running the filter
for 100 time steps repeated 100 times for a set of different
numbers of particles ranging from 2* = 16 to 22 ~ 10°,



(Note that 16 particles are not enough for this problem, nor
is as many as 10° needed. However, the large range shows the
complexity better.)

Some observations: for few particles the overhead from
initializing and using the GPU is large and hence the CPU
implementation is the fastest. With more work optimizing
the parallel implementation the gap could be reduced. The
CPU complexity follows a linear trend, whereas at first
the GPU time hardly increases when using more particles;
parallelization pays off. For even more particles there are not
enough parallel processing units available and the complexity
becomes linear, but the GPU implementation is still faster
than the CPU. Note that the particle selection is performed
on 8 processors and the other steps on 24, see Table 2, and
hence that the degree of parallelization is not very high with
many particles.

A further analysis of the time spent in the GPU imple-
mentation shows which parts are the most time consuming,
see Figure 9. The main cost in the GPU implementation
quickly becomes the random number generation (performed
on the CPU), which shows that if that step can be parallelized
there is much to gain in performance. For both CPU and
GPU the time update step is almost negligible, which is
an effect of the simple dynamic model. The GPU would
have gained from a computationally expensive time update
step, where the parallelization would have paied off better.
To produce an estimate from the GPU is relatively more
expensive than it is with the CPU. For the CPU all steps are
O(N) whereas for the GPU the estimate is @ (log N) where
both the measurement update and the time update steps
are (O(1). Not counting the random number generation,
the major part of the time is spent on resampling in
the GPU, whereas the measurement update is a much
more prominent step in the CPU implementation. One
reason is the implemented hardware texture lookups for the
measurement likelihood in the GPU.

5. Conclusions

In this paper, the first complete parallel general particle filter
implementation in literature on a GPU is described. Using
simulations, the parallel GPU implementation is shown
to outperform a CPU implementation when it comes to
computation speed for many particles while maintaining
the same filter quality. As the number of pipelines steadily
increases, and can be expected to match the number of
particles needed for some low-dimensional problems, the
GPU is an interesting alternative platform for PF implemen-
tations. The techniques and solutions used in deriving the
implementation can also be used to implement particle filters
on other similar parallel architectures.
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