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We study unsupervised and supervised recognition of human actions in video sequences. The videos are represented by probability
distributions and then meaningfully compared in a probabilistic framework. We introduce two novel approaches outperforming
state-of-the-art algorithms when tested on the KTH and Weizmann public datasets: an unsupervised nonparametric kernel-based
method exploiting the Maximum Mean Discrepancy test statistic; and a supervised method based on Support Vector Machine with
a characteristic kernel specifically tailored to histogram-based information.

1. Introduction

Huge video archives require advanced video analysis to
automatically interpret, understand, and summarize the
semantics of video contents. In this paper we focus on
localizing and categorizing different human actions in
surveillance videos.

The task is challenging as visual perceptions of such
events are very high-dimensional, and huge intraclass vari-
ations are common due to view point changes, camera
motion, occlusions, clothing, cluttered background, geomet-
ric, and photometric object distortions.

A large amount of literature deals with this problem,
by applying a variety of different techniques, which we
briefly review in Section 2; most approaches however share
a common high-level structure:

(i) extraction of features from the video data,

(ii) if necessary, dimensionality reduction of feature
vectors, by means of techniques such as PCA,

(iii) classification of the sequence.

Our main contributions are new techniques for the third
step, classification.

In our experimental evaluation we consider two dif-
ferent state-of-the-art feature descriptors, which have been
described in action recognition systems providing top-tier
results on the publicly available KTH [1, 2] and Weizmann

[3] datasets. By using our proposed classification algorithm
with such features, we manage to further improve classifica-
tion results on the same datasets.

In order to be sufficiently powerful to descriptively
represent video content, such features are high dimensional.
This is commonly handled by using kernel-based methods,
which allow one to perform classification implicitly in a
reduced space.

In this framework, we deal with two problems:

(1) unsupervised clustering of sequences from unlabeled
data, given the desired number of clusters;

(ii) supervised classification of new input sequences,
given a set of labeled training sequences.

In the unsupervised case, the core idea is to represent
each sequence as a probability distribution: if two probability
distributions are similar enough, the corresponding video
sequences are expected to represent the same action (see
Figure 1).

In order to enable meaningful comparisons between
probability distributions, such distributions are embedded
in a high-dimensional Reproducing Kernel Hilbert Space
(RKHS) by means of characteristic kernels, which enable
injective embedding of probabilities [4-7]. The distance
between mapped distributions is known as Maximum Mean
Discrepancy (MMD) [8, 9], whose well-defined application
is homogeneity testing.
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FiGgure 1: Unsupervised action recognition is performed by computing a feature vector for each frame of the sequence (left), as described
in Section 6. A nonparametric probability distribution on the feature space is computed for each sequence (center); different sequences are
compared by mapping the corresponding probability distributions to an RKHS by means of ¢ (right): in particular, sequences representing

the same actions are clustered by using MMD as a distance metric.

(i) The first main contribution of this paper is the novel
use of MMD as a homogeneity test for unsupervised
action recognition (see Figure 1). Its encouraging
performance, exceeding the best results in the litera-
ture, suggests that our classification technique is well
suited to action recognition problems, and manages
to capture differences between different classes while
being robust to the significant appearance variations
in the provided datasets. This is in accordance to
several works in the literature, where MMD has been
successfully used for unsupervised tasks in several
different applications (see Section 2).

(ii) The second main contribution is in the supervised
case: we use an SVM-based approach (see Figure 2),
with a novel characteristic kernel specifically tailored
for histogram-based data. Also in this context, we
provide experimental evidence that selecting an
appropriate kernel leads to significant performance
gains.

By representing video sequences by means of probability
distributions of feature vectors associated to video frames,
we implicitly disregard frame ordering; such property is
shared by several other approaches exploiting bag-of-features
techniques [10, 11], and allows us to bypass the problem of
determining the initial or final times of an action, while at
the same time taking advantage of the action periodicity.

We review related literature in Section 2. In Section 3 we
illustrate Maximum Mean Discrepancy, which is the core
of our unsupervised method, and review the definition of
characteristic kernels. Next we address the case of charac-
teristic kernels which are defined for Abelian semigroups
in Section 4. It gives us a characteristic kernel which is
proper for histogram-based feature descriptors that we use
in our supervised method. We discuss about the general
framework of our unsupervised and supervised approaches
in Section 5. In Section 6, we provide a brief overview
to the feature extraction approaches that we use for our
experimental validation, which is described in Section 7
using KTH and Weizmann datasets. In Section 7, we also
discuss computational cost. Lastly, we draw conclusions and
discuss future works in Section 8.

FiGure 2: For supervised action recognition, for each sequence
we compute a single feature vector (left) representing histogram-
based data, as described in Section 6. Such feature vectors are
then mapped to an RKHS by using a novel kernel which is both
characteristic and appropriates for said representation (right). An
SVD classifier is learnt from labeled training sequences in order to
classify different actions.

2. Related Works

A large amount of different approaches have been proposed
so far for action recognition (a recent review is given in [12]).
We provide a broad classification in the following.

2.1. Features for Action Recognition. Shape-based approaches
attempt to extract silhouettes of actors and then recognize
the actions by analyzing such data [3, 13-16]. One inherent
disadvantage of this class of techniques is that they can
not capture the internal motion of the object within the
silhouette region. More importantly, even state-of-the-art
background subtraction techniques are unable to reliably
recover precise silhouettes, especially in dynamic environ-
ments, which reduces the robustness of techniques in this
class.

Flow-based techniques estimate the optical flow field
between adjacent frames and use such features for action
recognition, and provide the important advantage of requir-
ing no background subtraction. A pioneering algorithm in
this category was proposed by Efros [17]. They reported their
results on a database of images taken at distance. Shechtman
and Irani [18] use a template matching approach to correlate
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the flow consistency between the template and the video.
Danafar and Gheissari [19] proposed an optical-flow-based
algorithm which has the advantages of both holistic (look
at human body as whole) and body-part-based approaches.
This is one of the two descriptors used in this paper, and is
outlined in Section 6. Jhuang et al. [20] extract dense local
motion information with a set of flow filters. The responses
are pooled locally, and converted to higher-level responses
using complex learned templates. These templates are pooled
again, and fed into a discriminative classifier.

In order to design features robust to changes in camera
view and variability in the speed of actions, some researchers
proposed space-time interest point features [1, 2, 10]. Dollar
et al. [21] present a spatiotemporal interest point detector
based on 1D-Gabor filters, which identifies regions with
sudden or periodic intensity changes in time. Thereafter for
each 3D interest region, optical flow descriptors are obtained.
A fixed set of 3D visual words is compared with a histogram
of a new sequence of visual words by a nearest neighbor
approach. Ke et al. [22] also presented a new spatiotemporal
shape and flow correlation algorithm for action recognition
which works on oversegmented videos and does not require
background subtraction.

Using both form and flow features simultaneously is
also suggested in the seminal work of Giese and Poggio
[23], which describes the strategy of biological systems: form
and motion are processed simultaneously but independently
in two separate pathways. However in their paper. The
implementation of such system is designed for simple,
schematic stimuli.

The approach is taken further by Schindler and Van
Gool [24], which investigates the detection of actions from
very short sequences called snippets. The motion pathway
extracts optic flow at different scales, directions, and speeds.
In the form pathway, they apply Gabor filter at multiple
orientations and scales. In both pathways, the filter responses
are MAX-pooled, and computed to a set of learned templates.
The similarities from both pathways are concatenated to a
feature vector and classified with a bank of linear classifiers
by SVM. In our approach, we use such powerful feature
descriptor, computed on each pair of frames independently,
as the input of our classification algorithm.

2.2. Classification for Action Recognition. Many classification
techniques are proposed in literature, both supervised and
unsupervised.

In [25], the authors propose compound features that
are assembled from simple 2D corners in both space and
time. Compound features are learned in a weakly-supervised
approach using a data mining algorithm. Several researchers
have explored unsupervised methods for motion analysis.
Hoey [26] applies a hierarchical dynamic Bayesian network
model to recognize facial expressions in an unsupervised
manner. Zhong et al. [27] have proposed an unsupervised
approach to detect unusual activity in video sequences.
A simple descriptor vector per each frame is considered
and video is clustered by looking at co-occurrences of
motion and appearance patterns. Their method identifies
spatially isolated clusters as unusual activity. In [28], the

authors detect abnormal activities by means of the multi-
observation Hidden Markov Model and spectral clustering
to unsupervised training of behavior models. Boiman and
Irani [29] explain a video sequence using patches from
a database; as dense sampling of the patches is necessary
in their approach, the resulting algorithm is very time
consuming and unpractical for action recognition. Wang et
al. [30] propose to use an unsupervised learning approach to
discover the set of action classes present in a large collection
of training images. Thereafter, these action classes are used to
label test images. The features are based on the coarse shape
of human figures and the distance between a pair of images is
computed using a linear programming relaxation technique.
Spectral clustering is performed using the resulting distances.
Niebles et al. [11] present an unsupervised learning method
for human action categories. Their algorithm automatically
learns the probability distribution of the spatiotemporal
words that each corresponds to an action category, and builds
a model for each class. This is achieved by using latent topic
models such as probabilistic Latent Semantic analysis (pLSA)
model and Latent Dirichlet Allocation (LDA).

Many researchers use supervised and discriminative
approaches for the classification stage, particularly with Sup-
port Vector Machines with an appropriate kernel according
to feature descriptors [2, 19, 24, 31, 32]. Other approaches
represent videos by using sparse spatiotemporal words,
then summarized in a histogram. In such approaches, the
temporal order of frames is disregarded, which is also shared
in our approach. Nowozin et al. [31] propose a sequential
representation which retains the temporal order. They intro-
duce a discriminative subsequent mining to find optimal
discriminative subsequent patterns, and extend the prefix
span subsequence mining algorithm [33] in combination
with LPBoost [34].

Maximum Mean Discrepancy as a statistical test has
application in variety of areas. For instance, in bioinformatics
we might wish to find whether different procedures in
different labs on the same tissue obtain different DNA
microarry data [35]. In database attribute matching has
been used for merging heterogeneous databases [8]. In
speaker verification, such test can be used to identify the
correspondence between a speech sample to a person for
whom previously recorded speech is available [36]. In this
paper we propose a novel use of MMD as an unsupervised
action recognition method.

3. The Maximum Mean Discrepancy

In this section we briefly recall the theoretical foundations
of MMD: in Section 5, we show how it is employed in our
context.

Recent studies [5, 6, 8] have shown that mapping random
variables into a suitable reproducing kernel Hilbert space
(RKHS) gives a powerful and straightforward method of
dealing with higher order statistics of the variables. The idea
behind this is to do linear statistics in RKHS and derive
its meaning in the original space. One basic statistic on
Euclidean space is the mean. By embedding the distributions



to RKHS, the corresponding factor is the mean element,
which was introduced by Gretton et al. [8, 9]. The distance
between mapped mean elements is known as Maximum
Mean Discrepancy (MMD). One well-defined application
of MMD is for homogeneity testing or for the two sample
test. The two sample problem tests whether two probability
measures P and Q coincide or not.

Definition 1. Let ¥ be an RKHS on the separable metric
space X, with a continuous feature mapping ¢(x) € F for
each x € X. The inner product between feature mappings
is given by the positive definite kernel function k(x,x") :=
(¢(x), d(x")) . We assume that the kernel k is bounded. Let
&P be the set of Borel probability measures on X.

Following [4, 8, 9], we define the mapping to  of P € P
as the expectation of ¢(x) with respect to P (i.e., the mean
element 1, ):

[lplﬂj—'f,

(1)
P j ®(x)dP.
X

The definition of MMD is explained in the following
theorems [8, 9].

Theorem 2. Let P and Q be two Borel probability measures
defined on X. Then P = Q if and only if MMDIP, Q] = 0. Let
x, x" be independent random variables drawn according to P,
and y, y' be independent and drawn according to Q, and let x
be independent of y. Then,

MMDIP, Q]
= llup = allye = |[Eplk(x )] = Eqlk(y, )],

= (Ex,x/ (k(x,x")) + Eyyk(y,y") — ZEX,yk(x,y)) 1/2.
(2)

In practice, because we do not have access to the
population of distributions P and Q, we compare two
sets of data which are drawn from the populations. The
homogeneity test becomes a problem of testing whether two
samples of random variables are generated from the same
distribution. MMD,,, the unbiased empirical estimation of
the MMD is defined as follows.

Definition 3. Given observations X := {x],...,%x,} and
Y := {y1,...,yn}, drawn independently and identically
distributed from P and Q, respectively, the unbiased estimate
of MMD is the one-sample U-statistic:

1 m
2. - o
MMD) = 1)l‘;h(z,,z]), (3)
where z; := (x;, yi), h(zi, zj) := k(xi, ;) +k(yi, y;) — k(x5 yi) —
k(xj, y;), and m is the sample size.

The biased estimate MMD, is achieved by replacing the
U-statistic in the above equation with a V-statistic (then the
sum includes the term i = j).
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In the two sample test, we require both a measure of
distance between probabilities and a notion of whether this
distance is statistically significant. The former is given in
Theorem 2. For the latter, we give an expression for the
asymptotic distribution of this distance measure, from which
a significance threshold may be obtained. More precisely, we
conduct a hypothesis test with null hypothesis #, defined
as P = Q, and alternative hypothesis #; as P # Q. We must
therefore specify a threshold that the empirical MMD will
exceed with small probability when P = Q.

Theorem 4. Let P and Q be two Borel probability measures
defined on X. Let X := {x1,...,%m} and Y 1= {y1,..., yu}
be observations which are drawn independently and identically
from P and Q, respectively. Let us assume 0 < k(x,y) < K.
Then

Pr{ IMMD, [X,Y] — MMDI[P, Q]|

> z((ﬁ)”ﬂ (f)m) +e} < Zexp<2K_(i::mn)>.
(4)

In [8] the proof of Theorem 4 has been shown by
means of so called Rademacher average. We accept the null
hypothesis P = Q if the value of MMD, (P, Q) satisfies the
inequality in Corollary 5 and reject the null hypothesis if not.

Corollary 5. A hypothesis test of level o for the null hypothesis
P = Q (that is for MMD[P, Q] = 0) has the acceptance region

MMDy[X, Y] <ﬁ(1+¢210gﬁ), (5)

where a is the user-defined significance threshold (confidence
interval) for test statistic.

In practice we used the looser significance threshold
that is defined in Corollary 5. Empirically to estimate the
boundary, the bootstrap method of Gretton et al. [8, 25]
on the aggregated data is used. For theoretical point of
view we elaborate on a tighter significance threshold of
our two-sample test which is obtained by an expression of
the asymptotic distribution. The following theorem explains
that the unbiased empirical version of MMD asymptotically
converges to the population value of MMD and obtains the
threshold.

Theorem 6. We assume E(h?) < oo. Under Hi, MMDf,
converges in distribution to a Gaussian according to

m"2(MMD? — MMD?([P,Q]) = W (0,02),  (6)

where 02 = 4(E,[(E, h(2,2'))*] = [E.r (h(z,2'))]%), uniformly
at rate 1//m. Under Fy, the U-statistic is degenerate, meaning
E, h(z,Z') = 0. In this case, MMDi converges in distribution
according to

mMMD2 2 S'A/[2} - 2], (7)
-1
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wherez; ~ N (0,2) i.i.d., Ajare the solutions to the eigenvalue
equation

k&mMWMMﬂw=wa% (8)

and k(xi,x;) = k(xix;) — Eck(xix) — Eck(x,x;) +
E. v k(x,x")is the centered RKHSkernel.

The goal is to determine whether the empirical test
statistic MMD, is so large to be outside the 1 — & quantile
of the null distribution z; (consistency of the resulting test is
guaranteed by the form of the distribution under #;). One
way to estimate this quantile is using the bootstrap on the
aggregated data [8, 9].

Clearly the quality of the MMD as a statistic depends on
the richness of RKHS space # which is defined by a measur-
able kernel k. A set of kernels is called characteristic kernels,
introduced in [4, 5] gives an RKHS for which probabilities
have unique images. The necessary and sufficient condition
for a kernel to be characteristic is expressed in following
lemma.

Lemma 7. Let (X, B) be a measurable space, k be a measur-
able positive definite kernel on X, and H be the associated
RKHS. Also let R be an RKHS, then k is characteristic if and
only if # + R is dense in L*(P) for every probability P on
(X, B).

The definition of a characteristic kernel generalizes the
well-known property of the characteristic functions which
uniquely determines a Borel probability measure. The Gaus-
sian RBF kernel k(x,y) = exp(—|lx — y||2/02) is a famous
example of a characteristic kernel on the entire R™. We
use this kernel in the present work for unsupervised action
recognition, whereas in the supervised case we introduce a
different characteristic kernel in the following section.

4. Characteristic Kernels on
Abelian Semigroups

Our supervised action recognition approach, outlined in
Section 5, is based on SVM. The crucial condition that a
kernel should satisfy to be suitable for SVM is to be positive
definite, meaning that the SVM problem is convex, and hence
that the solution of its objective function is unique. Positive
definite kernels are defined as following.

Definition 8. Let X be a nonempty set. A function k : X X
X — R is called positive definite kernel if and only if it is
symmetric (i.e., k(x,x") = k(x',x)) for all x,x" € X and if

n

Z c,-c]-k(xi,xj) >0, VceR. 9)
ij=1

In kernel-based methods like SVM, the choice of kernel
is extremely important for the classification performance. As
we have histogram-based feature vectors, we discuss here on
positive definite kernels which are proper for histograms and

then on characteristic kernels tailored on histogram-based
information. We consider Histogram Intersection (HI) kernel
as a positive definite kernel. HI has been first introduced in
computer vision by Swain and Ballard in [37]:

kui(a, b) = Z min(a;, b;), (10)

i=1

where x = (ai1,...,a,) and b = (by,...,b,) are two n bins
histograms (in R"). This kernel was successfully used as a
similarity measure for image retrieval and recognition tasks
[38, 39]. In [38] they proved that for histograms of the same
size with integer values, ky is a positive definite kernel.

In [39] the Generalized Histogram Intersection kernel was
introduced as a positive-definite kernel:
ai|, |of

>

kcri(a, b) = Z min(
i=1

), (a,b) € X xX, (11)

where f = 0 and X € R. If we set § = 1, the kyy is a special
case of kg and is a positive definite kernel for absolute real
values.

Characteristic kernels have positive definite property
and have been shown to be more discriminative, because
they can take higher order statistics into account. For
instance, in [40] Fukumizu et al. showed by optimizing
kernel mappings one can find the most predictive subspace in
regression. We verify this in practice in Section 7, where we

show that the characteristic kernel k(a,b) = e BZi1n/artbi
provides significantly better performance than an HI kernel.
Previously, characteristic kernel has been defined on R”
spaces. However, the kernel should be chosen according to
the nature of the available data. In our supervised recognition
case, just like in many other computer vision tasks, features
are histogram-based, and are not naturally represented in the
R™ space.

Therefore, we are going to investigate whether charac-
teristic kernels can be defined on spaces besides R". Several
such domains constitute topological groups or semigroups;
this is relevant in our context, as histograms are examples of
Abelian semigroups.

Fukumizu et al. [6] introduced characteristic kernels on
groups and semigroups by establishing some conditions.
In this section we first recall the Bochner theorem which
characterizes a set of continuous shift-invariant positive-
definite kernels on R" by the Fourier transform. Thereafter
we bring the related theorems, which define characteristic
kernels for Abelian semigroups and it is achieved based on
Laplace transform in the Bochner theorem. The purpose here
is to introduce a class of characteristic kernels for histograms
that are examples of Abelian semigroups.

Theorem 9 (Bochner). Let ¢ : R" — C be a bounded

continuous function. ¢ is positive definite if and only if there
is a unique finite nonnegative Borel measure A on R" such that

$) = | e A ), (12)

where w € R".



Before explanation of the related theorem on semigroups
we briefly review the definition of semigroups.

Definition 10. A semigroup (S,o) is a nonempty set S
equipped with an operation o that satisfies the associative
law:

(xoy)ez=x0(yoz), (13)

for any x, y,z € S. A semigroup (S, o) is said to be Abelian if
the operation is commutative, that is,

Xoy=yeox (14)
foranyx, y € S.

Theorems 11 and 12 [6] obtain necessary and suffi-
cient conditions for tailored kernels on Abelian semigroups
(RY, +).

Theorem 11. Let ¢ : R? — C be a bounded continuous
function on R. ¢ is positive definite if and only if there exists a
unique nonnegative measure A € M(R%) such that

$) = | e Xmanw (vieRD.  (3)

Based on the above theorem, we have the following sufficient
condition of characteristic property.

Theorem 12. Let ¢ be a positive definite function given
equation in Theorem 11. If supp(A) = R, then the positive
definite kernel k(x, y) = ¢(x + y) is characteristic.

As histograms represent an example of Abelian Semi-
groups, we take advantages of Theorems 11 and 12, and
define this following Histogram Characteristic kernel.

Histogram Characteristic Kernel. Let a = (a;)_; and b =
(b)i_y, (a; = 0,b; > 0) be nonnegative measures on n points,
and t € R”. kyc is defined as

A = t73/267/32/(4t) kHC(a) b) _ 67[32:‘:1 \/a,»+b,"

(16)

(B>0):

Our proposed HC kernel provides significantly better
performance than both the HI kernel (which is just positive
definite, and not characteristic), and the Gaussian kernel
(which is characteristic but not tailored on histogram-based
information).

5. Unsupervised and Supervised
Action Recognition

In this paper, we are applying the theoretical findings
reported in the previous sections to two different problems:
unsupervised and supervised action recognition.

In the unsupervised case, we aim at clustering unlabeled
sequences belonging to the same action, assuming that
the number of clusters is known. In this problem we use
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MMD with a gaussian kernel, as introduced in Theorem 4.
o is automatically determined, in such a way to return the
required number of clusters. We considered the significance
level, a, of MMD as a two-sample test equal to 0.05. The
reported results are percentage of acceptance rate in 1000
times running the MMD. Clusters are found by pairwise
comparisons (two-sample test) of distributions correspond-
ing to sequences: two sequences belong to the same cluster
if and only if the MMD is close enough to 0 (the threshold
is computed as in Theorem 4 and Corollary 5). For each
cluster, a single representative distribution is then chosen.
Thereafter, a new sequence can be classified by comparing
with the same approach its related probability distribution,
to the representative distribution of each of the clusters (see
Figure 1). For supervised action recognition, we use as a
learning algorithm an SVM with the characteristic kernel,
introduced in Example. The dataset is divided in three parts:
training, testing, and validation. The validation data is first
used in order to tune the 3 parameter of the kernel with a
leave-one-out cross-validation procedure. According to the
results of cross validation procedure 5 tuned as 0.001 for HC
kernel and 1 for GHI kernel (which obtains the HI kernel).
Then we use the training data in order to obtain support
vectors which define the discriminative classifier. Lastly, the
testing data is processed in order to evaluate the performance
of the classifier (prediction, see Figure 2).

6. Feature Extraction Approaches

We evaluated our classification approach with two state of
the art feature descriptors, which we will refer to as F1 and
F2 in the following. They have been described in recent
literature and shown to have excellent performance on the
action recognition task.

The F1 descriptor has been proposed by Schindler and
van Gool [24]. Both shape and motion flow features are
extracted in a biologically-inspired fashion, by exploiting
two parallel processing systems (see Figure 3) which bear
similarity with the ventral and dorsal pathways of the
visual cortex [23, 41]. The features are computed on a
person-centered bounding box. Contrarily to silhouettes,
bounding boxes can be reliably obtained in most scenarios,
by using person detectors such as [42] or trackers based
on rectangular windows [43]. By using this approach, we
generate a single, 1000-dimensional feature vector for each
frame of the sequence.

The F2 descriptor which we use has been proposed
by Danafar and Gheissari in [19]. Such approach is based
on histograms of optical flow [44], and captures both the
local and global information of actions. The Harris corner
detector [45] is first applied to extract interest points in each
image; using the coordinates of the extracted interest points,
bounding boxes are created around actors, and are vertically
partitioned in three regions approximately corresponding to
the head, torso, and legs (see Figure4). The optical flow
in each region is then computed by means of [44], and
its horizontal and vertical components are quantized and
represented as histograms. The resulting motion descriptors
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FIGURE 3: The features we use for unsupervised action recognition are described in [24], and are computed for each single frame of the video
(left), while also considering the preceding one for computing optical flow. The resulting feature vector (right) consolidates data from two
separate pathways computing form and flow, respectively. The former (top) computes gabor filter responses at different directions and scales;
the letter in different directions, scales, and velocities. In both pathways, data is max-pooled for improving shift-invariance and summarized
by matching with a set of templr*~-
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FIGURE 4: The features used in supervised case are described in [19]; a single feature vector (right) is computed for each sequence, by
concatenating data coming from each frame of the sequence (left). In each frame, Harris interest points are used to recover a tight bounding
box, which is vertically partitioned in three regions. The topmost 1/5 of the bounding box approximately contains the head and the neck.
The middle 2/5 contains the torso and hands, whereas the bottom 2/5 of the bounding box contains the legs. Such segmentation is obviously
approximated, and the resulting features would still be usable in cases where the assumptions are not met. Flow data in each region is

summarized in separate histograms for the horizontal and vertical directions.

are computed from a combination of motion histograms
for each of the three parts, originating a 102-dimensional
feature vector for each frame. When using this approach, we
finally combine the feature vectors for all frames in a single
descriptor for the whole sequence.

7. Experiments and Evaluation

In order to gather experimental evidence that supports our
proposed approach, we used two public datasets frequently
referenced in the action recognition literature: the KTH
human action database [1, 2] and the Weismann human
action dataset [3].

The KTH dataset contains 2391 sequences of 6 types
of human actions: walking, jogging, running, boxing, hand

waving, and hand clapping. These actions were performed by
25 people in four different scenarios: outdoors (s1), outdoors
with scale variations (s2), outdoors with different clothes
(s3), and indoors (s4). Some samples from this dataset are
shown in Figure 1.

The Weismann dataset contains 10 categories of actions:
in accordance to several previous works [3, 24] we disregard
the skip action and kept 9 distinctive categories: walk,
run, jump, gallop sideways, bend, one-hand wave, two-
hands wave, jump in place, and jumping jack. Each action
was performed by 9 subjects. Example images from video
sequences of this dataset are shown in Figure 6.

7.1. Unsupervised Classification. We tested unsupervised
classification on both databases using feature F1. Mirroring
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Boxing

Handwaving Handclapping

FIGURE 5: Example images from video sequences in KTH dataset (publicly available at http://www.nada.kth.se/cvap/actions/). This dataset
was benchmarked with both unsupervised and supervised methods in the current study.
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FIGURE 6: Example images from video sequences in Weismann dataset. We benchmarked on this dataset with the unsupervised method in

the current study.

the experimental validation in [12], we considered a 27-
frame sequence for each of the Weizmann videos, and a 17-
frame sequence for KTH videos. We used the same bounding
box data as in [12]. In particular, in the Weizmann dataset
the fixed-size bounding boxes can be trivially extracted by
considering a simple background subtraction algorithm. In
the more challenging KTH dataset, bounding boxes for all
frames are linearly interpolated from known initial and final
positions.

Because of the small number of actors in Weizmann
dataset, we evaluate the results with leave-one-out cross-
validation. First, 72 unlabeled sequences from 8 subjects
are used for recovering the 9 clusters in an unsupervised
way; then, the 9 sequences from the one remaining subject
are used for testing generalization capability. The procedure
repeated for all 9 permutations. In the larger KTH dataset,
we used a single partition of 16 subjects for clustering and 9
for testing generalization capability.

We report 100% accuracy for unsupervised classification
in the Weizmann dataset, meaning that, in all the cross-
validation folds, the 9 detected clusters actually coincide
with the 9 different actions, and all the testing sequences
are classified correctly. As reported in Table 1, this is the
first time that perfect accuracy in unsupervised action
recognition is reported on the Weizmann dataset—although
other supervised techniques also reach 100% accuracy.

On the more complex KTH dataset, we obtained 94.4%
overall recognition rate, which outperforms other reported
methods, either supervised or unsupervised (see Table 2).
Figure 6 reports the confusion matrix with our approach.

On the larger KTH dataset, training and testing took,
respectively, 287 and 100 seconds, on a mid-level dual core
laptop. The computational complexity is quadratic with
respect to the number of frames in each sequence [8, 9].
The overall acceptance rate of #, representing the similarity
of two sequences, was computed from 100 runs of each
homogeneity test.

7.2. Supervised Classification. For supervised classification,
we worked with feature descriptor F2. On the KTH dataset,
we considered subsequences of at most 150 frames, which
are all summarized in a single feature vector. Such feature
has proven to be less powerful than F1, which causes in the
KTH dataset a recognition rate in the supervised case of
93.1%; this is lower than the 94.4% rate we obtained in the
unsupervised case, when using the F1 features.

It is interesting to compare the effect of characteristic
kernels, which we are using in this paper, to histogram inter-
section kernels, which are not characteristic and are widely
used in the computer vision literature [37-39] for classifying
histogram-based data. In fact, as reported in Section 4,
characteristic kernels bear important advantages from the
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FiGgureg 7: Confusion matrix achieved by our Unsupervised classi-
fication algorithm with MMD on KTH human action dataset. The
overall accuracy rate of 94.4% is achieved with this method.

TasLE 1: Comparison of recognition results on Weismann dataset
with different approaches.

Method classification ~ Recognition rate %
MMD Unsupervised 100
Schindler and Van Gool [24]  Supervised 100

Blank et al. [3] Supervised 100
Niebles et al. [11] Unsupervised 95

Jhuang et al. [20] Supervised 98.8

Wang and Suter [15] Supervised 97.8

Dollér et al. [21] Supervised 86.7

theoretical point of view. Our results confirm such advantage
in this practical application. Our reported accuracy of 93.1%,
obtained with characteristic kernels, is a very significant
improvement with respect to the accuracy of 85.3% reported
in [19], obtained using histogram intersection kernels in the
same setting.

We also compare our novel characteristic kernel for
histogram-based data to the Gaussian kernel, which is also
characteristic but is not tailored to histogram-based data. In
our experiments, the accuracy of the Gaussian kernel is 33.8
%, which is much lower than our result of 93.1%. Confusion
matrices in the three cases are reported in Figure 7.

Therefore, we can conclude that our experimental results
are due to our kernel being both characteristic and suitable
for histogram-based data, removing any of the two properties
results in a significant performance loss.

Training and testing on the KTH dataset required 8
and 2 seconds, respectively. During the testing phase, the
complexity is linear with the number of support vectors. The
complexity of the training phase is dominated by the solution
of a quadratic optimization problem.

TaBLE 2: Comparison of recognition results on KTH dataset with
different approaches. Note that the recognition rate reported by
Jhuang et al. [20] is obtained on video sequences from scenarios
1 and 4 only. Other reported rates are on all scenarios.

Method Classification ~ Recognition rate %
MMD Unsupervised 94.4
SVM by charac. Kernel Supervised 93.1
Schindler and Van Gool [24]  Supervised 92.7
Jhuang et al. [20] Supervised 91.7
Nowozin et al. [31] Supervised 87
Wong and Cipolla [32] Supervised 86.6
Danafar and Gheissari [19] Supervised 85.3
Niebles et al. [11] Unsupervised 83.3
Dollar et al. [21] Supervised 81.2
Schiildt et al. [2] Supervised 71.7

Given training vectors x; € R",i = 1,..., [, in two classes,

and a vector y € R!, C-SVC solves a quadratic problem to
find support vectors which formulated as:
. 1
ming —a'Qa—e'a,
2 (17)

subject to yT(x=0, 0<wa;<C,i=1,...,1

where e is the vector of all ones, C > 0 (we tuned C = 1) is
the upper bound, Q is a I X [ positive semidefinite matrix

k(xi,xj) = ¢(Xi)T¢(xj) (18)

is the kernel. The difficulty of solving the above equation
is the density of Q, whose elements are in general not
zero. To overcome this problem the decomposition method
is implemented. The time complexity is at most O(nl?) if
we suppose each kernel evaluation is O(n) [46]. The time
performance for training and testing are, respectively 8, and
2 seconds.

In our case we deal with multiclass type of classification,
and we consider one-vs-one procedure. Thus, if m is the
number of classes (actions), m(m — 1)/2 comparisons are
needed (in our case m = 6).

Qij = yi}’jk(xi>xj),

8. Conclusions

We successfully dealt with the challenging task of recognizing
actions in videos. In particular, we described

(i) an unsupervised nonparametric kernel method based
on Maximum Mean Discrepancy,

(ii) a supervised method using Support Vector Machines
with a novel proper characteristic kernel for Abelian
semigroups.

On the two major data sets for action recognition, our
approaches outperformed those found in the literature, both
in the unsupervised and supervised case.

The new characteristic kernel is suitable for histograms,
and may be useful for many other computer vision problems
involving histogram-based features.
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(c) Results with our proposed kernel ki,

(b) Results with Gaussian kernel as a
with overall accuracy rate of 93.1%
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(a) Results with histogram intersection
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FiGure 8: Confusion matrices obtained on the KTH dataset with F2 descriptors [19], using SVM and the indicated kernels; (a) shows the
rec with recognition rates of histogram Intersection kernel which is a positive definite but not a characteristic kernel; (b) denotes the result
of a characteristic kernel (Gaussian) which is not tailored for histogram based information; (c) is the result of characteristic kernel which is

tailored for histograms.
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