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Gene regulatory networks are highly complex dynamical systems comprising biomolecular components which interact with each
other and through those interactions determine gene expression levels, that is, determine the rate of gene transcription. In this
paper, a particle filter with Markov Chain Monte Carlo move step is employed for the estimation of reaction rate constants in
gene regulatory networks modeled by chemical Langevin equations. Simulation studies demonstrate that the proposed technique
outperforms previously considered methods while being computationally more efficient. Dynamic behavior of gene regulatory
networks averaged over a large number of cells can be modeled by ordinary differential equations. For this scenario, we compute
an approximation to the Cramer-Rao lower bound on the mean-square error of estimating reaction rates and demonstrate that,
when the number of unknown parameters is small, the proposed particle filter can be nearly optimal.

1. Introduction

Gene regulatory networks (GRN) are systems comprising
biomolecular components (genes, mRNA, proteins) that
interact with each other and through those interactions
determine gene expression levels, that is, determine the rate
of gene transcription to mRNA [1–3]. The signals in GRN
are carried by molecules. For instance, proteins which enable
initiation of the gene transcription to mRNA (so-called
transcription factors) can be considered as input signals.
They bind to the so-called promoter regions adjacent
to the regulated gene and, in doing so, enable an RNA
Polymerase to perform the transcription. On the other
hand, proteins that are translated from the mRNA can be
considered as output signals. Some of the created proteins
may act as transcription factors themselves and upregulate or
downregulate gene expressions, that is, activate or suppress
the transcription process. This creates feedback loops in the
network which allow direct or indirect self-regulation. An
illustration of a possible segment of a regulatory pathway is
shown in Figure 1.

Recent development of DNA and protein microarrays
sparked a surge of interest in studying gene regulatory

mechanisms. The excitement is due to the capability of
the microarrays to conduct simultaneous tests of an entire
genome of an organism. By testing a number of biological
samples taken over a period of time, one can track the
network dynamics. The experimental advances have been
accompanied by the theoretical developments in modeling
and computational studies of the networks. Combination
of these research efforts provides critical information about
the functionality of cells and organisms, reveals mechanisms
of genetic diseases, enables optimization of diagnostic tech-
niques and therapies, and provides aid in the process of drug
discovery.

To enable the analysis of gene regulatory networks, we
need accurate yet tractable models capturing their dynamical
behavior. The molecular interactions in gene regulatory
networks are inherently stochastic. For instance, the number
of created proteins is a random variable due to thermal
fluctuations in a cell which cause promotors to randomly
switch between an active and a repressed state. The fluctu-
ations in the number of proteins are enhanced by the protein
degradation which is a stochastic process itself. This, along
with several other sources of randomness, call for probabilis-
tic modeling of gene regulatory networks. However, a very
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Figure 1: An illustration of a possible segment of a regulatory
pathway.

detailed description of a network may be difficult to ana-
lyze and often requires considerable computational efforts.
Hence, several models with varying degrees of accuracy
and complexity have been proposed. These models rely on
representations via chemical master and chemical Langevin
equations [4–6], and ordinary differential equations [7, 8]
as well as Bayesian [9, 10] and Boolean [3, 11] networks.
Having selected one of the above models, we are interested
in finding its structure and parameters that provide the best
explanation of the experimental data. This requires further
computational studies and opens up questions related to,
for example, stability and control of the network. However,
inference problems in gene regulatory networks are often
challenging, and the difficulty of a problem increases with
the complexity of the model and the size of the network.

In this paper, we consider models of GRN based on
chemical master equations and study the problem of estimat-
ing stochastic rate constants therein. Such models provide
the most precise description of the network processes;
however, they are also computationally the most demanding.
We limit our focus on small-sized networks with a known
structure but unknown rate constants. We approximate a
chemical master equation by a related chemical Langevin
equation [12] and employ a particle filter with the Markov
Chain Monte Carlo move step to solve the rate estimation
problem. Simulation studies demonstrate that the proposed
technique outperforms previously considered methods while
being computationally more efficient. Dynamic behavior of
gene regulatory networks averaged over a large number of
cells can be modeled by ordinary differential equations. For
this scenario, we compute an approximation to the Cramer-
Rao lower bound on the mean-square error of estimating
reaction rates and demonstrate that, when the number of
unknown parameters is small, the proposed particle filter can
be nearly optimal.

The paper is organized as follows. Section 2 describes
the chemical master equation model of a gene regulatory
network and its approximation by a chemical Langevin equa-
tion. Section 3 presents the particle filtering algorithm for the
estimation of the stochastic rate constants and compares its
performance with prior work. In Section 4, a deterministic
model based on ordinary differential equations is described,

and the Cramer-Rao lower bound on the performance of
estimating rate constants is computed. Finally, we conclude
the paper in Section 5.

2. Models Based on Chemical Master and
Chemical Langevin Equations

Consider a GRN comprising N molecular components. The
network variables are the numbers of the molecules of
each of the N species; generally, we are interested in the
temporal changes of these variables. Denote the number of
molecules of the ith network component at time t by xi(t);
for convenience, collect the xi(t) into a vector X(t), that is,
denote X(t) = [x1(t) · · · xN (t)]T . Molecular reactions in
a GRN are subject to significant spontaneous fluctuations.
Consequently, the numbers of the molecular species xi(t)
are inherently stochastic processes. We can model X(t) as a
Markov process with discrete states, where the time evolution
of the state probabilities P(X , t) is given by the chemical
master equation

∂P(X , t)
∂t

=
M∑

m=1
[am(X −Vm)P(X −Vm, t)− am(X)P(X , t)].

(1)

In (1), M denotes the total number of reactions that are
possible within the network (i.e., the number of the so-called
reaction channels), and Vm = [vm1 vm2 · · · vmN ]

T is
the vector describing change in the number of molecules of
each of the N species due to the reaction in the mth reaction
channel (e.g., vmi is the change, either positive or negative,
in the number of molecules of the ith network component
due to the reaction in the mth channel). Moreover, am(·) in
(1) is the so-called propensity function, that is, am(·)dt is
the probability that during time interval (t, t + dt) there is
a reaction in the mth channel. The propensity function can
further be expressed as am(X(t)) = cmhm(X(t)), where cmdt
is the probability that one reaction takes place in (t, t + dt)
and hm(X(t)) denotes the number of possible simultaneous
reactions. (The coefficients cm are often referred to as the
stochastic rate constants. The function hm(X(t)) counts all
possible combinations of individual molecules that may lead
to a reaction in the mth channel.) The chemical master
equation is often used to simulate the Markov process X(t)
and enable computational studies of GRN. To this end,
one may employ various stochastic simulation algorithms,
originally proposed by Gillespie [4].

Model (1) provides a very accurate description of the
network dynamics [4]. However, since it tracks individual
discrete events, it is often cumbersome for practical pur-
poses. For instance, relying on (1) to infer the parameters
of the network (i.e., the stochastic rate constants cm)
may in principle be possible [13]; however, it is compu-
tationally rather intensive to do so. Therefore, simplified
network models are desirable. Under certain assumptions
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(e.g., large xi(t), small dt), we may approximate (1) by the
chemical Langevin equation,

X(t + dt)− X(t)

=
M∑

m=1

[
Vmam(X(t))dt +Vm

√
am(X(t))dtNm(0, 1)

]
,

(2)

where Nm(0, 1) denote zero-mean, unit-variance, indepen-
dent, identically distributed (iid) Gaussian random variables.
By collecting vectors Vm into a stoichiometry matrix S =
[V1 V2 · · · VM], we can write (2) as

X(t + dt)− X(t) = Sa(X(t))dt +
(
SA(X(t))ST

)1/2
dW ,

(3)

where dW denotes anM-dimensionalWiener process; vector
a(X(t)) is defined as

a(X(t)) = [a1(X(t)) a2(X(t)) · · · aM(X(t))]
T , (4)

where

A(X(t)) = diag{a1(X(t)), a2(X(t)), . . . , aM(X(t))}. (5)

We should point out that while the chemical Langevin
equation (2) may be used as a networkmodel for the purpose
of parameter estimation, in general it is not sufficiently
accurate to provide reliable simulations of the network
dynamics. To conduct computational studies of a GRN,
we still need to model them using stochastic simulation
algorithms.

Let us write the chemical Langevin equation (3) using the
notation typically encountered in the literature on stochastic
differential equations as

X(t + dt)− X(t) = μ(X(t), θ)dt + σ(X(t), θ)dW , (6)

where μ(X(t), θ) = Sa(X(t)) denotes the drift, σ(X(t), θ) =
(SA(X(t))ST)1/2 is the diffusion, and θ is the vector of
(generally unknown) parameters (i.e., the elements of θ
are the stochastic rate constants ci). Our goal is to infer θ
from X(t) observed at discrete time instances ti = iΔ, 1 ≤
i ≤ L, where L denotes the total number of observations.
Assuming zero-mean Gaussian measurement noise with
covariance matrix Σ, the collected observations have normal
distribution of the form

yi = y(iΔ) ∼ N (X(iΔ),Σ). (7)

In [14], the authors find the best linear-model fit to the data
presumed to be generated by (6), and then infer parameters
based on the derived linear model. In [15, 16], the use of
statistical mechanics tools for the estimation of the param-
eters of a network modeled by (6) was considered. In [17,
18], a Markov Chain Monte Carlo (MCMC) algorithm was
employed to infer the network parameters. This approach
provides sound estimate of the parameters, but it requires a
very high computational effort. As an alternative, we propose
the use of a particle filter with an MCMCmove step. This we
describe in the next section.

3. Particle Filter withMarkov Chain
Monte CarloMove Step

We consider Bayesian approaches to inferring the unknown
parameters in θ, which is treated as a random vector
with a prior p(θ). Specifically, we rely on particle filtering
methods to infer the posterior distribution p(θ | y1:N ),

and then find the estimate θ̂ as the conditional mean of
p(θ | y1:N ). Here y1:N = {y1, y2, . . . , yN} denotes the set
of observations collected in the interval [Δ,NΔ], where Δ
denotes the sampling period andN denotes the total number
of observations (e.g., yn is the noisy observation collected at
time nΔ). The desired posterior distribution can be expressed
as

p
(
θ | y1:N

) =
∫
p
(
x1:N , θ | y1:N

)
dx1:N , (8)

where x1:N = {x1, x2, . . . , xN} denotes the set of points of the
process X(t) corresponding to the observations in y1:N (e.g.,
xn = X(nΔ)), and p(x1:N , θ|y1:N ) is given by

p
(
x1:N , θ | y1:N

)∝ p
(
y1:N | x1:N , θ

)
p(x1:N | θ)p(θ). (9)

To evaluate (9), one needs to compute the joint density
p(x1:N | θ) = p(xN | xN−1, θ) · · · p(x2 | x1, θ)p(x1 | θ).
In general, however, the transition densities

p(xn+1 | xn, θ) = p(X((n + 1)Δ) | X(nΔ), θ) (10)

for the process (6) are not available in a closed form. The
stochastic differential equation (6) can be discretized using
the Euler-Maruyama scheme as

xn+1 = xn + μ(xn, θ)Δ + σ(xn, θ)δW , (11)

where δW denotes a zero-mean Gaussian distribution with
covariance ΔI , and I denotes the identity matrix. Hence the
transition density p(xn|xn−1, θ) can be approximated by a
Gaussian distribution with mean xn + μ(xn, θ)Δ and covari-
ance σ(xn, θ)(σ(xn, θ))

TΔ. However, the Euler-Maruyama
approximation of the transition density is accurate only
when Δ is small. If the sampling period is not sufficiently
small, one can introduce the so-called missing values z1:m =
{z1, z2, . . . , zm} which emulate the diffusion process between
xn and xn+1 (a distinct set of missing values is introduced
for each n). The number of augmented missing values m is
chosen such that the Euler-Maruyama approximation of the
transition density between zk and zk+1 is accurate, that is, m
is chosen such that p(zk+1|zk, θ) can be closely approximated
by a Gaussian distribution. It is straightforward to show that

π̃
(
zj | zj−1, θn−1, yn

)
= N

(
zj−1 + ψ

Δ

m
, γ

Δ

m

)
, (12)

where ψ = μ + β(βΔ j + Σ)−1(yn − [xn−1 + μΔ j]), γ = β −
β(βΔ j + Σ)−1βT(Δ/m), μ = Sa(xn−1), β = SA(xn−1)ST , Δ j =
(m− j+1)(Δ/m), and Σ denotes the covariance matrix of the
measurement noise.

Introduction of the missing values enables propagat-
ing (9) by means of a particle filter, where the filter
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relies on a Gaussian importance density (12). A simple
sequential importance resampling (SIR) scheme provides
asymptotically consistent estimates, that is, the approxi-
mation converges to the true value of the parameters as
the number of particles grows. However, the SIR scheme
often suffers from sample impoverishment and, therefore,
has weak performance. To improve the sample diversity
and the performance of the particle filter, we employ the
importance sampling scheme with an MCMC move step.
Specifically, we use the Metropolis-Hastings algorithm to
decide whether a resampled particle will be accepted or not.
For implementation details, we refer the reader to the formal
algorithm given below.

Algorithm 1 (initialization). Set n = 1. Draw {θin, xin}Ns
i=1

from the prior density π(θ)π(xn). Assign particle weights
ωi
n = π(yn|xin, θin), for i = 1, 2, . . . ,Ns, and normalize them.

Algorithm 2 (iterations). For n ≥ 2.

(i) For i = 1, . . . ,Ns, draw missing data {zik}mk=1 from an
importance density

q
(
z1, . . . , zm | θin−1, xin−1, yn

)
(13)

obtained using the Euler approximation as

π
(
z1 | xin−1

) m∏

j=2
π̃
(
zij | zij−1, θin−1, yn

)
, (14)

where

π̃
(
zij | zij−1, θin−1, yn

)
= N

(
zij−1 + ψ

Δ

m
, γ

Δ

m

)
,

(15)

ψ = μ + β(βΔ j + Σ)−1(yn − [xin−1 + μΔ j]), γ = β −
β(βΔ j + Σ)−1 βT (Δ/m), μ = Sa(xin−1), β =
SA(xin−1)ST , Δ j = (m− j + 1)(Δ/m).

Set xin = zim and update the particle weights as

ωi
n = ωi

n−1π
(
yn | xin, θin−1

)
π
(
zi1 | xin−1, θin−1

)

×
∏m

j=2π
(
zij | zij−1, θin−1

)

q
(
z1, . . . , zm | θin−1, xin−1, yn

) .
(16)

(ii) (Normalization) Normalize the weights ωi
n, and com-

pute Neff = (1/
∑Ns

k=1 (ω
k
n)

2
).

(iii) (Resampling) If Neff < Nthreshold,

{
θi∗n , xi∗n ,

1
Ns

}Ns

i∗=1
= Resample

({
θin, x

i
n,ω

i
n

}Ns

i=1

)
.

(17)

(iv) (Resample move) If resampling is performed in
Algorithm 2(iii), then for i = 1, . . . ,Ns:

(a) Draw a candidate θ∗ from a kernel density
K(θ) = N (θin,hoptS), where S is the empirical
covariance of θ in the previous step and hopt is
the smoothing parameter.

(b) Draw missing data {zik∗}mk∗=1 from an impor-
tance density q(z1∗, . . . , zm∗|θ∗, xin−1, yn) and
set xin∗ = zim∗.

(c) Calculate the Metropolis-Hastings acceptance
rate

α =
π
(
yn | xin∗, θ∗

)
π
(
z1∗ | xin−1, θ∗

)

π
(
yn | xin, θin

)
π
(
zi1 | xin−1, θin−1

)

×
∏m

j=2π
(
zij∗ | zi( j−1)∗, θ∗

)

∏m
j=2π

(
zi1 | zij−1, θin−1

)
q
(
z1, . . . , zm | θin−1, xin−1, yn

)

q
(
z1∗, . . . , zm∗ | θ∗, xin−1, yn

) .

(18)

(d) Set (θin, x
i
n) = (θ∗, xin∗) with prob. min{1,α}.

3.1. Computational Study of a Viral Infection Network. We
demonstrate the performance of the proposed algorithm on
a viral infection network previously studied in [19, 20]. The
network comprises 6 reaction channels,

R1: DNA + P → V ,

R2: DNA → RNA +DNA,

R3: RNA → ∅,

R4: RNA → DNA + RNA,

R5: RNA → P + RNA,

R6: P → ∅,

where P denotes viral protein molecules and V denotes
synthesized viral cells. Reaction R1 is the processes of
producing viral cells from the viral DNA and protein.
Reactions R2 and R5 are the transcription and translation
process of the viral genes, respectively. Reaction R4 models
replication of a viral RNA template into a viral DNA.

For the purpose of parameter estimation, we assume
that the above network evolves according to (3). However,
the network is simulated via the Gillespie’s algorithm, with
the rate constants set to [c1 c2 c3 c4 c5 c6]

T = [11.25 ×
10−3 0.25 0.5 1 2 1]T . We refer to the proposed particle
filtering algorithm with MCMC move step as Algorithm 1,
and employ it to estimate parameters in this network. The
performance of Algorithm 1 is compared to the MCMC
method proposed in [18], denoted for convenience as
Algorithm 2. Algorithm 1 is performed with Ns = 2 × 104,
m = 15, and the resampling thresholdNthreshold = Ns/2. Both
algorithms use N = 40 noisy observations of the network
states and employ the same initial sample distribution.
The log values of the parameters log(θi) are initialized
from the uniform distribution U(−4, 2), and the noise
variance is assumed to be known. (Note that even though
c1 does not belong to the initialization range, the proposed
technique accurately infers its value.) Figure 2 compares
the mean square-error of estimating the parameters of the
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viral infection network using Algorithms 1 and 2, obtained
by performing 150 simulation runs. Clearly, the proposed
Algorithm 1 outperforms Algorithm 2, while being roughly
5 times faster—the average running time of Algorithm 1 is
1030 seconds, while the average running time of Algorithm 2
is 5500 seconds (simulations in Matlab).

3.2. Computational Study of Prokaryotic Regulation. In this
subsection, we illustrate the performance of the proposed
algorithm when employed for estimating reaction rates in a
network with 12 parameters. In particular, we consider esti-
mation of the reaction rates in a GRN model of prokaryotic
auto regulation. The system is characterized by the following
12 reactions [18]:

R1: P1 + DNA1 → P ·DNA1,

R2: P ·DNA1 → P1 + DNA1,

R3: P1 + DNA2 → P ·DNA2,

R4: P ·DNA2 → P1 + DNA2,

R5: DNA1 → DNA1 + RNA1,

R6: RNA1 → RNA1 + P1,

R7: DNA2 → DNA2 + RNA2,

R8: RNA2 → RNA2 + P2,

R9: RNA1 → ∅,

R10: RNA2 → ∅,

R11: P1 → ∅,

R12: P2 → ∅.

Reactions R1 ∼ R4 represent the reversible processes of
repressor protein P1 binding to DNA1 and DNA2. Reactions
R5 ∼ R8 are the transcription and translation processes of
genes DNA1 and DNA2. Reactions R9 ∼ R12 represent the
degradation process of proteins and mRNAs in the system.
The state vector X collects the numbers of components
DNA1, DNA2, RNA1, RNA2, P1, and P2, and hence it is a
6-dimensional state vector.

Similar to the study of the viral infection network in
the previous subsection, to infer the reaction rates, we
assume that the above network evolves according to (3).
However, the network is simulated via Gillespie’s algorithm.
In particular, we generate N = 30 noisy observations yn,
1 ≤ n ≤ 30, where the measurement noise is Gaussian
with σ2 = 1 (i.e., the noise variance matrix is Σ = I). The
particle filter (Algorithm 1) is performed with Ns = 2× 105,
m = 20, and the resampling threshold Nthreshold = Ns/5. The
log values of the parameters log(θi) are initialized from the
uniform distributionU(−5, 1).

The reaction rates are inferred as the mean values
of the distributions estimated by the particle filter. True
values of the parameters and their estimates are shown in
Table 1. When Algorithm 1 is performed with m = 20
and 2 × 105 MCMC iterations with a 3 × 104 burn-in
period, the runtime of Algorithms 1 and 2 is comparable
but the former is significantly more precise than the latter. In
order to achieve similar performance, Algorithm 2 requires
significantly higher complexity (106 MCMC iterations with
a 3× 104 burn-in period).

Table 1: True and estimated parameters for the two algo-
rithms. Algorithm 2(i) employs 2 × 105 MCMC iterations, and
Algorithm 2(ii) employs 106 iterations.

Algorithm 1 Algorithm 2(i) Algorithm 2(ii)

c1 0.08 0.0707 0.0443 0.0869

c2 0.82 0.8219 0.6726 0.7134

c3 0.09 0.0597 0.1121 0.0650

c4 0.9 0.5625 1.3913 0.5943

c5 0.25 0.3283 0.1826 0.2862

c6 0.1 0.1195 0.5800 0.0469

c7 0.35 0.2875 0.9009 0.2561

c8 0.3 0.4167 0.8943 0.3577

c9 0.1 0.1197 0.1573 0.0985

c10 0.1 0.1432 0.5097 0.2943

c11 0.12 0.1178 1.2766 0.0984

c12 0.1 0.1384 0.1669 0.1232

time(s) 5.9× 104 5.3× 104 2.5× 105

4. A Deterministic Model of Gene
Regulatory Networks

In reaction systems, where both the number ofmolecules and
the system volume are large, due to averaging, the system
dynamics can be described by a deterministic model. The
same applies to modeling the dynamic behavior of a gene
regulatory network averaged over a large number of cells. A
deterministic model based on ordinary differential equations
(ODE) is of the form [12, 21]

dx(t)
dt

= Sa(x(t), θ), (19)

where x(t) comprises real-valued and deterministic variables.
On the other hand, the observation process is assumed to be
corrupted by a Gaussian noise and hence the measurements
are given by

y(t) = x(t) + v(t). (20)

Typically, observations are collected at discrete time instances
ti = iΔ, 1 ≤ i ≤ L, where L denotes the total number of
observations. Therefore,

y(iΔ) = x(iΔ) + v(iΔ), 1 ≤ i ≤ L, (21)

where E{v(iΔ)v( jΔ)T} = σ2v INδi j .
To facilitate a simple estimation procedure, (19) can be

discretized as

x((i + 1)Δ)− x(iΔ) = Δ · Sa(x(iΔ), θ), i = 1, . . . ,L− 1.
(22)

It was pointed out in [22] that, under appropriate conditions,
discretization induces smaller error than the measurement
noise. In general, we assume that Δ 	 σ2. To estimate
the unknown parameters θ in (22), we employ the particle
filtering with MCMC step (i.e., Algorithm 1 in Section 3).
Since the state transitions in model (22) are deterministic
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Figure 2: The mean-square-error performance comparison between Algorithm 1 (particle filter) and Algorithm 2 (MCMC) as a function
of the variance of the observation noise σ2 (Ns = 2× 104,m = 15, N = 40, Σ = σ2I).

(and not random, as in (3)), some of the steps of
Algorithm 2 are simplified. In particular, steps (i) and (iv.b)
of Algorithm 2 can be simplified in the following way: for
each particle, instead of drawing a series of missing data
{zik}mk=1 from an importance distribution, we deterministi-
cally generate them from the previous state xin−1 as

zi1 = xin−1 +
Δ

m
· Sa

(
xin−1, θ

i
n−1
)
,

ziK = zik−1 +
Δ

m
· Sa

(
zik−1, θ

i
n−1
)
,

k = 2, . . . ,m,

(23)

and xin = zim. The weights updating equation becomes

ωi
n = ωi

n−1π
(
yn | xin, θin−1

)
. (24)

Moreover, in Algorithm 2 (iv.c), the Metropolis-Hastings
acceptance rate is simplified to

α = π
(
yn | xin∗, θ∗

)

π
(
yn | xin, θin

) . (25)

Other steps of Algorithm 1 remain unchanged.

4.1. Cramer-Rao Lower Bound on the Mean-Square Error
of Estimating Reaction Rates. Mean-square error of any

estimation procedure can be bounded below by the Cramer-
Rao lower bound (CRLB) [23]. In this section, we compute
the CRLB on the estimation of reaction rates in the network
described by (19) and (21). Collect the observations y(iΔ),
i = 1, 2, . . . ,L, into a vector

y =
[
y(Δ)T y(2Δ)T · · · y(LΔ)T

]T
. (26)

The Cramer-Rao lower bound on the minimum mean-
square error of estimating a parameter θi, given y, is
computed as

E
(
θ̂i − θi

)2 ≥ [F−1]ii, (27)

where the Fisher information matrix F is given by the
negative of the expected value of the Hessian matrix of
log py|θ(y)

Fi j = −Ey ∂2

∂θi∂θj
log py|θ

(
y
)
. (28)

From (21), it follows that y is a Gaussian vector with mean
y(iΔ) = x(iΔ) and covariance R = σ2v INL. Thus we have

py|θ
(
y
) = 1√

(2π)NL|R|
exp

[
−1
2

(
y − y

)T
R−1

(
y − y

)]
.

(29)
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Figure 3: The mean and standard error of the particle filter estimator for the inference of reaction rates in a viral infection network, shown
as a function of the variance of the observation noise (the number of particles used is Ns = 104; performance is averaged over 150 simulation
runs).

Following similar derivations in [24], we obtain that

Fi j =
(
∂y
∂θi

)T
R−1

(
∂y
∂θj

)
+
1
2
tr

{
R−1

∂R

∂θi
R−1

∂R

∂θj

}
. (30)

Since R is known, ∂R/∂θi = 0, and thus

Fi j =
(
∂y
∂θi

)T
R−1

(
∂y
∂θj

)
. (31)

Therefore, only ∂y/∂θi is needed to evaluate Fi j . From (20),
it follows that y(t) = x(t). Moreover,since am(x(t)) =

θmhm(x(t)), we can write

a
(
y(t)

) = diag{θ}H(y(t)), (32)

where H(y(t)) = [h1(y(t)) h2(y(t)) · · · hM(y(t))]
T .

Taking derivatives of both side of (22), we obtain

∂y((i + 1)Δ)
∂θm

= ∂y(iΔ)
∂θm

+ Δ · S · EiH
(
y(iΔ)

)

+ Δ · Sdiag{θ}∂H
(
y(iΔ)

)

∂θm
,

(33)
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Figure 4: The CRLB and the average mean-square error of the particle filtering algorithm (the number of particles Ns = 104, noise
covariance matrix Σ = I).

where Ei denotes the M × M matrix with all zero entries
except the (i, i) entry which is equal to 1.

Notice that ∂hi(y(iΔ))/∂θm are functions of y(iΔ)
and ∂hi(y(iΔ))/∂θm; therefore, we can recursively calculate
∂y((i + 1)Δ)/∂θm from ∂y(iΔ)/∂θm and y(iΔ). The value of
y(t)s can be obtained by numerically solving (19) (e.g., using
Mathematica). This enables computation of ∂y/∂θm and,
therefore, the desired CRLB. (Note that the CRLB computed
in this section assumes the discretized model (22); as Δ → 0,
it approaches the true bound on estimating θ in (19)).

4.2. Computational Study of a Viral Infection Network.
We illustrate the performance of the particle filter and
compare it with the computed CRLB for the case of the
viral infection network studied in Section 3.1. We assume
that the network evolves according to the ODE model
described in this section. The rate constants associated with
reactions are, as before, [c1 c2 c3 c4 c5 c6]

T = [11.25 ×
10−3 0.25 0.5 1 2 1]T . We apply the modified version of
Algorithm 1 described in this section to estimate the rate
constants and evaluate the corresponding CRLB. Note that,
in this example, the stoichiometry matrix is given by

S =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0
0 1 −1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 −1

⎤
⎥⎥⎥⎦, (34)

and hence

∂H
(
y(iΔ)

)

∂cm
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y3(iΔ)

∂cm
y4(iΔ) + y3(iΔ)

∂y4(iΔ)

∂cm
∂y3(iΔ)

∂cm
∂y2(iΔ)

∂cm
∂y2(iΔ)

∂cm
∂y2(iΔ)

∂cm
∂y4(iΔ)

∂cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Figure 3 shows the mean and standard error of inferring
the reaction rates using the proposed estimator, shown
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as a function of the variance of the observation noise
(discretization time: Δ = 0.1, the number of particles:
Ns = 10000, the noise variance: σ2 = 1). Several of
the parameters are estimated very accurately (e.g., c1, c4),
while others have relatively large mean-square-error (e.g.,
c2, c6). Figure 4 compares the estimation mean-square error
with the corresponding CRLB, plotted as a function of the
number of measurements N used for the estimation. As
indicated in Figure 4, the estimator performs close to the
CRLB for several of the parameters (e.g., c2, c3), while for
other parameters there is room for improvement.

5. Conclusions

In this paper, we studied the problem of estimating reaction
rates in a gene regulatory network modeled by a chemical
Langevin equation, that is, a high-dimensional stochastic
differential equation. We proposed a solution which employs
a particle filtering algorithm with Markov Chain Monte
Carlo move step. Extensive simulation studies demonstrated
that the proposed technique requires less computational
complexity to achieve performance comparable to previously
proposed methods. Moreover, we considered the determin-
istic description of the average network dynamics based on
an ordinary differential equation model. For this scenario,
we computed an approximate Cramer-Rao lower bound on
the mean-square error of the estimation and demonstrated
that, for some of the parameters, the proposed particle filter
can be nearly optimal. The computed CRLB is indicative of
the number of data points (i.e., the number of experiments)
required to achieve a desired accuracy of inferring reaction
rates. Further studies are needed to enable near-CRLB
performance in the scenario of estimating a large number of
unknown parameters.
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