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Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter
measure context. Recently it has received even more attention as new sensors with increased resolution have been developed;
new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged.
With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically
increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical
images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high
noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable.
However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar
simulator enabling development and evaluation of such algorithms. We develop a classifier and then analyse its performances
using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of
various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

1. Introduction

Target recognition in sonar imagery has long been an active
research area in the maritime domain. Recently, however,
it has received increased attention, in part due to the
development of new generations of sensors with increased
resolution and in part due to the emergence of new threats
to critical maritime assets and a new paradigm for target
recognition based on autonomous platforms. The recent
introduction of operational Synthetic Aperture Sonar (SAS)
systems [1, 2] and the development of ultrahigh resolution
acoustic cameras [3] have increased tenfold the resolution of
the images available for target recognition as demonstrated
in Figurel. In parallel, traditional dedicated ships are
being replaced by small, low cost, autonomous platforms
easily deployable by any vessel of opportunity. This creates
new sensing and processing challenges, as the classification
algorithms need to be fully automatic and run in real time
on the platforms. The platforms’ behaviours also require
to be autonomously adapted online, to guarantee appro-
priate detection performance is met, sometimes on very

challenging terrains. This creates a direct link between sens-
ing and mission planning, sometimes called active percep-
tion, where the data acquisition is directly controlled by the
scene interpretation.

Detection and identification techniques have tended to
focus on saliency (global rarity or local contrast) [4-6],
model-based detection [7-15] or supervised learning [16—
22]. Alternative approaches to investigate the internal struc-
ture of objects using wideband acoustics [23, 24] are showing
some promises, but it is now widely acknowledged that
current techniques are reaching their limits. Yet, their perfor-
mances do not enable rapid and effective mine clearance and
false alarm rates remain prohibitively high [4-22]. This is not
a critical problem when operators can validate the outputs of
the algorithms directly, as they still enable a very high data
compression rate by dramatically reducing the amount of
information that an operator has to review. The increasing
use of autonomous platforms raises fundamentally different
challenges. Underwater communication is very poor due to
the very low bandwidth of the medium (the data transfer rate
is typically around 300 bits/s) and it does not permit online
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F1GURE 1: Example of Target in Synthetic Aperture Sonar (a) and Acoustic Camera (b). Images are courtesy of the NATO Undersea Research

Centre (a) and Soundmetrics Ltd (b).

FIGURE 2: Snapshots of four different types of seabed: (a) flat seabed, (b) sand ripples, (c) rocky seabed and (d) cluttered environment.

operator visualisation or intervention. For this reason the
use of collaborating multiple platforms requires robust and
accurate on-board decision making.

The question of resolution has been raised again by
the advent of very high resolution sidescan, forward-look
and SAS systems. These change the quality of the images
markedly producing near-optical images. This paper looks at
whether the resolution is now high enough to apply optical
image processing techniques to take advantage of advances
made in other fields.

In order to improve these performances, the MCM
(Mine and Counter Measures) community has focused on
improving the resolution of the sensors and high resolution
sonars are now a reality. However, these sensors are very
expensive and very limited data (if any) are available to the
research community. This has hampered the development of
new algorithms for effective on-board decision making.

In this paper, we present tools and algorithms to ad-
dress the challenges for the development of improved target

detection algorithms using high resolution sensors. We focus
on two key challenges.

(i) The development of fast simulation tools for high
resolution sensors: this will enable us to tackle the
current lack of real datasets to develop and evaluate
new algorithms including generative models for
target identification. It will also provide a ground-
truth simulation environment to evaluate potential
active perception strategies.

(ii) What resolution do we need? The development of
new sensors has been driven by the need for increased
resolution.

The remainder of the paper is organized as follows: In
Section 2, a fast and realistic sonar simulator is described.
In Sections 3 and 4, the simulator is used to explore the
resolution issue. Its flexibility enables the generation of real-
istic sonar images at various resolutions and the exploration
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FIGUure 3: Decomposition of the 3D representation of the seafloor
in 3 layers: partition between the different types of seabed, global
elevation, roughness and texture.
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FIGURE 4: 3D models of the different targets and minelike objects.

of the effects of resolution on classification performance.
Extensive simulations provide a database of synthetic images
on various seabed types. Algorithms can be developed and
evaluated using the database. The importance of the pixel
resolution for image-based algorithms is analysed as well as
the amount of information contained in the target shadow.

2. Sidescan Simulator

Sonar images are difficult and expensive to obtain. A realistic
simulator offers an alternative to develop and test MCM
algorithms. High-frequency sonars and SAS increase the
resolution of the sonar image from tens of cm to a few cm (3
to 5 cm). The resulting sonar images become closer to optical
images. By increasing the resolution of the image the objects
become sharper. Our objective here is to produce a simulator
that can realistically reproduce such images in real time.
There is an existing body of research into sonar
simulation[25, 26]. The simulators are generally based on
ray-tracing techniques [27] or on a solution to the full wave
equation [28]. SAS simulation takes into account the SAS
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FIGURE 5: Definitions for surface reverberation modeling.
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FiGure 6: The trajectory of the sonar platform can be placed into
the 3D environment.

processing and is, in general, highly complex [26]. Critically,
in all cases, the algorithms are extremely slow (one hour
to several days to compute a synthetic sidescan image with
a desktop computer). When high frequencies are used, the
path of the acoustic waves can be approximated by straight
lines. In this case, classical ray-tracing techniques combined
with a careful and detailed modeling of the energy-based
sonar equation can be used. The results obtained are very
similar to those obtained using more complex propagation
models. Yet they are much faster and produce very realistic
images.

Note that this simulator is a high-precision sidescan
simulator, which can be equally well applied to forward
looking sonar. SAS images differ from sidescan images in
mainly two points: a constant pixel resolution at all ranges
and a blur in the object shadows [29]. The simulator can
cope with the constant range resolution so synthetic target
highlights will appear similar. A fully representative SAS
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FiGure 7: Display of the resulting sidescan images ((a) and (b)) of the same scene with different trajectory. The seafloor is composed with two
sand ripples phenomena at different frequencies and different sediments (VeryFineSand for the high frequency ripples and VeryCoarseSand
for the low frequency ripples). A manta object has been put in the centre of the map.

shadow model remains to be implemented, but the analyses
are still relevant for identification of targets from highlights
in SAS imagery.

The simulator presented here first generates a realistic
synthetic 3D environment. The 3D environment is divided
into three layers: a partition layer which assigns a seabed type
to each area, an elevation profile corresponding to the general
variation of the seabed, and a 3D texture that models each
seabed structure. Figure 2 displays snapshots of four different
types of seabed (flat sediment, sand ripples, rocky seabed
and a cluttered environment) that can be generated by the
simulator. All these natural structures can be well modeled
using fractal representations. The simulator can also take
into account various compositions of the seabed in terms
of scattering strengths. The boundaries between each seabed
type are also modeled using fractals.

Objects of different shapes and different materials can
be inserted into the environment. For MCM algorithms,
several types of mines have been modeled such as the Manta
(truncated cone shape), Rockan and cylindrical mines.

The resulting 3D environment is an heightmap, meaning
that to one location corresponds one unique elevation. So
objects floating in midwater for example cannot be modelled
here.

The sonar images are produced from this 3D environ-
ment, taking into account a particular trajectory of the
sensor (mounted on a vessel or an autonomous platforms).
The seabed reflectivity is computed thanks to state-of-the-
art models developed by APL-UW in the High-Frequency
Ocean Environmental Acoustic Models Handbook [30] and
the reflectivity of the targets is based on a Lambertian
model. A pseudo ray-tracing algorithm is performed and
the sonar equation is solved for each insonified area giving

the backscattered energy. Note that the shadows are auto-
matically taken into account thanks to the pseudo ray-tracing
algorithm. The processing time required to compute a sonar
image of 50 m by 50 m using a 2 GHz Intel Core 2 Duo with
2 GB of memory is approximately 7 seconds. The remainder
of the section details each of the modules required to perform
the simulation.

2.1. 3D Digital Terrain Model Generator. The aim of this
module is to generate realistic 3D seabed environments. It
should be able to handle several types of seabed, to generate
a realistic model for each seabed type, and to synthesize
a realistic 3D elevation. For these reasons, the final 3D
structure is built by superposition of three different layers: a
partition layer, an elevation layer and a texture layer. Figure 3
shows an example of the three different layers which form the
final 3D environment.

In the late seventies, mathematicians such as Mandelbrot
[31] linked the symmetry patterns and self-similarity found
in nature to mathematical objects called fractals [32-35].
Fractals have been used to model realistic textures and
heightmap terrains [33]. A quick way to generate realistic 3D
fractal heightmap terrains is by using a pink noise generator
[33]. A pink noise is characterized by its power spectral
density decreasing as 1/f#, where 1 < f < 2.

2.1.1. The Partition Layer. In the simulator, various types of
seabeds can be chosen (up to three for a given image). The
boundaries between the seabed types are computed using
fractal borders.

2.1.2. Elevation Layer. This layer contains two types of pos-
sible elevation: a linear slope characterizing coastal seabeds
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FiGure 8: Examples of simulated sonar images for different seabed types (clutter, flat, ripples), 3D elevation and scattering strength. (a)
represents a smooth seabed with some small variations, (b) represents a mixture of flat and cluttered seabed and (c) represents a rippled

seabed.

and a random 3D elevation. The random elevation is a
smoothing of a pink noise process. The 3 parameter is used
to tune the roughness of the seabed.

2.1.3. Texture Layer. Four different textures have been cre-
ated to model four kinds of seabed. Once again the textures
are synthesized by fractal models derived from pink noise
models.

(a) Flat Seabed. A simple flat floor is used for the flat seabed.
No texture is needed in this case. Differences in reflectivity
and scattering between sediment types are handled by the
Image Generator module.

(b) Sand Ripples. The sand ripples are characterized by the
periodicity and the direction of the ripples. A modified
pink noise is used here. In this case the frequency decay is
anisotropic. The amplitude of the magnitude of the Fourier
transform follows (1). The frequency of the ripples is given

by Fripples = +/ fxzpeak + fyzpeak and the direction is given by

0 = tan™"'( fepeak/ fypeak)- The phase is modeled by a uniform
distribution

F(fmfy) =

1 1
(fe o) (fy — Fest)

B (D)

(c) Rocky Seabed. The magnitude of the Fourier transform
of the the rocky seabed is modeled by (2). The factor «
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FIGURE 9: Ability to detect and identify targets as a function of
resolution and coverage rate (Nm/h: nautical mile per hour) for the
best sidescan and synthetic aperture sonars. The SAS sonars here
are a typical 100-300 kHz sonar in optimal conditions for synthetic
aperture.
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(d) Cluttered Environment. The cluttered environment is
characterized by a random distribution of small rocks.
A poisson distribution has been chosen for the spatial
distribution of the rocks on the seabed as the mean number
of occurrences is relatively small.

F(fx’fy) =

2.2. Targets. A separate module is provided for adding targets
into the environment. Figure 4 displays the 3D models of 6
different targets. Location, size and material composition can
be adjusted by the user. The resulting sidescan images offer a
large data base for detection and classification algorithms.
Nonmine targets can also be generated by varying
parameters in this module. Several are used to test the
algorithms with results presented in Section 4.1.2.

2.3. The Sonar Image Generator. The sonar module computes
the sidescan image from a given 3D environment. The
simulator is ray-tracing-based and solves the sonar equation
[36] (given in (3)). Because (3) is an energetic equation,
phenomena such as multipaths are not taken into account.
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For a monostatic sonar system, the sound propagation can
be expressed from an energetic point of view as

XS =SL-2TL+ TS+ DI - NL - RL, (3)

where XS is the excess level, that is, the backscattering energy,
SL is the Source Level of the projector, DI is the Directivity
Index, TL is the Transmission Loss, NL is the Noise Level, RL
is the Reverberation Level and TS is the Target Strength. All
the parameters are measured in decibels (dB) relative to the
standard reference intensity of a 1 yPa plane wave.

In a wide range of cases, a good approximation to
transmission loss TL can be made by considering the process
as a combination of free field spherical spreading and an
added absorption loss. This working rule can be expressed
as

TL = 20logr + ar, (4)

where r is the transmission range and « is an attenuation
coefficient expressed in dB/m. The attenuation coefficient
can be expressed as the sum of two chemical relaxation pro-
cesses and the absorption of pure water. It can be computed
numerically thanks to the Francois-Garrison formula [37].

Reverberation Level is an important restricting factor in
the detection process, especially in the context of MCM. At
short ranges, it represents the most significant noise factor.
The surface reverberation can be developed as drawn in
Figure 5, where dA defines the elementary surface subtended
by horizontal angle d¢ and is dependent on the pulse length
7 and range. Returns from the front and rear ends of the
pulse determine the size of the elementary surface element,
dA. So, for the seabed contribution to reverberation level, we
can write

RL = SL — 2TL + S, + 10log %(/)r, (5)

where d is the altitude of the sonar, r is the range to the
seabed along the main axis of the transducer beam and ¢ is
time.

Three types of seabed have been implemented: Rough
Rock, Sandy Gravel and Very Fine Sand. A theoretical Bottom
Scattering Strength (S; in (5)) can be computed thanks to
[30].

The source level SL is the power of the transmitter. It is a
constant and given by the sonar manufacturer. For sidescan
the SL is typically between 200 and 230 dB.

The Directivity Index (DI) is a sonar-dependent factor
associated with directionality of the transducer system. The
simulator includes a simple beam pattern derived from a
continuous line array model of length 1. The beam pattern
function can be computed thanks to the following:

B(O) = [sin(ﬂl/)t) sin 6]

Ty 6)

Also any transducer beam pattern can be integrated into
the simulator.

In our model, the targets form part of the 3D envi-
ronment. The Target Scattering Strength (TS) is computed
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FiGure 10: Snapshot of the four targets. (a) Manta, on sand ripples, (b) Rockan on cluttered environment, (c) Cuboid on flat seabed, (d)

Cylinder on sand ripples. The pixel size in these targets images is 5 cm.

using a Lambertian model. The reflectance factor in the
Lambertian law is associated to the acoustic impedance. The
simulator takes into account the acoustic impedance of the
target given by Z = p - ¢, where p is the density of the
material, and ¢; the longitudinal sound speed in the material.
The sidescan simulator is designed for validity in the
range of frequencies from 80kHz to 300kHz. We only
consider one contribution for the ambient Noise Level: the
thermal noise. For thermal agitation, the equivalent noise
spectrum level is given by the empirical formula [36]:

NL = —15+20log f with f in kHz. (7)

The trajectory of the sonar platform is tuneable (as
shown in Figure 6). This allows multiview sidescan images
of the same environment. Figure 7 displays sonar images of
the same scene with two different angles of view.

Further examples of typical images obtained for the
various types of seabed are shown in Figure 8.

3. Classifier

3.1. Target Recognition Using Sonar Images. Target recogni-
tion in sonar imagery is a long-standing problem which has
attracted considerable attention [7-15]. However, the reso-
lution of the sensors available has limited not only the spec-
trum of techniques applicable, but also their performances.
Most techniques for detection rely on matched filtering [38]
or statistical modeling [11, 14], whilst recognition is mainly
model-based [10, 13, 15].

The limitations of current sidescan technology are high-
lighted in Figure 9. It would seem from this figure that only
SAS systems can give large area coverage and still give high
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FiGure 11: Misidentification of the four targets as a function of the
pixel resolution. This is considering the highlight of the targets.

resolution needed for identification. However the boundaries
drawn between detection and identification are more the
results of general wisdom than solid scientific evidences.

New high resolution sonars such as SAS produce images
which get closer to traditional optical imagery. This is also
opening a new era of algorithm development for acoustics,
as techniques recently developed in computer vision become
more applicable. For example, the SAS system developed by
NURC (MUSCLE) can achieve a 5 to 3 cm pixel resolution,
almost independent of range. Thanks to this resolution,
direct analysis of the target echo rather than traditional
techniques based on its shadow become possible.

Identifying the resolution required to perform target
classification is not a simple problem. In sonar, this has been
attempted by various authors [39-42], generally looking at
the minimum resolution required to distinguish a sphere
from a cube and using information theory approaches.
These techniques provide a lower bound on the minimum
resolution required but tend to be over optimistic. We
focus here on modern subspace algorithms based on PCA
(Principal Component Analysis) as a mechanism to analyze
the resolution needs for classification. Why focus on such
techniques? The main reason is that they are very versatile
and have been applied successfully to a variety of classical
target identification problems. This has been demonstrated
recently on face recognition [43] and land-based object
detection problems [44].

3.2. Principal Component Analysis. The algorithm used in
this paper for classification is based on the eigenfaces
algorithm. The PCA-basedd eigenfaces approach has been
used for face recognition purposes [45, 46] and is still close
to the state of the art for this application [43].

Assuming the training set is composed of k images of a
target. Each target image M; is an n X m matrix. The M; are
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converted into vectors Mi of dimension 1 X n - m. A mean
image of the target is computed using the following:

1
ki

~

M;. (8)

M=

Mmean =

1

The training vectors M; are centered and normalized
according to (9). In the training set, the target is selected
from various ranges (from 5m to 50 m from the sonar).
The contrast and illumination change drastically through the
training set. The normalization by the standard deviation
of the image reduce this effect. Let std M; be the standard
deviation of M;

T = Mi - Mmean.

~ 9
std M,‘ ( )

Let T = [Ti] be the preprocessing training set of
dimension k X n - m. The covariance matrix Q = T - TT is
calculated. The p largest eigenvalues of () are computed, and
the p corresponding eigenvectors form the decomposition
base of the target. The subspace ®yge; formed by the p
eigenvectors is called target space. The number of eigenvalues
p has been set to 20.

The classifier projects the test target image I, to each
target space. We denote P, (I) the projection of I, in the
target space @rger. The estimated target targ is the target
corresponding to the minimum distance between I, and
Pg,, (In) as expressed in

targ = min ‘ (10)

target

I”l - P®urget (IVI)

Po,, . (In) with the minimum distance represents the
most compact space which represents the object under in-
spection.

4. Results

In previous works [15, 16, 47, 48], target classification
algorithms using standard sidescan sonars have mainly been
based on the analysis of the targets’ shadows. With high
resolution sonars, we note that more information should
be exploitable from the target’s highlight. In this section,
we investigate the resolution needed for the PCA image-
based classifier described earlier to classify using only the
information carried by the highlight.

The sidescan simulator presented in Section 2 will pro-
vide synthetic data in order to train and to test the PCA
image-based classifier. All the sidescan images are generated
with a randomly selected seafloor (from flat seabed, ripples
and cluster environment), random sonar altitude (from 2 to
10 metres altitude) and random range for the targets (from 5
to 50 metres range).

For each experiment, two separate sets of sonar images
have been computed, one specifically for training (in order
to compute the target space @areer) and one specifically for
testing. At each sonar resolution and for each target, 80
synthetic target images at random ranges, random altitude



EURASIP Journal on Advances in Signal Processing 9

Manta Rockan Cylinder

(Meters)

02 04 06 08 1 1.2 02 04 06 08 1 1.2 02 04 06 08 1 1.2
(Meters) (Meters) (Meters)
(a) (b) (c)
Cuboid Big hemisphere Hemisphere Box

(Meters)

02 04 06 08 1 1.2 0.2 04 06 08 1 1.2 0.2 04 06 08 1 1.2 02 04 06 08 1 1.2
(Meters) (Meters) (Meters) (Meters)
(d) (e) (f) ()

FIGURE 12: Snapshot of the targets used for classification. On the first line, the minelike targets with the Manta, the Rockan and the cylinder.

On the second line, the nonmine targets with the cube, the two hemispheres, and the box shape target. The pixel size in these targets images
is 5 cm.
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FIGURE 13: (a) Misidentification of the seven targets as a function of the pixel resolution. (b) Misclassification of the target as function of the
pixel resolution.
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FIGURE 14: Snapshot of the shadow of the four targets (from left to
right: Manta, Rockan, Cube and Cylinder) to classify with different
orientations and backgrounds. The pixel size is these target images
is 5 cm. The size of each snapshot is 1.25m X 2.75m.
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FIGURE 15: Percentage of misidentification versus the pixel resolu-
tion for various target types. This considers the shadow of the target
and not its echo.

and with a randomly selected seafloor have been used for
training. A larger set of 40000 synthetic target images are
used to test the classifier. The classifier is trained and tested
according to the algorithm described in Section 3.2.

4.1. What Precision Is Needed?

4.1.1. Identification. In this first experiment the PCA clas-
sifier is train for identification. Assuming a minelike object
has been detected and classified as a mine, the algorithm
identifies the kind of mine the target Four targets have been
chosen: a Manta mine (truncated cone with dimensions
98 cm lower diameter; 49 cm upper diameter; 47 cm height),
a Rockan mine (L X W x H: 100cm X 50cm X 40 cm),
a cuboid with dimensions 100 cm X 30cm X 30cm and a
cylinder 100 cm long and 30 cm in diameter.

Figure 10 displays snapshots of the four different targets
for a 5 cm sonar resolution.
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The pixel resolution is tunable in the simulator. Sidescan
simulation/classification processes have been run for 15
different pixel resolutions from 3 cm (high resolution sonar)
to 30 cm (low resolution sonar) covering the detection and
classification range of side looking sonars. Figure 11 displays
the misidentification % of the four targets against the pixel
resolution.

As expected, the image-based classifier fails at low resolu-
tions. Between 15 and 20 cm resolution, which corresponds
to the majority of standard sonar systems, classification based
on the highlights is poor (between 50% and 80% correct
classification). The results stabilize at around 5 cm resolution
to reach around 95% correct classification.

In previous work involving face recognition where it
has been shown that PCA techniques are not very robust
to rotation [49]. The algorithm can be optimized using
multiple subspaces for each nonsymmetric target, each of the
subspaces covering a limited angular range.

4.1.2. Classification. In this section we extend the PCA
classifier for underwater object classification purposes. A
larger set of seven targets have been chosen with three
minelike objects: the Manta, the Rockan, a cylinder 100 cm
long and 30 cm diameter and four nonmine objects: a cuboid
with dimension 100 cm X 50 cm X 40 cm, two hemispheres
with diameters, respectively, 100 cm and 50 cm and a box
with dimension 70cm X 70cm X 40cm. Note that the
nonmine targets have been chosen such as the dimension
of the big hemisphere matches with the dimension of the
Manta, and the dimension of the box matches with the
dimension of the Rockan. Figure 12 provides snapshots of
the different targets.

As described in Section 4.1.1, two data sets for training
and testing have been produced. The target classification
relies on two steps: at first the target is identify following
the same process as Section 4.1.1 and then classified into two
classes minelike and nonmine

Figure 13(a) displays the results of the identification step.
the curves of misidentification for each target follow the
general pattern described earlier in Section 4.1.1 with a low
misidentification (below 5%) for a pixel resolution lower
than 5cm. In Figure 13(b), the results of the classification
between minelike and nonmine is showed. Contrary to the
identification process, the classification curves stabilise at
higher pixel resolution (around 10 cm) to 2-3% misclassifi-
cation.

In these examples we show that the identification task
needs a higher pixel resolution that the classification task
to match the same performances 95% correct identifica-
tion/classification.

4.2. Identification with Shadow. As mentioned earlier, cur-
rent sidescan ATR algorithms depend strongly on the
target shadow for detection and classification. The usual
assumption made is: at low resolution the information relative
to the target is mostly contained in its shadow. In this section
we aim to confirm this statement by using the classifier
described in Section 3.2 directly on the target shadows.
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We study here the quantity of information contained
into the shape of the shadow, and how this information is
retrievable depending on the pixel resolution.

Shadows are the result of the directional acoustic illumi-
nation of a 3D target. They are therefore range dependent.
For the purposes of this experiment, in order to remove the
effect of the range dependence of the shadows, the targets
are positioned at a fixed range of 25m from the sensor.
Image segments containing the target shadows are extracted
from the data. Figure 14 displays snapshots of target shadows
with different orientations and backgrounds for a 5 cm pixel
resolution. We process the target shadow images in exactly
in the same way as we did for the target highlight images
in the previous sections. For each sonar resolution, 80 target
shadows per object are used for training the classifier, and a
set of 40000 shadow images is used for testing.

In total 15 training/classification simulations have been
done for 15 sonar pixel resolutions (from 5cm to 30 cm).
Figure 15 shows the percentage of misclassification versus the
pixel resolution for various target types.

Concerning the Cylinder and Cuboid targets, their shad-
ows are very similar due the similar geometry. In Figure 14
it is almost impossible to distinguish visually between the
two objects looking only at their shadows. In broadside for
example, the two shadows have exactly the same rectangular
shape, explaining why the confusion between these two
objects is high.

For the Manta and Rockan targets, the misidentification
curves stabilize near 0% misidentification below 20 cm sonar
resolution. Therefore, for standard sidescan systems with a
resolution in the 10-30 cm range, the target information can
be extracted from the shadow with an excellent probability of
correct identification. In comparison, correct identification
using the target highlights at 20 cm resolution is about 50%
(cf. Figure 11)

5. Conclusions and Future Work

In this paper, a new real-time realistic sidescan simulator has
been presented. Thanks to the flexibility of this numerical
tool, realistic synthetic data can be generated at different pixel
resolutions. A subspace target identification technique based
on PCA has been developed and used to evaluate the ability
of modern sonar systems to identify a variety of targets.

The results processing shadow images back up the widely
accepted idea that identification from current sonars at
10-20 cm resolution is reaching its performance limit. The
advent of much higher resolution sonars has now made it
possible to bring in and apply techniques new to the field
from optical image processing. The PCA analyses presented
here, operating on highlight as opposed solely to shadow,
show that these can give a significant improvement in target
identification and classification performance opening the
way for reinvigorated effort in this area.

The emergence of very high resolution sonar systems
such as SAS and acoustic cameras will enable more advanced
target identification techniques to be used very soon. The
next phase of this work will be to validate and confirm these
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using real SAS data. We are currently undertaking this phase
in collaboration with the NATO Undersea Research Centre
and DSTL under the UK Defense Research Centre program.
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