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The task of curvature estimation from discrete sampling points along a curve is investigated. A novel curvature estimation
algorithm based on performing line integrals over an adaptive data window is proposed. The use of line integrals makes the
proposed approach inherently robust to noise. Furthermore, the accuracy of curvature estimation is significantly improved by
using wild bootstrapping to adaptively adjusting the data window for line integral. Compared to existing approaches, this new
method promises enhanced performance, in terms of both robustness and accuracy, as well as low computation cost. A number
of numerical examples using synthetic noisy and noiseless data clearly demonstrated the advantages of this proposed method over
state-of-the-art curvature estimation algorithms.

1. Introduction

Curvature is a widely used invariant feature in pattern
classification and computer vision applications. Examples
include contour matching, contour segmentation, image
registration, feature detection, object recognition, and so
forth. Since curvature is defined by a function of higher-
order derivatives of a given curve, the numerically estimated
curvature feature is susceptible to noise and quantiza-
tion error. Previously, a number of approaches such as
curve/surface fitting [1–5], derivative of tangent angle [6, 7],
and tensor of curvature [8–11] have been proposed with
moderate effectiveness. However, an accurate and robust
curvature estimation method is still very much desired.

Recently, the integral invariants [12–14] have begun to
draw significant attention from the pattern recognition com-
munity due to their robustness to noise. These approaches
have been shown as promising alternatives for extracting
geometrical properties from discrete data. While curvature
is just a special instance of invariant features under the rigid
transformations (composition of rotations and translations),
it is arguably the most widely used one in computer vision
applications.

In this paper, we propose a novel curvature estimator
based on evaluating line integrals over a curve. Since
our method does not require derivative evaluations, it is
inherently robust with respect to sampling and quantization
noise. In contrast to the previous efforts, we are interested
here in the line integral. It should be noted that the strategy
presented by Pottmann et al. [14] can be trivially changed
to compute curvature on curves. However, the resultant
curvature estimate requires surface integrals taken over local
neighborhoods. Compared with surface integral (also known
as double integral), the line-integral formulation for curva-
ture estimation has a reduced computational complexity in
general. We will further discuss the complexity of numerical
integration in Section 3.

Our method is also a significant improvement over
the previously reported work [14] in terms of estimation
accuracy. This is because the earlier work evaluates integrals
over a user-defined, fixed-size window surrounding the
point where curvature is to be evaluated. Depending on the
sharpness of the curvature, the window size may be too
large or too small. An over-sized window would dilute the
distinct curvature feature by incorporating irrelevant points
on the curve into the integral. An under-sized window,
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on the other hand, would be less robust to noise and
quantization errors.

In this proposed curvature estimation algorithm, we
evaluate line integrals over a window whose size is adaptively
determined using the wild bootstrap procedure [15]. As
such, the size of the data window will be commensurate
to the sharpness of the curvature to be estimated, and the
resulting accuracy is expected to be significantly improved.
The performance advantage of this proposed adaptive win-
dow curvature estimation algorithm has been examined
analytically, and has been validated using several numerical
experiments.

The rest of this paper is organized as follows. Section 2
provides a brief review on the related work. In Section 3,
the curvature estimation method based on line integrals
is introduced. We subsequently formulate the problem of
choosing an optimal window size and derive an adaptive
curvature estimator in Section 4. In Section 5, we provide
experimental results to show the robustness and accu-
racy of the proposed method. Comparisons with existing
curvature estimation methods are also included. Finally,
we make concluding remarks and discuss future works in
Section 6.

2. RelatedWork

Due to the needs of many practical applications, extensive
research has been conducted on the problem of curvature
estimation. In a real-world application, data are often given
in discrete values sampled from an object. Hence, one is
required to estimate curvature or principal curvatures from
discrete values. Flynn and Jain [4] report an empirical
study on five curvature estimation methods available at that
time. Their study’s main conclusion is that the estimated
curvatures are extremely sensitive to quantization noise and
multiple smoothings are required to get stable estimates.
Trucco and Fisher [16] have similar conclusion. Worring
and Smeulders [7] identify five essentially different methods
for measuring curvature on digital curves. By performing
a theoretical analysis, they conclude that none of these
methods is robust and applicable for all curve types. Magid
et al. [17] provide a comparison of four different approaches
for curvature estimation on triangular meshes. Their work
manifests the best algorithm suited for estimating Gaussian
and mean curvatures.

In the following sections, we will discuss different kinds
of curvature estimation methods known in the literature.
Also, we will review some related work in integral invariants
and adaptive window selection.

2.1. Derivative of the Tangent Angle. The approaches based
on the derivative of tangent can be found in [6, 18–20].
Given a point on a curve, the orientation of its tangent
vector is first estimated and then curvature is calculated
by Gaussian differential filtering. This kind of methods
are preferable when computational efficiency is of primary
concern. The problem associated with these approaches
is that estimating tangent vector is highly noise-sensitive

and thus the estimated curvature is unstable in real world
applications.

2.2. Radius of the Osculating Circle. The definition of oscu-
lating circle leads to algorithms which fit a circular arc to
discrete points [2, 3, 21]. The curvature is estimated by
computing the reciprocal of the radius of an osculating circle.
An experimental evaluation of this approach is presented in
the classical paper byWorring and Smeulders [7]. The results
reveal that reliable estimates can only be expected from arcs
which are relatively large and of constant radius.

2.3. Local Surface Fitting. As the acquisition and use of
3D data become more widespread, a number of methods
have been proposed for estimating principal curvatures on
a surface. Principal curvatures provide unique view-point
invariant shape descriptors. One way to estimate principal
curvatures is to perform surface fitting. A local fitting
function is constructed and then curvature can be calculated
analytically from the fitting function. The popular fitting
methods include paraboloid fitting [22–24] and quadratic
fitting [1, 25–27]. Apart from these fitting techniques, other
methods have been proposed, such as higher-order fitting
[5, 28] and circular fitting [29, 30].Cazals and Pouget [5]
perform a polynomial fitting and show that the estimated
curvatures converge to the true ones in the case of a general
smooth surface. A comparison of local surface geometry
estimation methods can be found in [31].

The paper written by Flynn and Jain [4] reports
an empirical evaluation on three commonly used fitting
techniques. They conclude that reliable results cannot be
obtained in the presence of noise and quantization error.

2.4. The Tensor of Curvature. The tensor of curvature has
lately attracted some attention [8–11, 32]. It has been shown
as a promising alternative for estimating principal curvatures
and directions. This approach is first introduced by Taubin
[8], followed by the algorithms which attempt to improve
accuracy by tensor voting [9–11, 32]. Page et al. [9] present
a voting method called normal voting for robust curvature
estimation, which is similar to [10, 32]. Recently,Tong and
Tang [11] propose a three-pass tensor voting algorithm with
improved robustness and accuracy.

2.5. Integral Invariants. Recently, there is a trend on so-
called integral invariants which reduce the noise-induced
fluctuations by performing integrations [12, 13]. Such
integral invariants possess many desirable properties for
practical applications, such as locality (which preserves local
variations of a shape), inherent robustness to noise (due
to integration), and allowing multiresolution analysis (by
specifying the interval of integration). In [14], the authors
present an integration-based technique for computing prin-
cipal curvatures and directions from a discrete surface. The
proposedmethod is largely inspired by bothManay et al. [13]
and Pottmann et al. [14], in which they use a convolution
approach to calculate an integral. In this paper, we investigate
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Figure 1: (a) For a point (the black square dot) on a curve g(x) (the gray line), we draw a circleΩr centered at that point. The integral region
C = {(x, y) | x2 + y2 = r2, y ≥ g(x)} is denoted by red dashed line. It is convenient to write the equation of the curve, in the neighborhood
of α(s0), using t(s0) and n(s0) as a coordinate frame. (b) After obtaining θ0 and θ1, the line integrals can be easily computed. It does not
matter which coordinate system we use for computing θ0 and θ1. One can always obtain a curvature estimate by performing eigenvalue
decomposition.
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Figure 2: Block diagram of the radius selection algorithm using bootstrap method.

avoiding the convolution with polynomial complexity by
instead using the one with constant complexity.

2.6. Adaptive Window Selection. The curvature estimation
algorithms mentioned above have the shortcoming of using

a fixed window size. On one hand, if a large window is
selected, some fine details on a shape will be smoothed
out. On the other hand, if a small window is utilized, the
effect of discretization and noise will be salient and the
resultant estimate will have a large variance. To mitigate this
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Figure 3: The proposed adaptive curvature estimator is applied to the curves depicted in (a), (c), and (e). The resultant radii ofΩr are shown
in (b), (d), and (f), respectively.

fundamental difficulty in curvature estimation, a window
size must be determined adaptively depending on local
characteristics.

A number of publications concerning the issue of
adaptive window selection have appeared in the last two
decades [33–37]. In the dominant point detection algorithms

[33, 35, 36], it is important to select a proper window for
estimating curvature. Teh and Chin [33] use the ratio of
perpendicular distance and the chord length to determine
the size of a window.B. K. Ray and K. S. Ray [35] introduce
a new measurement, namely, k-cosine, to decide a window
adaptively based on some local properties of a curve.Wu [36]
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Figure 4: True curvatures and estimated curvatures of the curves in (a), (c), and (e) are shown in (b), (d), and (f), respectively. The curvature
estimates are obtained by an adaptive radius and fixed radii.

proposes a simple measurement which utilizes an adaptive
bending value to select the optimal window.

Recently, the bootstrap methods [38] have been applied
with great success to a variety of adaptive window selection

problems. Foster and Zychaluk [37] present an algorithm
for estimating biological transducer functions. They utilize a
local fitting with bootstrap window selection to overcome the
problems associated with traditional polynomial regression.
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Figure 5: The estimation errors in Figures 4(b), 4(d), and 4(f) are shown in (a), (b), and (c), respectively.

Inspired by their work, we develop an adaptive curvature
estimation algorithm based on the wild bootstrap method
[15, 39]. We will elaborate the associated window selection
algorithm in Section 4.

3. Curvature Estimation by Line Integrals

In this section, we introduce the approach for estimating
curvature along a planar curve by using line integrals.

First, we briefly review some important results in dif-
ferential geometry. Interested readers may refer to [40] for
more details. Let τ ⊂ R be an interval and α : τ → R2

be a curve parameterized by arc length s ∈ τ. To proceed
with local analysis, it is necessary to add the assumption
that the derivative α′(s) always exists. We interpret α(s)
as the trajectory of a particle moving in a 2-dimensional
space. The moving plane determined by the unit tangent and
normal vectors, t(s) and n(s), is called the osculating plane
at α(s).

In analyzing the local properties of a point on a curve, it
is convenient to work with the coordinate system associated
with that point. Hence, one can write the equation of a curve,
in the neighborhood of α(s0), by using t(s0) and n(s0) as a
coordinate frame. In particular, t(s0) is the x-axis and n(s0)
is the y-axis. The Taylor series expansion of the curve in the
neighborhood of α(s0), denoted by g(x), with respect to the
local coordinate frame centered at α(s0), is given by

y = g(x) = g(0) + xg′(0) +
x2

2
g′′(0) + ρ, (1)

where ρ is the remainder. Since g(0) = 0, g′(0) = 0, and
g′′(0) is the curvature at α(s0), we obtain that g(x) ≈ (κ/2)x2,
where κ denotes the curvature at α(s0). For a point on a curve,
let Ωr denote a circle with center at that point and radius
r. Then, we can perform the line integral of an arbitrary
function f along C,

I
(
f
) =

∫
C
f
(
x, y

)
d�, (2)
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where C = {(x, y) | x2 + y2 = r2, y ≥ g(x)} and d� is the
arc length element; in other words, C is the portion of the
circle Ωr that is above g(x). An example of a circle and the
corresponding integral region C is shown in Figure 1(a). The
line integral I( f ) can be approximated by

I
(
f
) ≈ Î

(
f
) =

∫
Ω+

r

f
(
x, y

)
d� −

∫ (1/2)κr2

0
f
(
r, y
)
dy

−
∫ (1/2)κr2

0
f
(−r, y)dy,

(3)

whereΩ+
r denotes the upper half ofΩr , that is,Ω+

r = {(x, y) |
x2 + y2 = r2, y ≥ 0}. In (3), we first perform line integral
on the upper half ofΩr (the first term) and then subtract the
line integrals on the portions ofΩr that are between g(x) and
x-axis (the second and third terms). We utilize two straight
lines to approximate the portions ofΩr bounded by g(x) and
x-axis.

Let x = [x y]T , the covariance matrix Σ of the region C
is given by

Σ(C) =
∫
C
(x −m)(x −m)Td� =

∫
C
xxTd� − L(C)mmT ,

(4)

where L(C) = ∫C d� and m = (1/L)
∫
C xd� denote the length

and the barycenter of C, respectively. Because the region Ω+
r

is symmetric, the line integral Î( f ) is equal to zero for any
odd function f . Hence, we have I(x) ≈ Î(x) = 0 and I(xy) ≈
Î(xy) = 0. By using (3), we can then obtain

I
(
x2
) ≈

∫
Ω+

r

x2d� − 2
∫ (1/2)κr2

0
r2dy = π

2
r3 − κr4,

I
(
y2
) ≈

∫
Ω+

r

y2d� − 2
∫ (1/2)κr2

0
y2dy = π

2
r3 − κ3

12
r6,

I
(
y
) ≈

∫
Ω+

r

yd� − 2
∫ (1/2)κr2

0
ydy = 2r2 − κ2

4
r4,

L = I(1) ≈
∫
Ω+

r

d� − 2
∫ (1/2)κr2

0
dy = πr − κr2.

(5)

Therefore, the covariance matrix Σ(C) can be approximated
by

Σ(C) ≈
⎡
⎢⎣
π

2
r3 − κr4 0

0
π

2
r3 − κ3

12
r6

⎤
⎥⎦

− 1
πr − κr2

⎡
⎢⎣
0 0

0

(
2r2 − κ2

4
r4
)2

⎤
⎥⎦.

(6)

From (6), we can obtain the following relationship:

Σ1,1 ≈ π

2
r3 − κr4 =⇒ κ ≈ π

2r
− Σ1,1

r4
. (7)

So, curvature κ can be estimated by performing the
principal component analysis on the region C. In a real-
world application, it does not matter which coordinate
system is used for computing a covariance matrix. One can
conduct the eigenvalue decomposition of Σ(C) and then
obtain a curvature estimate. The procedure for curvature
estimation is as follows.

(1) Let a be a point on a curve. We draw a circle with
radius r centered at a. The intersections of the circle
and the curve are denoted by b and c. The angle

between the vector
−→
ab and the x-axis is denoted by θ0.

Similarly, θ1 denotes the angle between the vector −→ac
and the x-axis. An example is shown in Figure 1(b).

(2) Calculate the covariance matrix Σa(C) associated
with point a. Following directly from (4), we have

Σa(C) =
⎡
⎣
Ia
(
x2
)

Ia
(
xy
)

Ia
(
xy
)

Ia
(
y2
)
⎤
⎦

− 1
La(C)

⎡
⎣

I2a (x) Ia(x)Ia
(
y
)

Ia(x)Ia
(
y
)

I2a
(
y
)
⎤
⎦.

(8)

It is straightforward to show that the line integrals can
be calculated as follows:

Ia
(
x2
) = r3

2
[θ1 − θ0 + sin θ1 cos θ1 − sin θ0 cos θ0],

Ia
(
y2
) = r3

2
[θ1 − θ0 − (sin θ1 cos θ1 − sin θ0 cos θ0)],

Ia
(
xy
) = r3

2

(
sin2θ1 − sin2θ0

)
,

Ia(x) = r2(sin θ1 − sin θ0),

Ia
(
y
) = −r2(cos θ1 − cos θ0),

La(C) = r(θ1 − θ0).

(9)

(3) The covariance matrix Σa(C) can be factored as

Σa(C) = VDVT , (10)

where D = diag(λ1, λ2) contains the eigenvalues of
Σa(C) and V = [v1 v2] contains the corresponding
eigenvectors. Because Σa(C) is real and symmetric,
the eigenvectors v1 and v2 are orthogonal. Generally
speaking, (10) shows the Singular Value Decomposi-
tion (SVD) and thus the diagonal elements of D are
also called the singular values of Σa(C).

(4) The unit tangent at a, denoted by t(a), must be
parallel to either v1 or v2. If the eigenvector parallel to
t(a) were identified, one could compute curvature by
using the corresponding eigenvalue (see (7)). Here,
we choose the eigenvalue by comparing signs of inner

products
−→
ab · vi and −→ac · vi. If vi were parallel to

t(a), the signs of
−→
ab · vi and −→ac · vi must be different.
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One can use either v1 or v2. Pseudocode for comput-
ing curvature utilizing v1 is shown below.

if sign
(−→
ab · v1

)
/= sign

(−→ac · v1
)

else κ ≈ π

2r
− λ1

r4

κ ≈ π

2r
− λ2

r4
.

(11)

Note that the numerical integration is typically com-
puted by convolution in the previous work [13, 14]. For
example, when evaluating the area integral invariant [13]
of a particular point on a curve, the standard convolution
algorithm has a quadratic computational complexity. With
the help of the convolution theorem and the Fast Fourier
Transform (FFT), the complexity of convolution can be sig-
nificantly reduced [14]. However, the running time required
by the FFT is O(N2 logN), where N2 equals the number of
sampling points in an integral region. Compared with the
earlier methods [13, 14], the complexities of the integrals in
(8) are constant and hence our method is computationally
more efficient.

4. Adaptive Radius Selection

A critical issue in curvature estimation by line integrals lies
in selecting an appropriate circle. The circleΩr must be large
enough to include enough data points for reliable estimation,
but small enough to avoid the effect of oversmoothing. For
this reason, the radius of a circle must be selected adaptively,
based on local shapes of a curve. In this section, we will first
formulate the problem of selecting an optimal radius and
then present an adaptive radius selection algorithm.

Intuitively, an optimal radius can be obtained by min-
imizing the difference between the estimated curvature κ̂r ,
based on the data within radius r, to its true value κ. A
common way to quantify the difference between κ̂r and κ is
to compute the Mean Squared Error (MSE) as a function of
r, that is,

MSE(r) = E
[
(κ̂r − κ)2

]
, (12)

where E is the expectation (the value that could be obtained
if the distribution of κ̂r were available). However, the
minimizer of MSE(r) cannot be found in practice since it
involves an unknown value κ.

The bootstrap method [38], which has been extensively
analyzed in the literature, provides an effective means for
overcoming such a difficulty. In (12), one can simply replace
the unknown value κ with the estimate obtained from a
given dataset, then replace the original estimate κ̂r with the
estimates computed from bootstrap datasets. Therefore, the
optimal radius can be determined by

ropt = arg min
r

MSE∗(r) = arg min
r

E∗
[(
κ̂∗r − κ̂r

)2], (13)

where the asterisks denote that the statistics are obtained
from bootstrap samples.

The conceptual block diagram of the radius selection
algorithm using bootstrap method is shown in Figure 2 and
the detailed steps are described below.

(1) Given a point (x0, y0) on a curve, we draw an initial
circle of radius r.

(2) By using the estimator described in Section 3, the
estimate κ̂r is calculated from the neighboring points
of (x0, y0) within radius r. In the rest of this paper, we
will useD = {(xi, yi) | i = 1, 2, . . . ,N} to denote the
neighboring points of (x0, y0) within radius r.

(3) The local shape around (x0, y0) can be modeled by

yi = κ̂r
2
x2i + εi, i = 1, 2, . . . ,N , (14)

where εi is called a modeling error or residual. Note
that we use the moving plane described in Section 3
as our local coordinate system.

(4) Generate wild bootstrap residuals ε∗i from a two-
point distribution [15]:

ε∗i = εi

(
Vi√
2
+
V 2
i − 1
2

)
, i = 1, 2, . . . ,N , (15)

where the Vi’s are independent standard normal
random variables.

(5) The wild bootstrap samples (xi, y∗i ) are constructed
by adding the bootstrap residuals ε∗i :

y∗i =
κ̂r
2
x2i + ε∗i . (16)

We use D∗ = {(xi, y∗i ) | i = 1, 2, . . . ,N} to denote a
wild bootstrap dataset.

(6) By repeating the third to the fifth steps, we can
generate many wild bootstrap datasets, that is,
D∗1,D∗2, . . . ,D∗B. The larger the number of wild
bootstrap datasets, the more satisfactory the estimate
of a statistic will be.

(7) We can then obtain bootstrap estimates κ̂∗1r , κ̂∗2r ,
. . . , κ̂∗Br from the wild bootstrap datasets D∗1,D∗2,
. . . ,D∗B. The bootstrap estimate of the MSE(r) is
given by

MSE∗(r) = 1
B

B∑
b=1

[(
κ̂∗br − κ̂r

)2]
. (17)

(8) The optimal radius is defined as the minimizer of
(17), that is,

ropt = arg min
r

1
B

B∑
b=1

[(
κ̂∗br − κ̂r

)2]
. (18)
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Figure 6: (a) A sinusoidal waveform, (b) curvature estimate obtained by derivative of tangent, (c) curvature estimate obtained by Calabi et
al.’s algorithm, (d) curvature estimate obtained by Taubin’s algorithm, (e) curvature estimate obtained by line integrals, and (f) curvature
estimate obtained by line integrals with adaptive radius. Notice that a dashed blue line denotes the true curvature.

5. Experiments and Results

We conduct several experiments to evaluate the performance
of the proposed adaptive curvature estimator. In Section 5.1,
we demonstrate how the radius of the estimator changes
with respect to local contour geometry. In Section 5.2, the
experiments are conducted to verify whether the adaptivity
provides an improved estimation accuracy. And, the robust-
ness of the proposed method is experimentally validated in
Section 5.3.

5.1. Qualitative Experiments. These experiments are intend-
ed to qualitatively verify the behavior of selecting an optimal
radius. The curves {y = (1/2)ηx2 | x ∈ [−5, 5], η =
0.1, 0.5, 1} are utilized as test subjects in the experiments. The
sampling points along a curve are generated by performing
sampling uniformly along the x-axis. The radius of the
proposed adaptive curvature estimator ranges from 0.1 to
4 with the step size of 0.1. Figure 3 shows the adaptively
varying radii obtained by our method. We can see that the
radius is relatively small near the point at x = 0 and become
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Figure 7: Trial-to-trial variability in curvature estimates. The data consist of 10 trials. (a) sinusoidal waveforms with additive Gaussian noise,
(b) curvature estimate obtained by derivative of tangent, (c) curvature estimate obtained by Calabi et al.’s algorithm, (d) curvature estimate
obtained by Taubin’s algorithm, (e) curvature estimate obtained by line integrals, and (f) curvature estimate obtained by line integrals with
adaptive radius. Notice that these figures have different ranges in vertical coordinate because some methods yield noisy results. The true
curvature is denoted by a dashed blue line.

larger as |x| is increasing. This phenomenon corresponds to
our expectation that a smaller radius should be chosen at a
point with high curvature so that smoothing effect can be
reduced. In a low-curvature area, a larger radius should be
selected so that a more reliable estimate can be obtained.
Since the behavior is in accordance with the favorable
expectation, the remaining issue is whether the adaptively
selected radius indeed improves estimation accuracy. In

the following section, we will perform an experimental
validation on this issue.

5.2. Quantitative Experiments. In the quantitative analysis,
the curvature estimate obtained by adaptive radius is com-
pared against the true curvature, and the estimate obtained
by fixed radii. In Figure 4, it can be seen that the curvature
estimator with a fixed undersize radius will be accurate at
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Figure 8: (a) The closed curve {x = 2 cos θ + (3/5)cos2θ, y = 2 sin θ + (3/10)sin2θ | θ ∈ [0, 2π]}, (b) curvature estimate obtained by
derivative of tangent, (c) curvature estimate obtained by Calabi et al.’s algorithm, (d) curvature estimate obtained by Taubin’s algorithm, (e)
curvature estimate obtained by line integrals, and (f) curvature estimate obtained by line integrals with adaptive radius. Notice that a dashed
blue line denotes the true curvature.

the peak but inaccurate in the flat regions. On the other
hand, the curvature estimator with a fixed oversize radius
will lead to over smoothing and hence be inaccurate at the
peak. Therefore, it is desirable that the curvature estimator
could adapt according to the input data. By adjusting the
radius adaptively, we observe that the precision of curvature
estimation is significantly improved. Figure 5 depicts the
estimation errors of using fixed radii and adaptive radius.

It is obvious that the estimation errors of the adaptive
radius algorithm are much smaller than those of the fixed
radius algorithm. In short, we have demonstrated that the
estimation accuracy depends largely on the radius of Ωr and
it can be significantly improved by using adaptive radius.

5.3. Sensitivity to Perturbations. In Section 3, the concept of
curvature estimation via line integrals has been developed
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Figure 9: Trial-to-trial variability in curvature estimates. The data consist of 10 trials. (a) The closed curves {x = 2 cos θ + (3/5)cos2θ, y =
2 sin θ + (3/10)sin2θ | θ ∈ [0, 2π]} with additive Gaussian noise, (b) curvature estimate obtained by derivative of tangent, (c) curvature
estimate obtained by Calabi et al.’s algorithm, (d) curvature estimate obtained by Taubin’s algorithm, (e) curvature estimate obtained by line
integrals, and (f) curvature estimate obtained by line integrals with adaptive radius. Notice that these figures have different ranges in vertical
coordinate because some methods yield noisy results. The true curvature is denoted by a dashed blue line.

under an error-free assumption. However, in practical
applications, perturbations in the input data can arise from
many sources, such as roundoff errors or sensor noise.
In this section, we will evaluate the robustness of the
proposed curvature estimator and will compare it with
existing approaches.

Before dealing with noisy data, we first consider noise-
free cases. Two curves are utilized in our experiments. One is

a sinusoidal curve which contains both positive and negative
curvatures (see Figure 6(a)). The other one is a closed curve
given by {x = 2 cos θ+(3/5)cos2θ, y = 2 sin θ+(3/10)sin2θ |
θ ∈ [0, 2π]} (see Figure 8(a)). These continuous curves
have been discretized by uniformly sampling in the angular
variable and curvature is estimated at each sampling point.

Figures 6(b) and 8(b) give the curvature estimate
obtained by the derivative of tangent [7]. The results
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obtained by Calabi et al.’s method [41] are shown in Figures
6(c) and 8(c). Both of these methods calculate a curvature
estimate from three successive sampling points and thus can
yield an excellent accuracy under a noise-free condition.
However, this kind of approach cannot have reliable results
under practical situations where perturbations are inevitable.
By using another integral-based method [8], the curvature
estimates calculated from the noisy shapes are shown in
Figures 7(d) and 9(d). Similar to the proposed method with
a fixed radius, this method can obtain reliable results from
noisy data but has large estimation errors in high curvature
regions.

Compared with the above mentioned methods, the
proposed curvature estimator with a fixed radius has larger
estimation errors, especially in sharp regions (Figures 6(e)
and 8(e)). This is an expected result because the circle Ωr

provides a smoothing effect on sharp corners. As one can
see in Figures 6(f) and 8(f), the estimation accuracy is
significantly improved once the radius of Ωr at each point
is adaptively determined.

In the following experiments, we add noise to the
original shapes and then perform curvature estimation
on the noisy shapes. Figure 7 depicts the results of 10
trials. It is obvious that the proposed method, with or
without adaptive radius, is able to obtain reasonable esti-
mates while the derivative of tangent [7] and Calabi et
al.’s algorithm [41] have significantly larger trial-to-trial
variabilities. The same phenomenon is also observed in
Figure 9. The results strongly suggest that sensitivity to
perturbations is significantly reduced by using the proposed
method. The proposed approach for curvature estimation
is clearly a better choice if the input data are likely to be
noisy.

6. Conclusions and FutureWork

A novel curvature estimator, which achieves robustness to
noise without sacrificing estimation accuracy, is presented
in this paper. The novelty of the proposed method lies in
performing line integrals on a circle. Because of performing
integrations, we can avoid numerical differentiation which
is a notoriously unstable process. Furthermore, instead of
choosing a fixed radius for the circle, an optimal radius
is determined at each point to minimize estimation error.
We present extensive simulation results that demonstrate
the effectiveness of our approach as compared with the
recently proposed approaches [7, 8, 41]. Notice that we
choose [8] for comparison because it is frequently used as
a baseline algorithm in the literature. Although the estimator
introduced by Taubin [8] is aiming for principal curvatures
on surfaces, it can be trivially changed to compute curvature
on curves.

An important issue for future research is to generalize
the proposed framework to the estimation of principal
curvature. To position our approach among others, we would
also like to conduct a comparative study of more curvature
estimation methods.

Acknowledgment

The authors have been partially supported by the National
Science Council, Taiwan (Grant no. 98-2221-E-194-039-
MY3).

References

[1] P. J. Besl and R. C. Jain, “Invariant surface characteristics
for 3D object recognition in range images,” Computer Vision,
Graphics and Image Processing, vol. 33, no. 1, pp. 33–80, 1986.

[2] U. M. Landau, “Estimation of a circular arc center and its
radius,” Computer Vision, Graphics and Image Processing, vol.
38, no. 3, pp. 317–326, 1987.

[3] S. M. Thomas and Y. T. Chan, “A simple approach for the
estimation of circular arc center and its radius,” Computer
Vision, Graphics and Image Processing, vol. 45, no. 3, pp. 362–
370, 1989.

[4] P. J. Flynn and A. K. Jain, “On reliable curvature estimation,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 110–116, 1989.

[5] F. Cazals and M. Pouget, “Estimating differential quantities
using polynomial fitting of osculating jets,” Computer Aided
Geometric Design, vol. 22, no. 2, pp. 121–146, 2005.

[6] H. Asada and M. Brady, “The curvature primal sketch,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 1, pp. 2–14, 1986.

[7] M. Worring and A. W. M. Smeulders, “Digital curvature
estimation,” CVGIP: Image Understanding, vol. 58, no. 3, pp.
366–382, 1993.

[8] G. Taubin, “Estimating the tensor of curvature of a surface
from a polyhedral approximation,” in Proceedings of the 5th
International Conference on Computer Vision, pp. 902–907,
June 1995.

[9] D. L. Page, A. Koschan, Y. Sun, J. Paik, and M. A. Abidi,
“Robust crease detection and curvature estimation of piece-
wise smooth surfaces from triangle mesh approximations
using normal voting,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 162–167, December 2001.

[10] C.-K. Tang and G. Medioni, “Curvature-augmented tensor
voting for shape inference from noisy 3D data,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 6, pp. 858–864, 2002.

[11] W.-S. Tong and C.-K. Tang, “Robust estimation of adaptive
tensors of curvature by tensor voting,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp.
434–449, 2005.

[12] C. E. Hann and M. S. Hickman, “Projective curvature and
integral invariants,” Acta Applicandae Mathematicae, vol. 74,
no. 2, pp. 177–193, 2002.

[13] S.Manay, D. Cremers, B.-W.Hong, A. J. Yezzi Jr., and S. Soatto,
“Integral invariants for shape matching,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp.
1602–1617, 2006.

[14] H. Pottmann, J. Wallner, Y.-L. Yang, Y.-K. Lai, and S.-M. Hu,
“Principal curvatures from the integral invariant viewpoint,”
Computer Aided Geometric Design, vol. 24, no. 8-9, pp. 428–
442, 2007.

[15] E. Mammen, “Bootstrap and wild bootstrap for high dimen-
sional linear models,” The Annals of Statistics, vol. 21, no. 1, pp.
255–285, 1993.



14 EURASIP Journal on Advances in Signal Processing

[16] E. Trucco and R. B. Fisher, “Experiments in curvature-based
segmentation of range data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 177–182,
1995.

[17] E. Magid, O. Soldea, and E. Rivlin, “A comparison of Gaussian
andmean curvature estimationmethods on triangular meshes
of range image data,” Computer Vision and Image Understand-
ing, vol. 107, no. 3, pp. 139–159, 2007.

[18] A. Rosenfeld and A. C. Kak, Digital Picture Processing,
Academic Press, Orlando, Fla, USA, 1982.

[19] I. M. Anderson and J. C. Bezdek, “Curvature and tangential
deflection of discrete arcs: a theory based on the commutator
of scatter matrix pairs and its application to vertex detection in
planar shape data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, no. 1, pp. 27–40, 1984.

[20] S. Hermann and R. Klette, “Multigrid analysis of curvature
estimators,” in Proceedings of the Image Vision Computing New
Zealand, pp. 108–112, 2003.

[21] D. Coeurjolly, S. Miguet, L. Tougne, and E. Laboratoire,
“Discrete curvature based on osculating circle estimation,” in
Workshop on Visual Form, pp. 303–312, Springer, London, UK,
2001.

[22] E. M. Stokely and S. Y. Wu, “Surface parametrization and
curvature measurement of arbitrary 3-D objects: five practical
methods,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 8, pp. 833–840, 1992.

[23] B. Hamann, “Curvature approximation for triangulated sur-
faces,” in Geometric Modelling, pp. 139–153, Springer, Berlin,
Germany, 1993.

[24] P. Krsek, T. Pajdla, and V. Hlavác, “Estimation of differential
parameters on triangulated surface,” in Proceedings of the 21st
Workshop of the Austrian Association for Pattern Recognition,
1997.

[25] D. S. Meek and D. J. Walton, “On surface normal and Gaussian
curvature approximations given data sampled from a smooth
surface,” Computer Aided Geometric Design, vol. 17, no. 6, pp.
521–543, 2000.

[26] I. Douros and B. Buxton, “Three-dimensional surface curva-
ture estimation using quadric surface patches,” in Proceedings
of the Scanning, Paris, France, May 2002.

[27] G. Xu, “Discrete Laplace-Beltrami operators and their conver-
gence,” Computer Aided Geometric Design, vol. 21, no. 8, pp.
767–784, 2004.

[28] F. K. H. Quek, R. W. I. Yarger, and C. Kirbas, “Surface
parameterization in volumetric images for curvature-based
feature classification,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 33, no. 5, pp. 758–765, 2003.

[29] X. Chen and F. Schmitt, “Intrinsic surface properties from
surface triangulation,” in Proceedings of the the 2nd European
Conference on Computer Vision, pp. 739–743, 1992.

[30] R. Martin, “Estimation of principal curvatures from range
data,” International Journal of Shape Modeling, vol. 4, no. 1,
pp. 99–109, 1998.

[31] A. M. McIvor and R. J. Valkenburg, “A comparison of local
surface geometry estimation methods,” Machine Vision and
Applications, vol. 10, no. 1, pp. 17–26, 1997.

[32] C. Tang and G. Medioni, “Robust estimation of curvature
information from noisy 3D data for shape description,” in
Proceedings of the 17th IEEE International Conference on
Computer Vision (ICCV ’99), vol. 1, pp. 426–433, September
1999.

[33] C. Teh and R. T. Chin, “On the detection of dominant points
on digital curves,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 8, pp. 859–872, 1989.

[34] T. Kanade and M. Okutomi, “A stereo matching algorithm
with an adaptive window: theory and experiment,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, pp. 1088–1095, April 1991.

[35] B. K. Ray and K. S. Ray, “Detection of significant points
and polygonal approximation of digitized curves,” Pattern
Recognition Letters, vol. 13, no. 6, pp. 443–452, 1992.

[36] W.-Y. Wu, “Dominant point detection using adaptive bending
value,” Image and Vision Computing, vol. 21, no. 6, pp. 517–
525, 2003.

[37] D. H. Foster and K. Zychaluk, “Nonparametric estimates
of biological transducer functions,” IEEE Signal Processing
Magazine, vol. 24, no. 4, pp. 49–58, 2007.

[38] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
Chapman & Hall, New York, NY, USA, 1993.

[39] W. Hardle and J. S. Marron, “Bootstrap simultaneous error
bars for nonparametric regression,” The Annals of Statistics,
vol. 19, no. 2, pp. 778–796, 1991.

[40] M. P. do Carmo, Differential Geometry of Curves and Surfaces,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1976.

[41] E. Calabi, P. J. Olver, C. Shakiban, A. Tannenbaum, and
S. Haker, “Differential and numerically invariant signature
curves applied to object recognition,” International Journal of
Computer Vision, vol. 26, no. 2, pp. 107–135, 1998.


	1. Introduction
	2. Related Work
	2.1. Derivative of the Tangent Angle
	2.2. Radius of the Osculating Circle
	2.3. Local Surface Fitting
	2.4. The Tensor of Curvature
	2.5. Integral Invariants
	2.6. Adaptive Window Selection

	3. Curvature Estimation by Line Integrals
	4. Adaptive Radius Selection
	5. Experiments and Results
	5.1. Qualitative Experiments

	5.2. Quantitative Experiments
	5.3. Sensitivity to Perturbations

	6. Conclusions and Future Work
	Acknowledgment
	References

