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The extraction of the frequency components of a signal can be useful for the characterization of the underlying system. One
method for isolating a frequency component of a signal is by the extraction and reconstruction of the local maxima or ridge of
its time-frequency representation. We compare here the performances of two well-known ridge reconstruction methods, namely
the Carmona and Marseille methods, on synthetic signals as well as real electrohysterogram (EHG). We show that Carmona’s
method presents lower reconstruction errors. We then used the separately reconstructed frequency components of the EHG
independently for labor prediction using a synchronization measure. We show that the proposed synchronization parameters
present similar prediction rate to classical parameters obtained directly from the time-frequency representation but also seem to
provide information complementary to the classical parameters and may thus improve the accuracy in labor prediction when they
are used jointly.

1. Introduction

Preterm labor is an important public health problem in
Europe and other developed countries as it represents nearly
7% of all births. It is the main cause of morbidity and
mortality of newborns. One of most promising biophysical
markers of preterm labor threat is the electrical activity
of the uterus, the uterine electromyogram [1]. The uterine
electromyogram recorded externally in women, the electro-
hysterogram (EHG), has been proven to be representative
of uterine contraction. The analysis of such a signal may
allow the prediction of preterm labor as soon as the 28th
week of gestation (WG) [2, 3]. However, the physiological
phenomena underlying preterm labor remain poorly under-
stood. It is well known that uterine contractility depends
on the excitability of uterine myocytes, but also on the
propagation of the electrical activity to the whole uterus
[4]. These two aspects of uterine contraction mechanisms,

excitability and propagation, both influence the spectral
content of EHG. The methods proposed in the literature for
preterm labor prediction most often use only the analysis of
the high frequency content of the EHG which is thought to
be primarily related to excitability [1, 5, 6]. These methods
are however not currently used in routine practice due to
a high variance of the results obtained and an insufficient
prediction rate. Taking into account both the excitability and
propagation information may help to increase the prediction
capability of the EHG for preterm labor threat identification.

Recent work by us and others has concentrated on
providing good measures of the increase in the propagation
of the activity in the uterus associated to the advance of
pregnancy [7–9]. The propagation capability of the uterus
cannot be measured as a classical propagation speed, as it
is usually done for skeletal muscles, but must be estimated
through synchronization measures. The synchronization of
different parts of the uterus at term is thought to be related
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to the presence of gap junction making possible direct
communications between adjacent myocytes. The number of
gap junction is known to increase as labor approaches and
is a necessary step for obtaining an uterus that is working
as a whole, in order to produce forceful contractions during
delivery [10, 11].

EHG is mainly composed of two frequency components
traditionally referred to as FWL (Fast Wave Low) and FWH
(Fast Wave High) [4]. These frequency components may be
related, respectively, to the propagation and to the excitability
of the uterus. This hypothesis has however not yet been
conclusively verified or rejected. A possible way of addressing
this question, as well as an avenue in to using propagation
phenomenon in the prediction of preterm labor, may very
well be to extract FWL using ridge reconstruction methods
and to characterize it separately.

The GVF-Snake method has been recently identified as
an appropriate method for EHG ridge extraction [12]. This
technique has been successfully used for the characterization
of human EHG recorded during labor directly in the time-
frequency domain [13]. Although we consider the GVF-
Snake extraction method to be very good for EHG appli-
cations, the most appropriate method for reconstructing
the EHG signal from time-frequency ridges has however
not yet been identified. In this paper we investigate the
performances of two methods, the Marseille and Carmona’s
methods, in this context. Identifying a good method to
do this opens a door for characterizing the frequency
components of the EHG separately in order to define new
parameters for pregnancy monitoring. In this paper we use
a synchronization measure, the H2 nonlinear correlation
coefficient, to illustrate this point.

The problem addressed in this paper is thus twofold: to
find an excellent ridge reconstruction method to separate
the frequency components of the EHG and to find a good
measure of the changes in propagation properties in the
uterus, as pregnancy contractions evolve into effective labor
contractions.

2. Ridge ExtractionMethods

The extraction of the frequency components of signals is
often a necessary step in order to characterize a system.
Several methods could be used in order to perform the
component separation in the temporal domain. If the
frequency components are linearly separable in the frequency
domain, that is, components with no overlapping spectra,
simple linear filter could be used. This approach is commonly
used for the extraction of the different frequency band
of the electroencephalogram (EEG) for example. If the
frequency components are not linearly separable, more
complex methods have to be used. Among the most popular
methods are the empirical mode decomposition (EMD),
the fractional Fourier transform and the reconstruction of
time-frequency ridges. In our application, the fractional
Fourier transform is not suitable since the time-frequency
signature of the EHG are highly variable from one burst
to another. To apply this method on our signals would

thus require defining separate fractional frequencies for each
contraction. When applied to the EHG, the EMD method
gives many more components (intrinsic mode function,
IMF) than FWL and FWH. Moreover the number of
components varies from one contraction to another one
(preliminary results, unpublished work). Using this method
in our application requires a complex IMF selection/fusion
algorithm. We therefore chose to focus our paper on the
time-frequency ridge extraction/reconstruction approach as
the most suitable and promising method at our disposal.

A time-frequency ridge, f = r(t), represents continuous
local energy maxima in the time-frequency domain. It has
been shown that ridges are representative of amplitude and
frequency modulated signals [14]. Several algorithms for
ridge extraction have been proposed in the literature. The
main methods are based on simulating annealing [14], snake
[12, 14] or direct search approaches [15]. Particularly for
the extraction of the frequency components of the EHG,
snake and direct search methods have been used [12, 16,
17]. A comparison of these methods in monkey EHG
was done in [12]. The proposed GVF-Snake method has
proved to be the most efficient for the analysis of EHG
frequency components. It has also been successfully used
for the characterization of human contractions recorded
during labor [13]. This method is similar to the “Snake
Ridge” proposed by Carmona and Hwang [14] but uses GVF
formulation for external forces, as proposed by Xu and Prince
[18]. GVF-Snake method presents a high attraction range,
and is thus less sensitive to inaccurate initialization. From a
general point of view, this method can be used successfully
on various time-frequency representations even those pre-
senting cross-terms like Wigner-Ville representation [19]. In
this paper we used this method for the analysis of synthetic
signals as well as real EHG.

3. Ridge ReconstructionMethods

Informative parameters on a particular frequency com-
ponent can be obtained directly in the time-frequency
domain. One may however be interested in reconstructing
the component in the temporal domain for various reasons.
The ridge reconstruction method is dependent on the time-
frequency representation (TFR) from which the ridges are
extracted. To our knowledge, there have only been proposed
reconstruction methods for the Gabor [14] and continuous
wavelet [14, 20] TFR.

Continuous wavelet transform (CWT) has been shown to
properly represent the frequency content of externally mea-
sured human EHG [2, 17]. This time-scale representation
has been used for predicting preterm delivery in pregnant
women. The continuous wavelet coefficients Tx(a, b) of the
signal x(t) are obtained using the wavelet ψ(t) by the
following formula:

Tx(b, a) =
∫
x(t)ψ∗

(
t − b

a

)
dt, (1)

where a and b represent the scale and temporal translation
parameter, respectively.
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In this paper, CWT is treated as a TFR since we have
chosen scale coefficients a in a way to obtain linear frequency
evolution. The square modulus of the CWT is called the
scalogram. A complex Morlet wavelet was used for the
estimation of the CWT and associated scalogram. We used
two reconstruction methods for reconstruction of the ridges
extracted from CWT. The first method is referred to as
“Marseille method” and the second one as “Carmona’s
method” [14, 20].

3.1. Marseille Method. This method, proposed by a group in
Marseille [20], is the simplest one. Considering a ridge a =
r(b), the reconstructed analytic signal x̂(b) is obtained by:

x̂(b) ≈ 2× Tx(b, r(b))
Ψ
(
f0
) , (2)

where Ψ( f ) is the Fourier transform of the wavelet ψ(t).

3.2. Carmona’s Method. This method was proposed by
Carmona and Hwang [14]. In this method, it is assumed that
the ridge, a = r(b), can be parameterized as a continuous
function: a → ϕ(b) ∈ (0,∞); b ∈ [bmin, bmax]. Considering
the continuous smooth function a = ϕ(b) and associated
skeleton values z = Tx(b,ϕ(b)), the reconstructed signal is
the function x̂(b) which minimizes the cost function Φ̃:

Φ̃[x̂] =
∫
db

∫
da

|a| |Tx̂(b, a)|2

+ ε
∫ bmax

bmin

∣∣∣∣ d

db

∣∣Tx̂
(
b,ϕ(b)

)∣∣
∣∣∣∣

2

db

(3)

with the constraint:

Tx̂
(
b,ϕ(b)

) = z. (4)

The first term of (3) reinforces the localization of Tx̂ in
the vicinity of a = r(b) while minimizing the global energy
of x̂. The second term imposes a slow temporal variation of
the amplitude of the reconstructed signal. To explain briefly
how this reconstruction method works, one can indicate that
the solution of (3) is found by using the Lagrange multipliers
with a slight initial modification of the second term, since
it is not quadratic in x̂. The parameter ε has however to be
optimized to improve the results of the reconstructed signal.
It balances the contribution of the two terms in the global
penalty function. The implementation details for (3) can be
found in [14].

4. Material andMethods

4.1. Signal Description

4.1.1. Synthetic Signals. In order to compare the perfor-
mances of the Marseille and Carmona’s method, we used
synthetic signals. No external EHG model is currently avail-
able to compare both methods on signals with characteristics
close to the real ones. FWH is known to present a fairly strong

frequency modulation when compared to FWL. The aspect
of this modulation varies strongly from one recording to
another as well as between contractions within recordings. It
seems to be mainly influenced by the hormonal environment
during the recordings, in addition to the variability between
individuals. Since the capability of the GVF-snake method
to extract the signal time-frequency ridges has already been
demonstrated, we fixed the frequency modulation law of the
synthetic signals but studied the effect of added noise. We
decided to generate signals with a sinusoidal modulation law
ranging from 0.02 Hz, at the beginning and the end of the
signal, to 0.15 Hz in its middle. We then added zero mean
Gaussian white noise. We tested our algorithms by using
signal to noise ratio (SNR) of 15, 10, 5 and 1 dB. For each
SNR value, we generated 50 synthetic signals.

4.1.2. Real EHG. The measurements were performed by
using a 16-channels multipurpose physiological signal
recorder (Embla A10). We used reusable Ag/AgCl electrodes.
The measurements were performed at the Landspitali Uni-
versity hospital in Iceland, using a protocol approved by the
relevant ethical committee (VSN 02-0006-V2).

After obtaining informed consent, the skin was carefully
prepared using an abrasive paste and alcoholic solution. After
that, the sixteen electrodes were placed on the abdominal
wall according to a square matrix (4 × 4, inter electrode
distance: 2.1 cm). The third electrode column was always put
on the uterine median axis and the 10-11th electrode pair on
the middle of the uterus (fundus to symphysis). Reference
electrodes were placed on each hip of the woman. In order
to increase the EHG signal to noise ratio, we considered
vertical bipolar signals instead of monopolar ones. The
signal sampling rate was 200 Hz. The contractions were then
resampled at 20 Hz for more efficient computing. In this
initial study, we only considered 5 bipolar channels forming
a cross. The central channel was chosen to be the one formed
by the 10 and 11th electrodes and thus situated in the classical
position for EHG monitoring. The four other channels were
the ones above, below, on the right and on the left of the
central channel. This gives 5 bursts for a given contraction.

We used seven and five recordings on women in
pregnancy and labor, respectively. The mean and standard
deviations in gestational ages for each group were 34.7± 3.7
and 39.6 ± 1.9 weeks. We randomly selected 15 contractions
in each group.

4.2. Evaluation of Reconstruction Performances. In order
to evaluate the performances of the two reconstruction
methods, we used the normalized percent mean square error
(NPMSE) between the reconstructed signals (Srec) and the
original ones (Sorig). This error measure is defined as:

E = 100

∑N
n=1

(
Sorig[n]− Srec[n]

)2

∑N
n=1 S

2
orig[n]

. (5)

For synthetic signal we used only one ridge. For the
Carmona’s method, we evaluated the effect of the parameter
ε on the reconstruction error. We tested the set of values
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ε = {0; 0.2; 0.4; 0.6}. When ε = 0, it means that the second
term of (3) is not used and is thus not computed.

In a previous preliminary study [13], two ridges, sup-
posed to be FWL and FWH, were isolated for the analysis of
labor contractions. During the analysis of the reconstruction
errors obtained with pregnancy contractions, we observed
that two ridges are not always sufficient. A third ridge, called
here Rc for complementary ridge, was searched for when
the reconstruction error obtained with FWL and FWH only
was above 20% for a given uterine burst. The observation of
ridges other than FWL and FWH has been already described
in the literature [17].

4.3. Labor Prediction. For each contraction, several parame-
ters have been extracted from each ridge. These parameters
were compared between each gestational situation, that is,
pregnancy and labor.

We used well known parameters already used for the
prediction of preterm labor. These parameters for each ridge
are:

(i) the minimal and maximal frequencies (Min. F., Max.
F.),

(ii) the Mean Frequency (MF),

(iii) the frequency of the maximal energy (FEmax ).

These parameters were directly computed in the time-
frequency domain without ridge reconstruction. In addition,
synchronization parameters were computed on the different
reconstructed signals obtained for each burst of every
selected contraction.

The synchronization between two reconstructed signals
where evaluated by using the nonlinear correlation coeffi-
cient (H2). This measure was chosen since it is very simple
and it has been proven that almost no linear correlation exists
between the temporal bursts in EHG recorded in different
positions [21]. H2 is a non parametric nonlinear measure
of the relationship between two time series x and y [22]. In
practice, the nonlinear relation between the two time series
is approximated by piecewise linear curves. The correlation
coefficient H2 is defined as:

H2
y/x =

∑N
k=1 y(k)2 −∑N

k=1

(
y(k)− f (x(k))

)2

∑N
k=1 y(k)2 , (6)

where f (x) is the linear piecewise approximation of the non-
linear regression curve. This measure could give information
about the directionality of the coupling between the two
signals, since H2

y/x might be different of H2
x/y . We chose to use

the larger value of the two. We chose to use 15 linear curves
in this work. This number was determined empirically.

To characterize one contraction, we averaged the dif-
ferent ridge parameters values obtained on the 5 available
bursts. The comparison of the two groups was done by using
non parametric Wilcoxon rank sum test (minimal level of
significance of 5%). In order to evaluate the labor prediction
capability of one parameter, we used receiver operating
characteristic (ROC) curves. ROC curves were compared
by mean of the classic Area Under the Curve (AUC) and
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Figure 1: Example of the deformation process of a time-frequency
snake obtained on a synthetic signal (SNR 10 dB) with 100 itera-
tions. Intermediate snakes are displayed for different iteration time
(Tx), where x represents the number of iterations. T0 represents the
initial snake and T100 the final extracted ridge.

accuracy (ACC). The AUC was estimated by the trapezoidal
integration method. We also used the Matthew’s Correlation
Coefficient (MCC).

5. Results

5.1. Ridge Reconstruction Method Performances

5.1.1. Synthetic Signals. An example of the deformation
process of an initial ridge badly initialized is presented
Figure 1. We can see that the ridge quickly converges to
the higher energetic positions of the time-frequency plan,
despite the relatively low SNR. For each signal realization,
the whole process, that is, ridge extraction and reconstruc-
tion, was computed. Figure 2 presents the comparison of
the reconstruction errors obtained with the Marseille and
Carmona’s method with ε = 0. Carmona’s method gave
significantly lower reconstruction errors than the Marseille
method whatever the SNR. However it has to be noted
that the Carmona’s method seems less robust. The study
of the effect of the second term of (3) used in Carmona’s
method is presented Table 1. Errors obtained for different ε
values, for a given SNR, evidenced no significant differences.
The computation time of this second term (Tε /= 0) increases
however drastically the time of the whole reconstruction
process (Table 1). Taking into account these results, we chose
to use only Carmona’s method for real EHG since it seems
to give the lowest reconstruction error when compared
to the Marseille method. As the value of ε did not have
any significant influence on the error, we chose to used
ε = 0.
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Figure 2: Comparison of reconstruction error (NPMSE, %)
between Carmona’s (1) and Marseille (2) methods. All comparisons
are significant at a level of 1%.

5.1.2. Real EHG. Figures 3 and 4 present one example
of electrical bursts recorded during pregnancy and labor,
respectively. For each signal, the associated scalogram and
extracted ridges is also presented on these figures. For the
pregnancy burst presented Figure 3, the computation of a
complementary ridge (Rc) was necessary. This complemen-
tary ridge is of lower energy than the ones supposed to be
FWL and FWH. It is situated in the higher frequencies of
the EHG spectrum. For the labor burst, no complementary
ridge was necessary since the reconstruction error obtained
with only FWL and FWH was below the 20% threshold,
as explained before. This fact was almost observed for all
contractions in each respective group. The scalograms of
pregnancy bursts were usually more complex than the ones
obtained for labor bursts. Figure 5 presents an example of the
reconstructed components obtained for a pregnancy burst.
We can clearly see that FWL and FWH are the most energetic
components. The signal reconstructed by using the sum of
FWL and FWH is quite close to the original burst, even if
several discrepancies are noticeable. These discrepancies are
almost entirely corrected by the addition of the complemen-
tary component Rc. The Rc seems to only represent details
of the original bursts. A summary of the reconstruction
errors obtained for each group of contraction is presented
Table 2. The reconstruction error obtained with only FWL
and FWH is higher for pregnancy contractions than for labor
ones. Grouping all contractions gave a reconstruction error
of ∼19%. The addition of the complementary ridge in both
groups diminished the reconstruction error, especially for
the pregnancy contractions. The error obtained on average
in all contractions is then 16%.

The ratio of the energy of one component to the energy
of the original signal (E. CT) is presented Table 3. We
can notice that the relative energy of FWL (E. ratio FWL)
does not vary between pregnancy and labor. No significant
difference was found for FWH (E. ratio FWH) despite
higher relative energy in labor. The evolution of the relative
energy of the complementary component (E. ratio Rc) is
significant at P = 1%. It accounts for ∼9% of the total
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Figure 3: Example of a pregnancy contraction (a), the correspond-
ing scalogram (b) and the extracted ridges corresponding to FWL,
FWL and a complementary ridge Rc (c).

energy in pregnancy when compared to ∼5% in labor. It
has however to be noticed that the number of bursts when a
complementary ridge is necessary is lower during labor than
during pregnancy. The remaining energy, not accounted for
by the two, or three, reconstructed ridges is supposed to be
due to the noise present in the signals.

5.2. Labor Prediction. The comparison of classical param-
eters already used for preterm labor prediction, obtained
on each component, between each situation is presented
Table 4. We do not notice any significant difference between
pregnancy and labor for the parameters obtained with
the complementary ridge (Rc). Several parameters obtained
from FWL and FWH are however significantly different
between pregnancy and labor. These are the frequency of
maximal energy (FEmax) and mean frequency (MF) of each
ridge. The minimal frequency of FWH (Min . F. FWH) is
also significantly different between pregnancy and labor. It
might be related to the shift toward the high frequencies of
this component, already described in the literature [23].

The comparison of synchronization measures (H2) is
presented Table 5. Since a complementary ridge was not
extracted for every burst, we did not compute synchro-
nization measures for this component. We chose instead to
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Table 1: Reconstruction error (NPMSE, %) and computation time (Tε, s) for different kernel factors (ε) and different signal to noise ratios
(SNR, dB). Tε=0 and Tε /= 0 represent the computation time without and with the calculation of the second term of (3), respectively.

SNR ε = 0 ε = 0.2 ε = 0.4 ε = 0.6 Tε=0 Tε /= 0

15 dB 02.65± 0.14 02.64± 0.13 02.65± 0.14 02.66± 0.14 1.83± 0.01 114.70± 03.36

10 dB 03.82± 0.76 03.98± 1.33 03.82± 0.77 03.86± 0.78 1.83± 0.11 134.34± 73.95

5 dB 10.36± 3.07 17.01± 4.67 10.51± 3.23 10.67± 3.70 1.75± 0.18 149.21± 50.94

1 dB 18.73± 3.45 18.75± 3.65 18.94± 3.86 18.84± 3.90 1.69± 0.18 155.19± 80.24
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Figure 4: Example of a labor contraction (a), the corresponding
scalogram (b) and the extracted ridges corresponding to FWL and
FWL (c).

Table 2: Reconstruction error (NPMSE, %) obtained using only the
sum of FWL and FWH or by using the sum of FWL, FWH and Rc

(complementary ridge) for pregnancy, labor or all contractions.

Components Pregnancy Labor All

FWL + FWH 22.23± 4.97 17.10± 7.18 19.66± 6.61

FWL + FWH + Rc 16.51± 4.09 15.48± 6.12 16.00± 5.14

compute the measure of the sum of FWH and Rc, defined as
a new composite signal component. Considering FWL and
FWH components, only FWL gives a significant difference,
P = 1%, between pregnancy and labor. The synchronization
measure obtained on FWL (H2

FWL) increases as it is supposed

Table 3: Comparison of energy (E, ) parameters between pregnancy
and labor contractions († and ‡ indicate a significant difference of
5% and 1%, respectively, between pregnancy and labor parameters).

Parameters Units Pregnancy Labor

E. CT mV2 0.12± 0.13 0.02± 0.03

E. Ratio FWL % 47.53± 10.90 48.74± 11.45

E. Ratio FWH % 36.57± 8.63 41.64± 11.05

E. Ratio Rc % 8.78± 3.46 4.99± 2.54‡

Table 4: Comparison of frequency parameters between pregnancy
and labor contractions († and ‡ indicate a significant difference of
5% and 1%, respectively between pregnancy and labor parameters).
Min. F., Max. F., MF and FEmax stand for Minimal Frequency, Max-
imal Frequency, Mean Frequency and Frequency of the Maximal
Energy, respectively. These parameters were computed directly in
the time-frequency domain.

Parameters Units Pregnancy Labor

Min. F. FWL Hz 0.13± 0.01 0.13± 0.01

Min. F. FWH Hz 0.28± 0.03 0.32± 0.04†

Min. F. Rc Hz 0.58± 0.09 0.63± 0.09

Max. F. FWL Hz 0.22± 0.04 0.24± 0.02

Max. F. FWH Hz 0.54± 0.09 0.57± 0.09

Max. F. Rc Hz 1.03± 0.16 1.01± 0.23

MF. FWL Hz 0.17± 0.02 0.19± 0.02‡

MF FWH Hz 0.38± 0.04 0.43± 0.05‡

MF Rc Hz 0.73± 0.10 0.76± 0.11

FEmax FWL Hz 0.18± 0.03 0.21± 0.06†

FEmax FWH Hz 0.38± 0.05 0.43± 0.06†

FEmax FWH + Rc Hz 0.70± 0.12 0.74± 0.15

to, if this component is indeed related to a better propa-
gation. When measured either on the raw signal (H2

raw) or
on the reconstructed ones (H2

FWL + FWH and H2
FWL + FWH + Rc

),
significant differences are found but only for a significant
level of 5%. The use of the reconstructed signals however
increases the dynamic range of the parameter H2, even if it
does not increase the discrimination power of this parameter
computed on these signals.

ROC curves computed for several parameters are pre-
sented Figure 6. It can be seen that the curve obtained for
H2 computed on FWH is close to the diagonal and it is
therefore not a good parameter for labor prediction (not
significant AUC). This confirms the nonsignificant difference
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Table 5: Comparison of synchronization parameters (H2) between
pregnancy and labor contractions († and ‡ indicate a significant
difference of 5 and 1%, respectively between pregnancy and labor
parameters).

Parameters Units Pregnancy Labor

H2
FWL n.a. 0.23± 0.10 0.40± 0.18‡

H2
FWH n.a. 0.29± 0.14 0.39± 0.22

H2
FWH+Rc n.a. 0.28± 0.13 0.39± 0.22

H2
raw n.a. 0.28± 0.11 0.41± 0.18†

H2
FWL+FWH n.a. 0.25± 0.10 0.40± 0.19†

H2
FWL+FWH+Rc n.a. 0.25± 0.10 0.40± 0.19†
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Figure 5: Example of ridge reconstruction of FWL, FWH and
Rc for a pregnancy contraction. The two last panels represent the
reconstructed contraction defined as the sum of FWL and FWH or
FWL, FWH and a third ridge Rc.

obtained with the statistical analysis. The shape of the other
significant curves differs for different parameters. It might
indicate that the distribution of one parameter according
to each class is different to the others. Table 6 summarizes
the different characteristics of the obtained ROC curves.
The best parameter is surprisingly the mean frequency of
FWL. This parameter has never been used in the literature

for predicting preterm labor. The worst parameter is the
nonlinear correlation computed on FWH, as already stated.
The other parameters have almost the same discrimination
power when measured with MCC and ACC parameters. The
specificity and sensitivity values are however different from
one parameter to another.

6. Discussion

We compared the performances of two ridge reconstruction
methods extracted from the continuous wavelet transform
of a signal using the GVF-snake method: the Marseille
and Carmona’s methods. On synthetic signals presenting
high frequency modulation, we have shown that Carmona’s
method gives the lower reconstruction error, whatever the
initial signal to noise ratio. Carmona’s method however is less
robust than the Marseille method. One goal of this study was
the optimal choice of the parameter of this method, namely ε,
which controls the weight of second term of the cost function
used in the reconstruction. We have shown that, this second
term does not improve the reconstruction. Moreover its
computation increases computation time by a factor of more
than 50. This second term was necessary for obtaining good
performances with non continuous ridges as obtained with
the “snake ridge” method originally proposed by Carmona
and Hwang [14] but we believe that when using continuous
ridges it is unnecessary. The use of non continuous ridges
might have advantages in several applications, for example,
compression purposes, but is not of interest for EHG signals.
The interpolation of several time-frequency points along the
ridge, f = r(t), by a continuous function, f = ϕ(t), imposes
additional constraints on the possible reconstructed signal
x̂. These constraints are controlled by the value of ε. The
continuous estimation of the ridge f = r(t) by the GVF-
snake method reduces the need to impose these constraints.
They may however play a role in the performances of the
method in the presence of low SNR. Our results show that for
the SNR range used in this study, the improvements obtained
by applying these constraints are not significant.

The small reconstruction errors obtained with Car-
mona’s method seems to indicate that the two ridges,
supposed to be FWL and FWH, are enough to account for
almost 80% of the total energy of EHG bursts. The method
seems generally to be well suited for the characterization
of contraction for pregnancy monitoring. Sometimes, espe-
cially for bursts recorded during pregnancy, a third ridge
was necessary in order to reduce the reconstruction error
below 20%. The physiological interpretation or origin of this
complementary ridge is not yet clear and remains an open
question. In regards to the results obtained, no significant
differences in the energy ratio of FWL and FWH were
observed between the signals obtained in pregnancy and
labor. This may indicate that this third component is simply
due to a lower signal to noise ratio for signals recorded during
pregnancy.

As in [2, 14], we use the extracted/reconstructed ridges
of EHG bursts for the prediction of human labor. We used
both classical and new parameters. Several studies, have used
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Table 6: Comparison of ROC curve characteristics for labor prediction obtained with frequency (MF and FEmax) and synchronization (H2)
parameters. AUC, ACC and MCC stand for Area Under the Curve, ACCuracy and Mathews Correlation Coefficient, respectively.

Parameters Specificity Sensitivity AUC ACC (%) MCC

MF FWL 0.80 0.73 0.79 76.67 0.53

MF FWH 0.67 0.80 0.79 73.33 0.47

FEmax FWL 0.80 0.67 0.73 73.33 0.47

FEmax FWH 0.53 0.87 0.74 70.00 0.42

H2
FWL 0.73 0.73 0.78 73.33 0.47

H2
FWH 0.53 0.73 0.61 63.33 0.27

H2
raw 0.73 0.73 0.74 73.33 0.47

H2
FWL+FWH 0.73 0.73 0.76 73.33 0.47
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Figure 6: Examples of ROC curves obtained with different parameters for labor prediction. TPR and FPR stand for True Positive Rate and
False Positive Rate, respectively.

parameters like mean frequency or frequency of maximal
energy for the prediction of preterm labor with some success
[2, 3, 5, 6, 17]. Our results also show that these parameters
present significant changes between pregnancy and labor as
attested by statistical tests as well as by ROC curves analysis.

The parameters were all obtained on the scalogram
of the EHG bursts. This time-frequency representation is
well known to be blurred by construction and also for
its extreme redundancy. The use of more recent time-
frequency estimators presenting better concentration around
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the signal frequency components may further increase the
quality of the extraction of the time-frequency parameters.
These methods include but are not limited to the methods
discussed in [23–27]. A comparison of these new estimators
and the scalogram, for the application to the EHG, is outside
the scope of this paper but may be an interesting topic for a
study in itself.

The main contribution of our study resides in the use
of synchronization parameters for the prediction of labor.
The uterus is supposed to synchronize as labor approaches,
in order to produce forceful contractions that are able to
efficiently push the baby into the world. In this paper,
we used the nonlinear correlation coefficient as a synchro-
nization measure. The highest synchronization changes are
observed for the FWL component. This tends to confirm the
hypothesis concerning the link of this frequency component
with the propagation of the contractions in the uterus.
The synchronization measures obtained with FWH, often
supposed to be linked with the excitability of the uterus, does
not significantly change between pregnancy and labor. High
synchronization values were however observed. A possible
bias in the synchronization analysis might explain these high
values [8]. Considering parameters evolving significantly
from pregnancy to labor, we have shown that they do not all
have the same prediction capability. Important differences in
specificity and sensitivity may indicate that a combination of
these parameters may increase the overall labor prediction
performances. Using several parameters at the same time
can however not be done with ROC curves. More recent
and sophisticated methods like Neural Networks or Support
Vector Machine methods are required to fully exploit the
potential of the complementary information provided by
our approach. Work on this is planned in our group by
using multi parametric decision tool in order to combine
several parameters at the same time for further increasing the
performances of the labor prediction.

An interesting perspective study is the evaluation of
different synchronization measures for labor prediction
purposes, as we have only used the nonlinear correlation
coefficient in this work. The different measures proposed
in the literature are sensitive to a particular nature of the
coupling between two signals [22], for example, amplitude,
phase. The detailed nature of the coupling between EHG
bursts on two sites on the abdomen has not yet been
identified. The use of the directionality information available
with H2 may also be important for better prediction of labor
and later on, of preterm labor.

7. Conclusion

In this paper we compared the performances of two ridge
reconstruction methods namely Carmona’s and Marseille
methods. We showed on synthetic signals as well as on
real uterine electromyograms or electrohysterograms (EHG),
that Carmona’s method allows us to obtained significant
lower reconstruction errors than the Marseille method. The
possibility of reconstructing the EHG frequency components
independently allowed us to propose new parameters for

labor prediction based on the synchronization of the uterus.
For a first time, we used the nonlinear correlation coefficient
to measure the coupling that might exist between two EHG
bursts. The results seem to indicate that the classical time-
frequency parameters and the new synchronization ones are
complementary and may thus increase the prediction of
labor.
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