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We review recent work on the application of fluctuation analyses of time series for pattern classification in nondestructive materials
inspection. These analyses are based on the evaluation of time-series fluctuations across time intervals of increasing size, and were
originally introduced in the study of fractals. A number of examples indicate that this approach yields relevant features allowing the
successful classification of patterns such as (i) microstructure signatures in cast irons, as probed by backscattered ultrasonic signals;
(ii) welding defects in metals, as probed by TOFD ultrasonic signals; (iii) gear faults, based on vibration signals; (iv) weld-transfer
modes, as probed by voltage and current time series; (v) microstructural composition in stainless steel, as probed by magnetic

Barkhausen noise and magnetic flux signals.

1. Introduction

Many nondestructive materials-inspection tools provide
information about material structure in the form of time
series. This is true for ultrasonic probes, acoustic emission,
magnetic Barkhausen noise, among others. Ideally, signa-
tures of material structure are contained in any of those
time series, and extracting that information is crucial for
building a reliable automated classification system, which is
as independent as possible from the operator’s expertise.

As in any pattern classification task, finding a set of
relevant features is a key step. Common in the literature
are attempts to classify patterns from time series by directly
feeding the time series into neural networks, by measuring
statistical moments, or by employing Fourier or wavelet
transforms. These last two approaches are hindered by the
presence of noise, and by the nonstationary character of
many time series. Sometimes, however, relevant information
is hidden in the “noise” itself, as this can reflect mem-
ory effects characteristic of underlying physical processes.
Analysis of the statistical properties of the time series can
reveal such effects, although global calculations of statistical
moments miss important local details. Here, we show
that properly defined local fluctuation measures of time

series can yield relevant features for pattern classification.
Such fluctuation measures, which are sometimes referred
to as “fractal analyses”, were introduced in the study of
mathematical fractals, objects having the property of scale
invariance. It turns out that they can also be quite useful
in the study of general time series. Early applications [1-3]
of fluctuation analyses to defect or microstructure recogni-
tion relied on extracting exponents and scaling amplitudes
expected to characterize memory effects on various systems.
The approach reviewed here, on the other hand, is based on
more general properties of the fluctuation measures.

The remaining of this paper is organized as follows.
In Section 2, we define mathematically the fluctuation (or
fractal) analyses used to extract relevant features from the
various time series. In Section 3, we review the tools used
in the proper pattern-classification step, illustrated by several
applications in Section 4. We close the paper by presenting
our conclusions in Section 5.

2. Fluctuation Analyses

All techniques of fluctuation analysis employed here start
by dividing the signal into time intervals containing 7



points. Each technique then involves the calculation of the
average of some fluctuation measure Q(7) over all intervals,
for different values of 7, thus gathering local information
across different time scales. For a signal with genuine fractal
features, Q(7) should scale as a power of 7,

Q(r) ~ 1, (1)

at least in an intermediate range of values of 7, corresponding
tol < 7 < L, L being the signal length.

In general, the exponent # is related to the so-called
Hurst exponent H of the time series [4, 5]. This exponent
is expected to gauge memory effects which somehow reflect
the underlying physical processes influencing the signal. A
simple example is provided by fractional Brownian motion
[5-7], in which correlated noise is postulated, leading to
persistent or antipersistent memory, and to a standard
deviation o(t) following:

a(t) = (2Kft)H, (2)

where £ is the time elapsed since the motion started, and Ky
is a generalized diffusion coefficient. A Hurst exponent equal
to 1/2 corresponds to regular Brownian motion, while values
of H different from 1/2 indicate the presence of long-range
memory mechanisms affecting the motion; H > (1/2) (H <
1/2) corresponds to persistent (antipersistent) behavior of
the time series.

Real-world time series, however, originate from a much
more complex interplay of processes, acting at different
characteristic time scales, and which, therefore, compete
to induce memory effects whose nature may change as a
function of time. As the series is probed at time intervals
of increasing size, the effective Hurst exponent can vary. In
that case, any other exponent # related to H would likewise
vary. This variation of # with the size 7 of the time interval is
precisely what the present approach exploits.

Once the relevant features are obtained from the vari-
ation of n with 7, the different patterns can be classified
with the help of statistical tools available in the pattern-
recognition literature. Here, as discussed in Section 3, we
make use of principal component analysis (PCA) and
Karhunen-Loéve transformations. (See, e.g., [8] for a thor-
ough account of statistical pattern classification).

2.1. Hurst (R/S) Analysis. The rescaled-range (R/S) analysis
was introduced by Hurst [4] as a tool for evaluating the
persistency or antipersistency of a time series. The method
works by calculating, inside each time interval, the average
ratio of the range (the difference between the maximum and
minimum values of the accumulated series) to the standard
deviation. The size of each interval is then varied.

Mathematically, the R/S analysis is defined in the follow-
ing way. Given an interval Iy of size 7, we calculate (z),, the
average of the series z; inside that interval,

(2)rk = %Zzi- (3)

i€l
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We then define an accumulated deviation from the mean as

i

Zie= Y (2~ @ ek)> (4)

j=tk

(¢ labelling the left end of Ii), and from this accumulated
deviation we extract the range

Rk = maxZj; — minZjy, (5)
i€l i€l

while the standard deviation is calculated from the series
itself,

Sek = \Jl > (zi- (2)e0)”. (6)

i€l

Finally, we calculate the rescaled range R; /S, and take its
average over all nonoverlapping intervals, obtaining

_ L R‘r,k
p(r) = nT%Sf,k’ (7)

in which n, = [ L/7] is the (integer) number of nonoverlap-
ping intervals of size 7 than can be fit onto a time series of
length L.

For a purely stochastic curve, with no underlying trends,
the rescaled range should satisfy the scaling form

p(r) ~ H, (8)

where H is the Hurst exponent.

2.2.  Detrended-Fluctuation — Analysis. The detrended-
fluctuation analysis (DFA) [9] aims at improving the
evaluation of correlations in a time series by eliminating
trends in the data. In particular, when a global trend is
superimposed on a noisy signal, DFA is expected to provide
a more precise estimate of the Hurst exponent than R/S
analysis.

The method consists initially in obtaining a new inte-
grated series Z;,

Zi=3(z-(2)), 9)
j=1
the average (z) being taken over all points,

1 L
(z) = ZZzi. (10)
i=1

After dividing the series into intervals, the points inside a
given interval I are fitted by a polynomial curve of degree I.
One usually considers [ = 1 or [ = 2, corresponding to first-
and second-order fits. Then, a detrended variation function
Ajy is obtained by subtracting from the integrated data the
local trend as given by the fit. Explicitly, we define

Nig = Zi — 71y, (11)
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where Zl-f « is the value associated with point i according to

the fit inside . Finally, we calculate the root-mean-square
fluctuation F, x inside an interval as

1
Frp= | =D A% (12)
Tielk

and average over all intervals, obtaining
1
F(t) = —> Frg. (13)
ne <

For a true fractal curve, F(7) should behave as
F(r) ~ 7% (14)

where « is a scaling exponent. If the trend is correctly
identified, one should expect « to be a good approximation
to the Hurst exponent H of the underlying correlated noise.

2.3. Box-Counting Analysis. This is a well-known method of
estimating the fractal dimension of a point set [7], and it
works by counting the minimum number N(7) of boxes of
linear dimension 7 needed to cover all points in the set. For a
real fractal, N(7) should follow a power law whose exponent
is the box-counting dimension Dg,

N(t) ~ 7705, (15)

For stochastic Gaussian processes, the box-counting and
the Hurst exponents are related by

Dp=2-H. (16)

2.4. Minimal-Cover Analysis. This recently introduced
method [10] relies on the calculation of the minimal area
necessary to cover a given plane curve at a specified scale
given by the window size 7.

After dividing the series, we can associate with each
interval I a rectangle of height Hy, defined as the difference
between the maximum and minimum values of the series z;
inside the interval,

Hy = max  z; — min  z, (17)

iy <<i<<ip+7—1 iy <<i<<ip+7—1
in which iy corresponds to the left end of the interval. The
minimal area is then given by

A(T) = TZHk, (18)
k

the summation running over all cells.
Ideally, in the scaling region, A(7) should behave as

A1) ~ 727D, (19)

where D, is the minimal cover dimension, which is equal to
1 when the signal presents no fractality. For genuine fractal
curves, it can be shown that, in the limit of infinitely many
points, the box-counting and minimal-cover dimensions
coincide [10].

2.5. Detrended Cross-Correlation Analysis. This is a recently
introduced [11] extension of DFA, based on detrended
covariance calculations, and is designed to investigate power-
law correlations between different simultaneously recorded
time series {x;} and {y;}.

The first step of the method involves building the
integrated time series

j
Xj = in, Y] = Zy, (20)

i=1 i=1
Both series are then divided into N — (7 — 1) overlapping
intervals of size 7, and, inside each interval I, local trends
Xjf, . and Y]{  are evaluated by least-square linear fits. The
detrended cross-correlation C; is defined as the covariance
of the residuals in interval I,

1 f f
Cox = 7 2 (X5 = X3, (V3 = Vi), (21)
Jj€lk
which is then averaged to yield a detrended cross-correlation
function

1
CO) = 57 %Cf,k. (22)

3. Pattern-Classification Tools

Having obtained curves of different fluctuation estimates
Q(7) as functions of the time interval size 7, we make use
of standard pattern-recognition tools in order to group the
signals according to relevant classes. The first step towards
classification is to build feature vectors from one or more
fluctuation analyses of a given signal. In the simplest case,
a set of d fixed interval sizes {7;} is selected, and the values
of the corresponding functions Q(7;) at each 7j, as calculated
for the ith signal, define the feature (column) vector x; of that
signal,

Q(11)

Q(12)
) (23)

X; =

Qra)

In our studies, unless stated otherwise, we select as interval
sizes the nearest integers obtained from powers of 24,
starting with 7; = 4 and ending with 7, equal to the length
of the shortest series available.

It is also possible to concatenate vectors obtained from
more than one fluctuation analysis to obtain feature vectors
of larger dimension. This usually leads to better classifiers.

The following subsections discuss different methods
designed to group feature vectors into relevant classes. All
methods initially select a subset of the available vectors
as a training group in order to build the classifier, whose
generalizability is then tested with the remaining vectors.
This procedure has to be repeated for many distinct choices
of training and testing vectors, as a way to evaluate the
average efficiency of the classifier. One can then study the
resulting confusion matrices, which report the percentage of
vectors of a given class assigned to each of the possible classes.



3.1. Principal-Component Analysis. Given a set of N feature
vectors {x;}, principal-component analysis (PCA) is based
on the projection of those vectors onto the directions defined
by the eigenvectors of the covariance matrix

s ii(x'fm)(x'fm)T (24)
Iqizl i i >

in which m is the average vector,
LN
m=—>x, 25
N Hxl (25)

and T denotes the vector transpose. If the eigenvalues of S are
arranged in decreasing order, the projections along the first
eigenvector, corresponding to the largest eigenvalue, define
the first principal component, and account for the largest
variation of any linear function of the original variables.
In general, the nth principal component is defined by the
projections of the original vectors along the direction of
the nth eigenvector. Therefore, the principal components are
ordered in terms of the (decreasing) amount of variation of
the original data for which they account.

Thus, PCA amounts to a rotation of the coordinate
system to a new set of orthogonal axes, yielding a new set
of uncorrelated variables, and a reduction on the number
of relevant dimensions, if one chooses to ignore principal
components whose corresponding eigenvalues lie below a
certain limit.

A classifier based on PCA can be built by using the first
few principal components to define modified vectors, whose
class averages are determined from the vectors in the training
group. Then, a testing vector x is assigned to the class whose
average vector lies closer to x within the transformed space.
This is known as the nearest-class-mean rule, and would be
optimal if the vectors in different classes followed normal
distributions.

3.2. Karhunen-Loéve Transformation. Although very helpful
in visualizing the clustering of vectors, PCA ignores any
available class information. The Karhunen-Loéve (KL) trans-
formation, in its general form, although similar in spirit to
PCA, does take class information into account. The version
of the transformation employed here [8, 12] relies on the
compression of discriminatory information contained in the
class means.

The KL transformation consists in first projecting the
training vectors along the eigenvectors of the within-class
covariance matrix Sy, defined by

Nc Ni

Sw=y >0 yi(xi — me)(x; — my) ", (26)

k=1i=1

where N¢ is the number of different classes, Ny is the number
of vectors in class k, and my is the average vector of class
k. The element yj; is equal to one if x; belongs to class k,
and zero otherwise. We also rescale the resulting vectors by
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a diagonal matrix built from the eigenvalues A; of Sy . In
matrix notation, this operation can be written as

X' = AV2UTX, (27)

in which X is the matrix whose columns are the training
vectors x;, A = diag(A;,A2,...), and U is the matrix
whose columns are the eigenvectors of Sy . This choice of
coordinates makes sure that the transformed within-class
covariance matrix corresponds to the unit matrix. Finally,
in order to compress the class information, we project the
resulting vectors onto the eigenvectors of the between-class
covariance matrix Sg,

N¢ N
Sp= > ~*(mg — m)(mg —m)”, (28)

k=1 N

where m is the overall average vector. The full transformation
can be written as

X" = VIA~2UTX, (29)

V being the matrix whose columns are the eigenvectors of Sp
(calculated from X').

With N¢ possible classes, the fully-transformed vectors
have at most N¢ — 1 relevant components. We then classify a
testing vector x; using the nearest-class-mean rule.

4. Applications

4.1. Cast-Iron Microstructure from Ultrasonic Backscattered
Signals. An early application of the ideas described in this
review aimed at distinguishing microstructure in graphite
cast iron through Hurst and detrended-fluctuation analyses
of backscattered ultrasonic signals.

As detailed in [2], backscattered ultrasonic signals were
captured with a 5MHz transducer, at a sampling rate
of 40MHz, from samples of vermicular, lamellar, and
spheroidal graphite cast iron. Double-logarithmic plots of
the resulting R/S and DFA calculations, shown in Figure 1,
reveal that in all cases two regimes can be identified,
reflecting short- and long-time structure of the signals,
respectively. From the discussion in Sections 2.1 and 2.2, this
implies that one can define two sets of exponents, related to
the short- and long-time fractal dimensions of the signals,
as estimated from the corresponding values of the Hurst
exponent H and the DFA exponent «. See (16).

Lamellar cast iron is readily identified as having smaller
short- than long-time fractal dimension, contrary to both
vermicular and spheroidal cast irons. These latter types, in
turn, can be identified on the basis of the relative values of H
and « on the different regimes.

As discussed in the following subsections, this fortunate
clear distinction on the basis of a very small set of exponents
is not possible in more general applications. Nevertheless, a
set of relevant features can still be extracted from fluctuation
or fractal analyses by using tools from the pattern recognition
literature.
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FiGure 1: Double-logarithmic plots of the curves obtained from Hurst (R/S) and detrended-fluctuation (DF) analyses of backscattered
ultrasonic signals propagating in lamellar (a), vermicular (b), and spheroidal (c) cast iron. The values of («) and (H) are obtained by
averaging the slopes of all curves in the corresponding intervals, as shown by the solid lines.

4.2. Welding Defects in Metals from TOFD Ultrasonic Inspec-
tion. The TOFD (time-of-flight diffraction) technique aims
at estimating the size of a discontinuity in a material by
measuring the difference in time between ultrasonic signals
scattering off the opposite tips of the discontinuity. For
welding-joint inspection, the conventional setup consists of
one emitter and one receiver transducer, aligned on either
side of the weld bead. (Longitudinal rather than transverse
waves are used, for a number of reasons, among which is
higher propagation speed.)

In the case studied in [13], 240 signals of ultrasound
amplitude versus time were captured, with a TOFD setup,
from twelve test samples of steel plate AISI 1020, welded
by the shielded process. (Details on materials and methods
can be found in [14].) The signals used in the study
were extracted from sections with no visible defects in the
welding, and from sections exhibiting lack of penetration,

lack of fusion, and porosities. Each of the four classes was
represented by 60 signals, each one containing 512 data
points, with 8-bit resolution. Examples of signals from each
class are shown in Figure 2.

By combining curves obtained from Hurst, linear
detrended-fluctuation, minimal cover, and box-counting
analyses into single vectors representing each ultrasonic sig-
nal, a very efficient classifier is built using features extracted
from a Karhunen-Loéve transformation and the nearest-
class-mean rule. The average confusion matrix obtained
from 500 sets of 48 testing vectors is shown in Table 1. A max-
imum error of about 27% is obtained, corresponding to the
misclassification of porosities. A slightly poorer performance
is obtained by first building feature vectors from each of the
four fluctuation analyses, performing provisional classifica-
tions, and then deciding on the final classification by means
of a majority vote (with ties randomly resolved). In this



6 EURASIP Journal on Advances in Signal Processing
300 — T T T T T T T T 71 3 L LA I B B R
250 I —_ 250 _— —_
200 —_ 200
150 —_ 150
100 - 100

50 —_ 50
0 AR SRR 10 | PR 0 ]
0 100 200 300 400 500 0 100 200 300 400 500
(a) (b)
Wr——r 71 771 1 T 1 T 71 T T T T 1
250 _— I q —_ 250 I __
200 _— —_ 200 |
150 _— —_ 150
100 [~ — 100
50 _— __ 50 __
0 I T R L] 0 IR
0 100 200 300 400 500 0 100 200 300

(c)

FIGURE 2: Typical examples of signals obtained from samples with (a) lack-of-fusion defects, (b) lack-of-penetration defects, (c) porosities,
and (d) no defects. The horizontal axes correspond to the time direction, in units of the inverse sample rate of the equipment.

TaBLE 1: Average percentage confusion matrix for testing vectors
built from a combination of fluctuation analyses. The possible
classes are lack of fusion (LF), lack of penetration (LP), porosity
(PO), and no defects (ND). Figures in parenthesis indicate the
standard deviations, calculated over 500 sets. (Notice that in [13]
these figures were erroneously reported.) The value in row i, column
j indicates the percentage of vectors belonging to class i which were
associated with class j.

LF LP PO ND

LF  91.07(0.37)  1.69(0.16)  6.88(0.33)  0.35(0.08)
LP  2.61(0.37) 83.96 (0.45) 12.14(0.41)  1.28 (0.14)
PO  6.43(0.32)  13.99 (0.47)  72.66(0.58)  6.92 (0.34)
ND 1.01(0.15)  2.55(0.20)  6.92(0.32)  89.51 (0.40)

case, as shown in Table 2, the overall error rate is somewhat
increased, although the classification error of samples associ-
ated with lack of penetration decreases. In any case, both of
these approaches yield considerably better performance than
classifiers based on either correlograms or Fourier spectra of
the signals, and at a smaller computational cost.

4.3. Gear Faults from Vibration Signals. As detailed in [15],
vibration signals were captured by an accelerometer attached
to the upper side of a gearbox containing four gears, one of
which was sometimes replaced by a gear either containing
a severe scratch over 10 consecutive teeth, or missing one
tooth.

Several working conditions were studied, consisting of
different choices of rotation frequency (from 400 rpm to
1400 rpm) and to the presence or absence of a fixed external
load. For each working condition, 54 signals containing 2048
points were captured (with a sampling rate of 512 Hz), 18
signals corresponding to each of the three possible classes of
gear (normal, scratched, or toothless). Linear DFA was then
performed on the signals, and feature vectors were built from
curves corresponding to 13 interval sizes 7 ranging from 4
to 32. Figure 3 shows representative signals obtained under
load, at a rotation frequency of 1400 rpm, along with the
corresponding DFA curves.

Principal-component analysis was applied to the result-
ing vectors, and a nearest-class-mean classifier was built
from the first three principal components of 36 randomly
chosen training vectors. With averages taken over 100
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TABLE 2: The same as in Table 1, but now for a majority vote involving classifications based on each fluctuation analysis separately.
LF LP PO ND
LF 87.11 (0.40) 0.64 (0.10) 6.96 (0.33) 5.28 (0.27)
LP 2.04 (0.18) 90.06 (0.40) 5.88 (0.34) 2.01(0.18)
PO 7.13 (0.34) 19.16 (0.52) 65.18 (0.61) 8.53 (0.35)
ND 2.26 (0.19) 1.38 (0.17) 7.81(0.34) 88.54 (0.41)

TABLE 3: Average percentage of correctly classified testing signals coming from toothless and normal gears working in the absence of load.

rpm 400 600 800 1000 1200 1400
Toothless 69.4 1.9 86.3 = 1.5 96.2 = 0.7 49.2 2.9 68.8 2.1 48.2 £ 2.5
Normal 69.3 + 1.8 100 100 64.1 2.4 91.5+1.2 45.1 £ 2.5

choices of training and testing vectors, the classifier was
always capable of correctly identifying scratched gears, while
the classification error of testing vectors corresponding to
normal or toothless gears, although unacceptably high for
two working conditions in the absence of load, lay below 6%
for most conditions under load. See Tables 3 and 4. Although
a similar classifier based on Fourier spectra yields superior
performance, this comes at a much higher computational
cost, since feature vectors now have 1024 points [15].

4.4. Weld-Transfer Mode from Current and Voltage Time
Series. As detailed in [16], voltage and current data were
captured during Metal Inert/Active Gas welding of steel
workpieces, with a simultaneous high-speed video footage,
allowing identification of the instantaneous metal-transfer
mode. The sampling rate was 10 kHz, and a collection of nine
voltage and current time series was built, with three series
corresponding to each of three metal-transfer modes (dip,
globular, and spray). The typical duration of each series was
4.5 seconds, and examples are shown in Figure 4.

A systematic classification study was performed by
first dividing each time series into smaller series con-
taining L points (L being 512, 1024, 2048, or 4096).
These smaller series were then processed with Hurst, lin-
ear detrended-fluctuation, and detrended-cross-correlation
analyses. Figure 5 shows example curves. Selecting 80% of
the obtained feature vectors for training (with averages over
100 random choices of training and testing sets), classi-
fiers were built from voltage or current signals separately
processed with Hurst or detrended-fluctuation analyses,
as well as from voltage and current signals simultane-
ously processed with detrended-cross-correlation analysis.
A Karhunen-Loéve transformation was finally employed
along with the nearest-class-mean rule. In the poorest
performance, obtained from signals with L = 512 points
subject to Hurst analysis, the maximum classification error
was 27% for signals corresponding to spray transfer mode,
with 100% correctness achieved for globular transfer mode.

Table 5 shows the average classification error of each
classifier, for different series length L. The overall perfor-
mance of classifiers with L = 1024 and L = 2048 is better

than with the other two lengths. This can be traced to the
fact that, as illustrated by Figure 5, distinguishing features
(such as average slopes and discontinuities) between curves
corresponding to different transfer modes tend to happen
at intermediate time scales. For a given length, detrended-
cross-correlation analysis of voltage and current signals
yields an intermediate classification efficiency as compared
to either voltage or current signals analyzed separately.
The best classifier is obtained with the Hurst analysis of
signals containing L = 2048 points, yielding a negligible
classification error of 0.1%.

In contrast, as shown in the bottom two rows of Table 5,
similar classifiers in which feature vectors are defined by the
full Fourier spectra of the various signals yield much larger
classification errors, and at a much higher computational
cost (since the size of feature vectors scales as L, whereas for
fluctuation analyses it scales as log L).

4.5. Stainless Steel Microstructure from Magnetic Measure-
ments. Barkhausen noise is a magnetic phenomenon pro-
duced when a variable magnetic field induces magnetic
domain wall movements in ferromagnetic materials. These
movements are discrete rather than continuous, and are
caused by defects in the material microstructure, generating
magnetic pulses that can be measured by a coil placed on the
material surface.

Magnetic Barkhausen noise (BN) and magnetic flux
(MF) measurements were performed on samples of stainless-
steel steam-pressure vessels, as detailed in [17]. These
presented coarse ferritic-pearlitic phases (named stage “A”)
before degradation. Owing to temperature effects, two dif-
ferent microstructures were obtained from pearlite that has
partially (stage “BC”) or completely (stage “D”) transformed
to spheroidite. Measurements were performed by using a
sinusoidal magnetic wave of frequency 10 Hz, each signal
consisting of 40 000 points, with a sampling rate of 200 kHz.
A total of 144 signals were captured, 40 signals corresponding
to stage A, 88 to stage BC, and 16 to stage D. Typical signals
are shown in Figure 6. Notice that, as regards the magnetic
flux, the difference between signals from the various stages
seems to lie on the intensity of the peaks and troughs,
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FIGURE 3: Representative signals and DFA curves obtained from the three types of gear, working under load at a rotation frequency of
1400 rpm. In the signal plots, time is measured in units of the inverse sampling rate.

TaBLE 4: The same as in Table 3, but now for gears working under load.

rpm 400 600 800 1000 1200 1400
Toothless 100 100 100 100 100 100
Normal 94.8 + 0.8 97.5 +0.7 98.5 +£0.5 95.6 £ 0.7 81.3+ 1.7 100
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FiGuRre 4: Examples of voltage (left) and current (right) time series obtained during the welding process under dip (top), globular (center),
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Current (A)

Current (A)

Current (A)

400 T T T T T T T
350
300
250
200
150 &— U

100 I I | I I |
0 0.1 0.2 0.3

Time (s)

200 T | T | T | T

180

160

140

120

100 I | I | I | I |

e L L L L

198

195

194 I | I | I | I |
0 0.1 0.2 0.3

Time (s)
()




10 EURASIP Journal on Advances in Signal Processing

4 T I T T T 3 T I T T

| Hurst I | I~ Hurst V 7
25— —
3 — — - -
2 — -
% %) B N
SN _ - _
52 ED 1.5 i i
L i L |
1 — — — -
0.5 — —

0 I | I | I | I 0 I | I | I | I
0 1 2 3 4 0 1 2 3 4

log,, log,, 7

5 T T T T T
. - DFA V .
| 4 _
i N |
) ol i
2 1 22 .
L | 1~ —
1= _ B 7
00— |

) I I I I I I I I I I I I I I
0 1 2 3 4 0 1 2 3 4

logt logt
(c) (d)

Q |
2
53 i
on
2 —
_2 — —
_4 — —
1 I 1 I 1 I 1
0 1 2 3 4
log,y T
— Dip
—— Globular
—— Spray

(e)

FiGure 5: Examples of curves obtained from Hurst (top), detrended-fluctuation (center), and detrended-cross-correlation (bottom) analyses
to current (I) and voltage (V) sample signals obtained under dip (top), globular (center), and spray (bottom) metal-transfer modes.
Logarithms are in base 10, and the time window size is measured in tenths of a millisecond.
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FiGure 6: Typical signals of (a) magnetic flux and (b) Barkhausen noise obtained from stainless-steel samples at different stages of
microstructural degradation. Plots in (b) have been vertically shifted for clarity.

TaBLE 5: Average percentage classification errors of testing voltage (V') and current (I) signals containing L points, produced by classifiers
based on Hurst, detrended-fluctuation (DF), or detrended-cross-correlation (DCC) analyses. Also shown are results for classifiers based on

Fourier spectra.

L 512 1024 2048 4096

DE V 3.1+0.2 22+04 3.6 £0.7 53+1.3
Hurst, V 6.5+0.4 3.1 0.5 0.1 £0.1 0.7+0.7
DE I 2.1+0.2 0.6 £0.2 0.5+0.3 1.6 £ 1.1
Hurst, I 145+ 0.5 5.4+ 0.6 4.0=+0.9 2.7+1.3
DCC,V+1 3.2+0.3 1.5+0.3 2.4 +0.7 7.7+ 1.3
Fourier, V 23.6 +0.9 21.8 £ 0.8 18.7 + 1.2 36.7 £ 2.3
Fourier, I 22.7 £2.5 275+ 1.9 8.7 0.9 145+ 1.9

TaBLE 6: Average percentage of correctly classified testing signals coming from stainless-steel samples in different degradation stages.
Classifiers employed detrended-fluctuation (DFA), Hurst (RS), or Fourier spectral (FS) analyses on either Barkhausen noise (BN) or

magnetic flux (MF).

DFA/BN RS/BN DFA/MF RS/MF ES/MF
Stage A 54.8 +1.9 342+ 1.6 83.0+ 1.3 90.5+ 1.0 67.8 + 1.7
Stage BC 57.6 +1.2 49.5 + 1.5 87.2+0.8 92.5+0.6 77.0 = 1.1
Stage D 68.4 +2.9 31.0 +2.7 96.4 + 1.5 98.0 + 1.4 78.6 +2.9

although there is also a fine structure in the curves which is
not visible at the scale of the figure.

Results from classifiers based on detrended-fluctuation
and Hurst analyses, with a KL transformation as the final
step, are shown in Table 6, for both BN and MF signals,
with averages over 100 sets of training and testing vectors.
Also shown for comparison are results from classifiers based

on Fourier spectral analysis (making use of magnetic-flux
signals with 512 points extracted from the original signals
by selecting every 78th point, in order to build feature
vectors with a manageable number of dimensions). The
performance of classifiers based on Barkhausen noise is
much inferior to that of classifiers based on magnetic flux
signals, which is now discussed.
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The best performance is obtained by the Hurst classifier,
with maximum error of about 10%, followed by the DFA
classifier, with a maximum error around 17%. Somewhat
surprisingly, in view of the long-time regularity of the
magnetic flux signals evident in Figure 6, the Fourier-
spectral classifier shows the worst performance, with an
average classification error of 25%.

5. Conclusions

We have reviewed and supplemented recent work on applica-
tion of fluctuation analysis as a pattern-classification tool in
nondestructive materials inspection. This approach has been
shown to lead to very efficient classifiers, with a performance
comparable, and usually quite superior, to more traditional
approaches based, for instance, on Fourier transforms. The
present approach also requires less computational effort to
achieve a given efficiency, which would be an important issue
when building automated inspection systems for field work.

An extension of the present approach to defect recogni-
tion from radiographic or ultrasonic images can be achieved
based on generalizations of the fluctuation analyses to mea-
sure surface roughness [18, 19]. Given any two-dimensional
image, a corresponding surface can be built by a color-to-
height conversion procedure, and mathematical analyses can
then be performed.
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