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Radar imaging of noncooperative targets is an interesting application of all-weather high-resolution coherent radars. However,
these images are usually blurred when using the standard range-Doppler algorithm, if a long coherent processing interval (CPI)
is used, and motion compensation techniques are hence necessary to improve imaging quality. If the CPI is reduced enough,
target scatterers do not migrate of resolution cells and their corresponding Doppler frequencies are constant. Hence, for a short
CPI, motion compensation is not longer necessary, but Doppler resolution gets degraded. In that case, superresolution algorithms
may be applied. Here, we compare the superresolution-based focusing techniques with motion compensation-based methods.
Our conclusion is that imaging quality after employing the superresolution approaches is not improved and, consequently, the
use of motion compensation-based approaches to focus the radar images cannot be circumvented. Simulated and real data from
high-resolution radars have been used to make the comparisons.

1. Introduction

Radar imaging based on a static high-resolution coherent
radar is usually referred as Inverse Synthetic Aperture Radar
(ISAR) imaging. ISAR may obtain range-Doppler images of
noncooperative targets [1, 2], that is, targets whose motion is
unknown. A large transmitted bandwidth guarantees a high
slant-range resolution, whereas a large variation of the target
aspect angle during the coherent processing interval (CPI)
allows obtaining a fine cross-range resolution [3]. The slant-
range and cross-range resolutions are, respectively, given by

ρr = c

2Δ f
, (1)

ρa = λ

2Δθ
, (2)

where c is the light speed, Δ f is the transmitted bandwidth, λ
is the transmitted wavelength, and Δθ is the variation of the
target aspect angle during the CPI.

In adverse meteorological conditions (such as fog or
haze) and in defense and security applications, imaging sen-
sors based on electro-optical wavelengths may have a reduced
performance [4–6]. However, the ISAR technique, because of
its all-weather feature, may still provide useful target images
in those conditions. These images may subsequently be
exploited by Automatic Target Recognition (ATR) algorithms
[7–10].

In ISAR imaging, if the processing interval CPI is not too
large, target scatterers do not migrate of resolution cells and
their corresponding Doppler frequencies remain constant
during the CPI. Hence, for this case, the standard range-
Doppler algorithm (RDA) obtains focused ISAR images.
However, these images are usually not adequate for subse-
quent ATR algorithms, because they have a degraded cross-
range resolution, according to (2). Note that it is likely that
the variation of the target aspect angle Δθ is little for this
short CPI.

On the contrary, if the CPI is large, the target scatterers
migrate of resolution cells and the Doppler histories are



2 EURASIP Journal on Advances in Signal Processing

complex functions. In this situation, RDA generates blurred
ISAR images of decreased quality and motion compensation
techniques are usually necessary to improve these ISAR
products.

Moreover, the previous problem is exacerbated when the
target is involved in complex motions, which is true for many
practical cases. For example, maritime targets are usually
involved in complex dynamics characterized by complicated
yaw, pitch, and roll attitude motions [11].

Hence, in ISAR imaging of real noncooperative maneu-
vering targets, an important trade-off emerges; it is interest-
ing to process a long CPI for achieving a fine cross-range
resolution, but blurring effects arise for this long CPI because
of the complex motion.

For a long CPI, the reason for scatterer migrations is quite
obvious; the target scatterers have enough time to migrate
of resolution cells. On the other hand, as far as the complex
functions for the Doppler history are concerned, we can write
the phase history of a target scatterer as [11]

ϕs(τ) = −4π
λ
Rs(τ), (3)

where λ is the central transmitted wavelength and Rs(τ) is
the range from the radar to the scatterer as a function of the
slow-time τ.

If the target has a smooth constant rotational motion and
the CPI is short, it can be shown [11] that a very accurate
approximation of (3) is given by

ϕs(τ) = −4π
λ

(
R0 + ys + xsωeτ

)
, (4)

where R0 is the range from the radar to the target rotation
center, xs is the cross-range position of the scatterer, ys
is the slant-range position of the scatterer, and ωe is the
effective rotation rate. If we suppose that R0 does not change
its position during the CPI, that is, translational motion
compensation has previously been applied; the Doppler
frequency associated to this scatterer is not a function of τ:

fds = − 1
2π

dϕs(τ)
dτ

= 2xsωe

λ
. (5)

Hence, according to (5), if the target motion is smooth,
which is true for a reduced CPI, the Doppler frequency for
each target scatterer is a constant and the standard RDA
will generate a focused ISAR image. Take into account that
the Doppler frequency is proportional to the cross-range
position xs of the scatterer.

On the other hand, according to (3), if the target is
involved in complex motions and the CPI is large, the range
from the radar to the scatterer Rs(τ) is a complex function
and, consequently, the phase of the scatterer ϕs(τ) is also a
complex function of the slow-time τ. This eventually implies
that the scatterer Doppler frequency is not constant during
the illumination interval CPI and, hence, if the standard RDA
is applied, a severely blurred ISAR image is to be obtained.
The problem rests in the fact that the processed CPI is too
large and complex phase variations arise.

By trying to move away from motion compensation
techniques, several authors have proposed to make use of
superresolution techniques [12–17] to focus ISAR images.
Because the blurring origin comes from a large CPI, the
subjacent idea under the superresolution approach is based
on reducing the observation interval CPI. As previously
commented, for a reduced CPI, the target scatterers do
not have enough time to experiment large variations of
their Doppler frequencies or to migrate of resolution
bins.

However, this CPI reduction certainly implies a loss of
Doppler (cross-range) resolution. It is here where superres-
olution algorithms may theoretically improve the standard
Fourier resolution. Hence, according to these approaches
[12–17], focused ISAR images could be obtained without the
necessity of processing long coherent intervals or of applying
motion compensation algorithms.

In this paper, we compare the superresolution appro-
aches with the results obtained after compensating the
motion, by applying the methods to simulated and real
data from complex targets. As far as the superresolution
algorithms are concerned, we concentrate on the spectral
estimation based on autoregressive (AR) coefficients [18],
the multiple signal classification (MUSIC) estimator [19],
and the Capon estimator [20].

Superresolution algorithms are based on parametric
models of the signals and, consequently, they assume that the
data satisfy some concrete hypotheses. In the ISAR scenario,
we do not know to what extent the data match the models
and, hence, the results are not as promising as expected. We
have obtained images with many peaks whose positions do
not necessarily correspond with the true locations of the
scatterers. On the other hand, focusing indicators (such as
entropy or contrast) may provide optimized values for the
superresolution-based images because of their peaky nature.
However, this is not indicative of an enhancement in the
quality of the ISAR images, as discussed.

Our conclusion is that, when dealing with complex high-
resolution radar data, the performance of the superreso-
lution approach is not as good as expected and motion
compensation methods should be applied if focused ISAR
images are desired to be obtained.

Section 2 presents a brief introduction to RDA and
motion compensation. In Section 3, the ISAR focusing
technique based on superresolution algorithms is addressed.
A brief description of the superresolution algorithms (AR,
MUSIC, and Capon) is also given. Comparisons between
superresolution and motion compensation-based techniques
when using simulated data are presented in Section 4. Deep
analyses of the obtained results in Section 4 let us derive
important conclusions. After detailing the results achieved
with live radar data in Section 5, some final conclusions
conclude the paper in Section 6.

2. Range-Doppler Algorithm and
Motion Compensation

The ISAR technique allows us to generate range-Doppler
images of noncooperative targets. The standard image
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formation algorithm for ISAR is the range-Doppler algo-
rithm (RDA) [11, 21], which may easily be described as
follows.

(i) Acquire a set of range profiles by using a coherent
high-resolution radar and stack them to form the
matrix Mrτ[n,m], where n = 0, 1, . . . ,N − 1, m =
0, 1, . . . ,M−1, N is the number of range bins, and M
is the total number of acquired range profiles. Hence,
the columns of Mrτ[n,m] are the range profiles.

(ii) Apply a Fast Fourier Transform (FFT) to each range
bin; that is, apply an FFT to each row of Mrτ[n,m].
The resulting matrix Mrd[n, k] is the ISAR image
generated by using RDA.

Figure 1 schematically shows the simple processing made
by RDA.

Target motion may be divided into a translational com-
ponent and a rotational component [21, 22]. With respect to
the line-of-sight (LOS), the translational motion may further
be decomposed into a radial (along-LOS) component and a
tangential (across-LOS) component. The rotational motion
is formed by the yaw, pitch, and roll attitude components.

In this context, the obtained ISAR image is a projection
depending on target dynamics and orientation. Concretely,
this ISAR projection plane is a plane formed by the LOS
vector and a vector normal to the effective rotation vector ωef

and contained in the plane perpendicular to LOS [22]. The
effective rotation vector ωef is the projection of the rotation
vector ω over the plane perpendicular to LOS.

As an example, let us consider the scenario shown in
Figure 2. A coherent high-resolution radar illuminates a
pitching ship. The ship deck is aligned with LOS. In this
case, the effective rotation vector ωef is just the pitch rotation
vector ωp, as shown in Figure 2. The obtained ISAR image is
a side view of the target.

The rotational motion and the tangential translational
motion may generate the desired Doppler gradient among
scatterers situated in the same range bin. However, motion
is also responsible for the possible appearance of blurring
effects. Concretely, when the CPI is large and RDA is applied,
the radial (along-LOS) component of the translational
motion causes a large blurring in the ISAR images and the
rest of motion may produce the so-called Migration Through
Resolution Cells (MTRCs) [23].

Generally, before applying RDA, motion compensation
techniques are necessary to improve the quality of the ISAR
images. Thus, for translational motion compensation, two
stages are often considered; range-bin alignment [1, 24–
27] and phase adjustment [28–31]. On the other hand, for
compensating the rotational motion, several methods may
also be found in the literature [32–36].

In this paper, when dealing with motion compensation
issues, we employ the extended envelope correlation method
[26] for range-bin alignment, the entropy minimization
approach [28] for phase adjustment, and the uniform-rate
technique [36] for rotational motion compensation.

The focusing technique based on superresolution algo-
rithms circumvents the use of motion compensation-based

approaches, by reducing the CPI, as explained in the next
section.

3. ISAR Focusing Technique Based on
Superresolution Algorithms

The idea under applying superresolution algorithms for
focusing ISAR images consists of processing the radar echoes
for a reduced CPI in order to guarantee that scatterers
do not have enough time to migrate of resolution cells
or to experiment complex phase variations. More formally,
by referring to Section 2, if we admit that Mrτ[n,m] is
a matrix whose columns are the range profiles, the ISAR
focusing algorithm based on superresolution algorithms may
be expressed as next indicated.

(i) Consider a reduced number M1 of range profiles of
Mrτ[n,m]. This is equivalent to reducing the CPI.
This simplified set may mathematically be expressed
as Mrτ[n,m1], where m1 = 0, 1, . . . ,M1 − 1, with
M1 � M. The selection of M1 depends on the target
dynamics.

(ii) For the nth range bin, estimate its high-resolution
frequency content by applying a superresolution
algorithm. That is, apply a superresolution technique
to each row of Mrτ[n,m1].

(iii) Repeat the previous step for all the range bins.
Subsequently, construct the superresolution ISAR
image Mrd,SR[n, k1], where k1 indicates the number
of Doppler bin.

The algorithm is schematically shown in the flowchart
depicted in Figure 3, where the acronym SRA refers to
superresolution algorithm.

Take into account that SRA may apply to the AR,
MUSIC, or Capon spectral estimators, on which the paper
concentrates. For completeness, in the next subsections, a
brief description of these spectral estimators is provided.

3.1. Spectral Estimation Based on AR Coefficients. In this
superresolution technique, it is assumed that the data are the
output of an Infinite Impulse Response (IIR) filter, whose
input is excited with a white noise of variance ρw [18]. If the
signal is represented as s[m1], m1 = 0, 1, . . . ,M1 − 1, then it
can be expressed as the filter output as

s[m1] = −
p∑

k=1

a[k]s[m1 − k] + u[m1], (6)

where a[k] are the filter coefficients, p is the filter order, and
u[m1] is the white noise at the input.

The spectral estimator based on AR coefficients as a
function of the frequency f for the signal s[m1] may be
written as [18]

PAR
(
f
) = ρw/ fs

eHp
(
f
)
aaHep

(
f
) , (7)
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Figure 3: Algorithm flowchart for the ISAR focusing technique
based on superresolution algorithms.

where H indicates conjugate transpose, fs is the sampling
frequency, and

ep
(
f
) =

[
1 e j2π( f / fs) · · · e j2π( f / fs)p

]T
,

a =
[

1 a[1] · · · a
[
p
] ]T

.

(8)

Some methods to calculate the filter coefficients a[k] and
the variance of the white noise ρw have been proposed [18].
Note that these values are necessary to evaluate (7). In this
paper, we have used the modified variance method, which
minimizes the forward and backward prediction errors
[18].

3.2. Spectral Estimation Based on MUSIC. The MUSIC
estimator is also a parametric approach which supposes that
the signal is a combination of sinusoids contaminated with

white noise [19]. The MUSIC spectral estimator as a function
of the frequency f for the signal s[m1] is [19]

PMUSIC
(
f
) = 1

eH
(
f
)(∑Nc

k=Ns+1 vkv
H
k

)
e
(
f
) , (9)

where vk is the kth eigenvector of the correlation matrix
RNc (of dimensions Nc × Nc) of the input signal s[m1]. The
eigenvectors vk are ordered according to their corresponding
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λNc , in such a way that the
first Ns eigenvectors generate the signal subspace and the rest
generate the noise subspace. Moreover, the vector e( f ) in (9)
can be written as

e
(
f
) =

[
1 e j2π( f / fs) · · · e j2π( f / fs)(Nc−1)

]T
. (10)

For the determination of Ns, the extended criterion of Akaike
may be employed [18]. If λ1 ≥ λ2 ≥ · · · ≥ λNc , the function
in (11) is calculated for each q = 1, 2, . . . ,Nc:

AIC
[
q
] = (Nc − q

)
ln

⎛

⎝

(
1/
(
Nc − q

))∑Nc
i=q+1 λi

∏Nc
i=q+1λ

−(Nc−q)
i

⎞

⎠

+
(
q − 1

)(
2Nc − q − 1

)
.

(11)

The estimated number of sinusoids Ns is the value of q which
minimizes expression (11).

3.3. Capon Spectral Estimation. Finally, the Capon spectral
estimator for the signal s[m1], m1 = 0, 1, . . . ,M1 − 1, can be
written in a similar way to MUSIC as [20]

PCapon
(
f
) = 1/ fs

eH
(
f
)
R−1
Nc
e
(
f
) , (12)

where e( f ) is the vector provided by (10) and RNc is the
correlation matrix (of dimensions Nc×Nc) of the input signal
s[m1].

4. Comparison Results for Simulated Data

In this section, simulated data have been used to make
the pertinent comparisons between the technique based on
superresolution methods and the motion compensation-
based approaches. These data have extensively been used in
the literature to compare different ISAR focusing methods
[37]. The data belong to a simulated MIG-25 aircraft,
which is composed of 120 scatterers. The target is uniformly



EURASIP Journal on Advances in Signal Processing 5

Table 1: Radar parameters for the simulated target.

Radar type Stepped frequency

Central Frequency 9 GHz

Stepped frequencies in a burst 64

Number of bursts 512

Pulse repetition frequency 15000 Hz

Bandwidth 512 MHz

Coherent processing interval 2.18 s

10

20

30

40

50

60

−100 −50 0 50 100

(d
B

)

−2

−4

−6

−8

−10

−12

−14

−16

−18

N
u

m
be

r
of

ra
n

ge
bi

n

Doppler (Hz)

Figure 4: ISAR image after applying RDA to the simulated data for
the entire CPI.

rotating, whereas a high-resolution radar illuminates it. The
radar parameters are detailed in Table 1.

Figure 4 shows the ISAR image obtained after applying
the standard RDA for the entire CPI. Clearly, this ISAR
image is blurred. Certainly, because of the long processed
illumination interval, the target scatterers have migrated of
resolution cells.

If the processed illumination interval CPI is reduced,
the obtained ISAR image (by using RDA) does not suffer
from cell migrations, as shown in Figure 5 for a reduced CPI
of 0.137 s (i.e., by considering only 32 bursts). However, as
expected, the Doppler resolution has been decreased and the
image quality is poor.

Figures 6–8 show the ISAR images obtained with the
method based on superresolution algorithms, when the
reduced CPI of 0.137 s is considered. Figure 6 presents the
result when the spectral estimator based on AR coefficients
is used, whereas Figures 7 and 8 refer to the result when
using the MUSIC and Capon estimators, respectively. For the
AR coefficients, a filter order of p = 5 has been considered.
For the results provided by the MUSIC and Capon spectral
estimators, a matrix dimension of Nc = 10 has been
considered for the correlation matrix.

Finally, Figure 9 presents the ISAR image obtained after
compensating the motion for the entire CPI. For this
purpose, the techniques in [26, 28, 36] have been applied.
Note that the target scatterers are clearly distinguishable in
this result. The ISAR image in Figure 9 is highly focused.

As commented in the introduction, the entropy and
the contrast are focusing indicators extensively used in the
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Figure 5: ISAR image after applying RDA to the simulated data for
a reduced CPI (32 bursts).
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Figure 6: ISAR image obtained by applying AR coefficients to the
simulated data.
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simulated data.
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Figure 8: ISAR image obtained by applying the Capon spectral
estimator to the simulated data.

10

20

30

40

50

60

−100 −50 0 50 100

(d
B

)

−2

−4

−6

−8

−10

−12

−14

−16

−18

N
u

m
be

r
of

ra
n

ge
bi

n

Doppler (Hz)

Figure 9: ISAR image after compensating the motion (simulated
data).

literature [28, 30]. Their expressions may, respectively, be
written as

E =
∑

n

∑

k

Ink ln Ink, (13)

C =

√〈[
|Ink|2 −

〈
|Ink|2

〉]2
�

〈
|Ink|2

〉 , (14)

where Ink is the ISAR image, 〈·〉 calculates the sample mean,
n is the number of range bin, k is the number of Doppler bin,
and Ink is given by

Ink = |Ink|2
∑

n

∑
k |Ink|2

. (15)

In the literature, it is assumed that the greater the contrast
and the lower the entropy are, the more focused the ISAR
images are [28, 30]. This is usually valid to make comparisons
among different autofocusing methods. However, as shown

next, the entropy and the contrast are not proper focusing
indicators to measure the image quality of the ISAR images
obtained by using a superresolution-based technique.

The contrast and the entropy for the ISAR images
depicted in Figures 4–9 are detailed in Table 2.

By carefully analyzing the results provided in this section,
we may draw the next conclusions.

(i) The ISAR images obtained by applying the technique
based on superresolution algorithms usually present
spurious scatterers; that is, they have peaks whose
positions do not correspond with locations of real
scatterers. We attribute this behavior to the fact
that the inherent parametric model assumed by
the superresolution techniques may not adequately
adjust to the ISAR data. Note that the ISAR data
are complex; as an example, take into account that
interference among scatterers is always present in
complex targets.

(ii) Hence, the qualitative appearance of the ISAR images
obtained with the superresolution-based approach is
not satisfactory. Their quality may be greater than the
RDA-based images (Figures 4 and 5), but it is clear
that the superresolution-based approach does not
outperform the motion compensation-based results
(Figure 9), where the scatterers are clearly visible and
localizable. Possible subsequent ATR algorithms may
have problems with the spurious peaks appearing in
the superresolution-based ISAR images.

(iii) By comparing the results provided by the AR,
MUSIC, and Capon spectral estimators, the most
promising output is the one given by the Capon
estimator, since the target contour is more detailed.
On the other hand, it is clear that, for complex radar
data, the Akaike criterion misestimates the number of
sinusoids existent in each range bin.

(iv) From a direct reading of Table 2, one may conclude
that the images obtained with the superresolution-
based technique are highly focused, because they
have high contrast and low entropy values. However,
according to the previous conclusions, we know that
the superresolution approaches do not outperform
the motion compensation-based techniques. The
explanation for the high contrast and low entropy
values must be found in the very abrupt peaks
generated by the parametric approaches [18]. We
admit that these focusing indicators are really useful
for other ISAR contexts [28, 30], but we also conclude
that they are useless for assessing the performance of
ISAR focusing superresolution-based approaches.

5. Comparison Results for Real Data

In this paper, we also present the results of applying the
commented algorithms to real data in order to verify that the
previously drawn conclusions are still valid for live scenarios.
The data belong to a sailboat, which was illuminated by
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Table 2: Focusing indicators for the ISAR images corresponding to
the simulated data.

Entropy Contrast

Figure 4 7.82 4.68

Figure 5 8.38 4.03

Figure 6 1.33·10−4 127.99

Figure 7 2.67·10−4 127.99

Figure 8 5.58 11.78

Figure 9 6.46 10.52

Table 3: Radar parameters for the live acquisition.

Radar type LFMCW

Central frequency 28.5 GHz

Ramp repetition frequency 1000 Hz

Bandwidth 1 GHz

Coherent processing interval 0.6 s

Table 4: Focusing indicators for the ISAR images corresponding to
the real data.

Entropy Contrast

Figure 10 9.22 8.43

Figure 11 5.83 17.87

Figure 12 2.79 113.23

Figure 13 0.64 270.13

Figure 14 4.77 41.70

Figure 15 8.53 16.74

a millimeter-wave high-resolution radar [38]. The radar
parameters are detailed in Table 3.

Figure 10 shows the ISAR image obtained after using
RDA for the entire CPI. Because of the large CPI, the ISAR
image is blurred. Figure 11 presents the ISAR image (by using
RDA) for a reduced CPI of 0.064 s. This image has a poor
Doppler resolution, as expected.

Figures 12–14 show the ISAR images obtained after
applying the superresolution technique based on the AR,
MUSIC, and Capon estimators, respectively. For the AR
coefficients, a filter order of p = 21 has been considered.
On the other hand, for the MUSIC and Capon spectral
estimators, a matrix dimension of Nc = 15 has been
considered for the correlation matrix.

Finally, Figure 15 shows the ISAR image obtained after
compensating the motion for the entire CPI. This image is
highly detailed and may be useful for subsequent recogni-
tion/identification algorithms. A photo of the sailboat is also
included in Figure 15 for reference.

The contrast and the entropy for the real ISAR images
in Figures 10–15 are detailed in Table 4. Again, high contrast
and low entropy values are obtained for the superresolution-
based ISAR images.

The results obtained with real data are analogous to
the ones achieved with simulated data. Consequently, the
conclusions drawn at the end of Section 4 are also applicable
to the real data detailed in this section.
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Figure 10: ISAR image after applying RDA to the real data for the
entire CPI.
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Figure 11: ISAR image after applying RDA to the real data for a
reduced CPI (64 ramps).
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Figure 12: ISAR image obtained by applying AR coefficients to the
real data.
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Figure 13: ISAR image obtained by applying MUSIC to the real
data.
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Figure 14: ISAR image obtained by applying the Capon spectral
estimator to the real data.
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Figure 15: ISAR image after compensating the motion (real data).
A photo of the sailboat is given for reference.

6. Conclusions

The ISAR technique is a radar imaging method which may
be very interesting in defense and security applications. In
fact, ISAR can provide images of noncooperative targets
in adverse meteorological conditions and in degraded
scenarios.

Generally, it is interesting to process long illumination
intervals to guarantee a high Doppler resolution. In this
case, it is almost mandatory to apply motion compensation
techniques, if focused ISAR images are desired. Otherwise,
the radar images are highly blurred and are useless for
recognition/identification purposes.

On the other hand, if the processed CPI is reduced,
the target scatterers do not migrate of resolution cells and
their associated Doppler frequencies may be considered to be
constant. In this case, the ISAR images have a poor Doppler
resolution, which may theoretically be improved by using
superresolution algorithms.

In this paper, we have concentrated on the compari-
son between the superresolution-based approaches and the
motion compensation-based methods with respect to their
capabilities of focusing ISAR images. Both simulated and real
data from complex targets have been used.

Our main conclusion is that motion compensation
cannot be circumvented, that is, it is always necessary to
compensate the motion, if focused high-resolution ISAR
images are desired. The ISAR images obtained after applying
superresolution approaches usually present spurious peaks,
whose positions do not correspond to locations of real
scatterers. These images could not be properly exploited by
subsequent ATR algorithms.

The paper also provides the values of the entropy
and the contrast for all the presented ISAR images. The
superresolution-based images have high contrast and low
entropy values, but this is not indicative of an increase in
image quality.
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