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Statistical modeling is at the heart of many engineering problems. The importance of statistical modeling emanates not only from
the desire to accurately characterize stochastic events, but also from the fact that distributions are the central models utilized
to derive sample processing theories and methods. The generalized Cauchy distribution (GCD) family has a closed-form pdf
expression across the whole family as well as algebraic tails, which makes it suitable for modeling many real-life impulsive processes.
This paper develops a GCD theory-based approach that allows challenging problems to be formulated in a robust fashion. Notably,
the proposed framework subsumes generalized Gaussian distribution (GGD) family-based developments, thereby guaranteeing
performance improvements over traditional GCD-based problem formulation techniques. This robust framework can be adapted
to a variety of applications in signal processing. As examples, we formulate four practical applications under this framework: (1)
filtering for power line communications, (2) estimation in sensor networks with noisy channels, (3) reconstruction methods for
compressed sensing, and (4) fuzzy clustering.

1. Introduction

Traditional signal processing and communications methods
are dominated by three simplifying assumptions: (1) the
systems under consideration are linear; the signal and noise
processes are (2) stationary and (3) Gaussian distributed.
Although these assumptions are valid in some applications
and have significantly reduced the complexity of techniques
developed, over the last three decades practitioners in various
branches of statistics, signal processing, and communica-
tions have become increasingly aware of the limitations these
assumptions pose in addressing many real-world applica-
tions. In particular, it has been observed that the Gaussian
distribution is too light-tailed to model signals and noise
that exhibits impulsive and nonsymmetric characteristics
[1]. A broad spectrum of applications exists in which such
processes emerge, including wireless communications, tele-
traffic, hydrology, geology, atmospheric noise compensation,
economics, and image and video processing (see [2, 3] and
references therein). The need to describe impulsive data,
coupled with computational advances that enable processing

of models more complicated than the Gaussian distribution,
has thus led to the recent dynamic interest in heavy-tailed
models.

Robust statistics—the stability theory of statistical
procedures—systematically investigates deviation from
modeling assumption affects [4]. Maximum likelihood (ML)
type estimators (or more generally, M-estimators) developed
in the theory of robust statistics are of great importance in
robust signal processing techniques [5]. M-estimators can be
described by a cost function-defined optimization problem
or by its first derivative, the latter yielding an implicit equa-
tion (or set of equations) that is proportional to the influence
function. In the location estimation case, properties of the
influence function describe the estimator robustness [4].
Notably, ML location estimation forms a special case of M-
estimation, with the observations taken to be independent
and identically distributed and the cost function set propor-
tional to the logarithm of the common density function.

To address as wide an array of problems as possible,
modeling and processing theories tend to be based on
density families that exhibit a broad range of characteristics.
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Signal processing methods derived from the generalized
Gaussian distribution (GGD), for instance, are popular in the
literature and include works addressing heavy-tailed process
[2, 3, 6–8]. The GGD is a family of closed form densities,
with varying tail parameter, that effectively characterizes
many signal environments. Moreover, the closed form nature
of the GGD yields a rich set of distribution optimal error
norms (L1, L2, and Lp), and estimation and filtering theories,
for example, linear filtering, weighted median filtering,
fractional low order moment (FLOM) operators, and so
forth. [3, 6, 9–11]. However, a limitation of the GGD
model is the tail decay rate—GGD distribution tails decay
exponentially rather than algebraically. Such light tails do not
accurately model the prevalence of outliers and impulsive
samples common in many of today’s most challenging
statistical signal processing and communications problems
[3, 12, 13].

As an alternative to the GGD, the α-stable density family
has gained recent popularity in addressing heavy-tailed prob-
lems. Indeed, symmetric α-stable processes exhibit algebraic
tails and, in some cases, can be justified from first principles
(Generalized Central Limit Theorem) [14–16]. The index
of stability parameter, α ∈ (0, 2], provides flexibility in
impulsiveness modeling, with distributions ranging from
light-tailed Gaussian (α = 2) to extremely impulsive (α →
0). With the exception of the limiting Gaussian case, α-
stable distributions are heavy-tailed with infinite variance
and algebraic tails. Unfortunately, the Cauchy distribution
(α = 1) is the only algebraic-tailed α-stable distribution that
possesses a closed form expression, limiting the flexibility
and performance of methods derived from this family
of distributions. That is, the single distribution Cauchy
methods (Lorentzian norm, weighted myriad) are the most
commonly employed α-stable family operators [12, 17–19].

The Cauchy distribution, while intersecting the α-stable
family at a single point, is generalized by the introduction
of a varying tail parameter, thereby forming the Generalized
Cauchy density (GCD) family. The GCD has a closed form
pdf across the whole family, as well as algebraic tails that
make it suitable for modeling real-life impulsive processes
[20, 21]. Thus the GCD combines the advantages of the
GGD and α-stable distributions in that it possesses (1) heavy,
algebraic tails (like α-stable distributions) and (2) closed
form expressions (like the GGD) across a flexible family of
densities defined by a tail parameter, p ∈ (0, 2]. Previous
GCD family development focused on the particular p = 2
(Cauchy distribution) and p = 1 (meridian distribution)
cases, which lead to the myriad and meridian [13, 22]
estimators, respectively. (It should be noted that the original
authors derived the myriad filter starting from α-stable
distributions, noting that there are only two closed-form
expressions for α-stable distributions [12, 17, 18].) These
estimators provide a robust framework for heavy-tail signal
processing problems.

In yet another approach, the generalized-t model is
shown to provide excellent fits to different types of atmo-
spheric noise [23]. Indeed, Hall introduced the family of
generalized-t distributions in 1966 as an empirical model
for atmospheric radio noise [24]. The distribution possesses

algebraic tails and a closed form pdf. Like the α-stable
family, the generalized-t model contains the Gaussian and
the Cauchy distributions as special cases, depending on the
degrees of freedom parameter. It is shown in [18] that
the myriad estimator is also optimal for the generalized-t
family of distributions. Thus we focus on the GCD family
of operators, as their performance also subsumes that of
generalized-t approaches.

In this paper, we develop a GCD-based theoretical
approach that allows challenging problems to be formulated
in a robust fashion. Within this framework, we establish a
statistical relationship between the GGD and GCD families.
The proposed framework subsumes GGD-based develop-
ments (e.g., least squares, least absolute deviation, FLOM,
Lp norms, k-means clustering, etc.), thereby guaranteeing
performance improvements over traditional problem for-
mulation techniques. The developed theoretical framework
includes robust estimation and filtering methods, as well
as robust error metrics. A wide array of applications can
be addressed through the proposed framework, including,
among others, robust regression, robust detection and
estimation, clustering in impulsive environments, spectrum
sensing when signals are corrupted by heavy-tailed noise,
and robust compressed sensing (CS) and reconstruction
methods. As illustrative and evaluation examples, we for-
mulate four particular applications under this framework:
(1) filtering for power line communications, (2) estimation
in sensor networks with noisy channels, (3) reconstruction
methods for compressed sensing, and (4) fuzzy clustering.

The organization of the paper is as follows. In Section 2,
we present a brief review of M-estimation theory and
the generalized Gaussian and generalized Cauchy density
families. A statistical relationship between the GGD and
GCD is established, and the ML location estimate from
GCD statistics is derived. An M-type estimator, coined M-
GC estimator, is derived in Section 3 from the cost function
emerging in GCD-based ML estimation. Properties of the
proposed estimator are analyzed, and a weighted filter struc-
ture is developed. Numerical algorithms for multiparameter
estimation are also presented. A family of robust metrics
derived from the GCD are detailed in Section 4, and their
properties are analyzed. Four illustrative applications of the
proposed framework are presented in Section 5. Finally,
we conclude in Section 6 with closing thoughts and future
directions.

2. Distributions, Optimal Filtering, and
M-Estimation

This section presents M-estimates, a generalization of max-
imum likelihood (ML) estimates, and discusses optimal
filtering from an ML perspective. Specifically, it discusses
statistical models of observed samples obeying generalized
Gaussian statistics and relates the filtering problem to maxi-
mum likelihood estimation. Then, we present the generalized
Cauchy distribution, and a relation between GGD and GCD
random variables is introduced. The ML estimators for GCD
statistics are also derived.
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2.1.M-Estimation. In the M-estimation theory the objective
is to estimate a deterministic but unknown parameter θ ∈ R
(or set of parameters) of a real-valued signal s(i; θ) corrupted
by additive noise. Suppose that we have N observations
yielding the following parametric signal model:

x(i) = s(i; θ) + n(i) (1)

for i = 1, 2, . . . ,N , where {x(i)}Ni=1 and {n(i)}Ni=1 denote the

observations and noise components, respectively. Let ̂θ be an
estimate of θ, then any estimate that solves the minimization
problem of the form

̂θ = arg min
θ

N
∑

i=1

ρ(x(i); θ) (2)

or by an implicit equation

N
∑

i=1

ψ
(

x(i); ̂θ
)

= 0 (3)

is called an M-estimate (or maximum likelihood type
estimate). Here ρ(x; θ) is an arbitrary cost function to be
designed, and ψ(x; θ) = (∂/∂θ)ρ(x; θ). Note that ML-
estimators are a special case of M-estimators with ρ(x; θ) =
− log f (x; θ), where f (·) is the probability density function
of the observations. In general, M-estimators do not neces-
sarily relate to probability density functions.

In the following we focus on the location estimation
problem. This is well founded, as location estimators have
been successfully employed as moving window type filters
[3, 5, 9]. In this case, the signal model in (1) becomes x(i) =
θ + n(i) and the minimization problem in (2) becomes

̂θ = arg min
θ

N
∑

i=1

ρ(x(i)− θ) (4)

or

N
∑

i=1

ψ
(

x(i)− ̂θ
)

= 0. (5)

For M-estimates it can be shown that the influence function
is proportional to ψ(x) [4, 25], meaning that we can
derive the robustness properties of an M-estimator, namely,
efficiency and bias in the presence of outliers, if ψ is known.

2.2. Generalized Gaussian Distribution. The statistical behav-
ior of a wide range of processes can be modeled by the GGD,
such as DCT and wavelets coefficients and pixels difference
[2, 3]. The GGD pdf is given by

f (x) = kα

2Γ(1/k)
exp−(α|x − θ|)k, (6)

where Γ(·) is the gamma function Γ(x) = ∫∞
0 tx−1e−tdt, θ

is the location parameter, and α is a constant related to the

standard deviation σ , defined as α = σ−1
√

Γ(3/k)(Γ(1/k))−1.

In this form, α is an inverse scale parameter, and k > 0,
sometimes called the shade parameter, controls the tail decay
rate. The GGD model contains the Laplacian and Gaussian
distributions as special cases, that is, for k = 1 and k = 2,
respectively. Conceptually, the lower the value of k is the
more impulsive the distribution is. The ML location estimate
for GGD statistics is reviewed in the following. Detailed
derivations of these results are given in [3].

Consider a set of N independent observations each obey-
ing the GGD with common location parameter, common
shape parameter k, and different scale parameter σi. The ML
estimate of location is given by

̂θ = arg min
θ

⎡

⎣

N
∑

i=1

1

σki
|x(i)− θ|k

⎤

⎦. (7)

There are two special cases of the GGD family that are well
studied: the Gaussian (k = 2) and the Laplacian (k = 1)
distributions, which yield the well known weighted mean and
weighted median estimators, respectively. When all samples
are identically distributed for the special cases, the mean
and median estimators are the resulting operators. These
estimators are formally defined in the following.

Definition 1. Consider a set of N independent observations
each obeying the Gaussian distribution with different vari-
ance σ2

i . The ML estimate of location is given by

̂θ =
∑N

i=1 hix(i)
∑N

i=1 hi
� mean

{

hi · x(i)|Ni=1

}

, (8)

where hi = 1/σ2
i and · denotes the (multiplicative) weighting

operation.

Definition 2. Consider a set of N independent observations
each obeying the Laplacian distribution with common
location and different scale parameter σi. The ML estimate
of location is given by

̂θ = median
{

hi � x(i)|Ni=1

}

, (9)

where hi = 1/σi and � denotes the replication operator
defined as

hi � x(i) =
hi times

︷ ︸︸ ︷

x(i), x(i), . . . , x(i) .
(10)

Through arguments similar to those above, the k /= 1, 2
cases yield the fractional lower order moment (FLOM)
estimation framework [9]. For k < 1, the resulting estimators
are selection type. A drawback of FLOM estimators for 1 <
k < 2 is that their computation is, in general, nontrivial,
although suboptimal (for k > 1) selection-type FLOM
estimators have been introduced to reduce computational
costs [6].

2.3. Generalized Cauchy Distribution. The GCD family was
proposed by Rider in 1957 [20], rediscovered by Miller and
Thomas in 1972 with a different parametrization [21], and
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has been used in several studies of impulsive radio noise
[3, 12, 17, 21, 22]. The GCD pdf is given by

fGC(z) = aσ
(

σ p + |z − θ|p)−2/p (11)

with a = pΓ(2/p)/2(Γ(1/p))2. In this representation, θ is the
location parameter, σ is the scale parameter, and p is the tail
constant. The GCD family contains the Meridian [13] and
Cauchy distributions as special cases, that is, for p = 1 and
p = 2, respectively. For p < 2, the tail of the pdf decays slower
than in the Cauchy distribution case, resulting in a heavier-
tailed distribution.

The flexibility and closed-form nature of the GCD make
it an ideal family from which to derive robust estimation and
filtering techniques. As such, we consider the location esti-
mation problem that, as in the previous case, is approached
from an ML estimation framework. Thus consider a set of N
i.i.d. GCD distributed samples with common scale parameter
σ and tail constant p. The ML estimate of location is given by

̂θ = arg min
θ

⎡

⎣

N
∑

i=1

log
{

σ p + |x(i)− θ|p}
⎤

⎦. (12)

Next, consider a set of N independent observations each
obeying the GCD with common tail constant p, but
possessing unique scale parameter νi. The ML estimate is

formulated as ̂θ = arg maxθ
∏N

i=1 fGC(x(i); νi). Inserting the
GCD distribution for each sample, taking the natural log,
and utilizing basic properties of the argmax and log functions
yield

̂θ = arg max
θ

log

⎡

⎣

N
∏

i=1

aνi
(

ν
p
i + |x(i)− θ|p

)−2/p

⎤

⎦

= arg max
θ

N
∑

i=1

− 2
p

log
{

ν
p
i + |x(i)− θ|p

}

= arg min
θ

N
∑

i=1

log

{

1 +
|x(i)− θ|p

ν
p
i

}

= arg min
θ

N
∑

i=1

log
{

σ p + hi|x(i)− θ|p}

(13)

with hi = (σ/νi)
p.

Since the estimator defined in (12) is a special case of that
defined in (13), we only provide a detailed derivation for the
latter. The estimator defined in (13) can be used to extend the
GCD-based estimator to a robust weighted filter structure.
Furthermore, the derived filter can be extended to admit real-
valued weights using the sign-coupling approach [8].

2.4. Statistical Relationship between the Generalized Cauchy
and Gaussian Distributions. Before closing this section, we
bring to light an interesting relationship between the Gener-
alized Cauchy and Generalized Gaussian distributions. It is
wellknown that a Cauchy distributed random variable (GCD
p = 2) is generated by the ratio of two independent Gaussian

distributed random variables (GGD k = 2). Recently, Aysal
and Barner showed that this relationship also holds for
the Laplacian and Meridian distributions [13], that is, the
ratio of two independent Laplacian (GGD k = 1) random
variables yields a Meridian (GCD p = 1) random variable.
In the following, we extend this finding to the complete set
of GGD and GCD families.

Lemma 1. The random variable formed as the ratio of two
independent zero-mean GGD distributed random variables U
and V , with tail constant β and scale parameters αU and αV ,
respectively, is a GCD random variable with tail parameter
λ = β and scale parameter ν = αU/αV .

Proof. See Appendix A.

3. Generalized Cauchy-Based Robust
Estimation and Filtering

In this section we use the GCD ML location estimate cost
function to define an M-type estimator. First, robustness
and properties of the derived estimator are analyzed, and the
filtering problem is then related to M-estimation. The pro-
posed estimator is extended to a weighted filtering structure.
Finally, practical algorithms for the multiparameter case are
developed.

3.1. Generalized Cauchy-BasedM-Estimation. The cost func-
tion associated with the GCD ML estimate of location
derived in the previous section is given by

ρ(x) = log
{

σ p + |x|p}, σ > 0, 0 < p ≤ 2. (14)

The flexibility of this cost function, provided by parameters σ
and p, and robust characteristics make it well-suited to define
an M-type estimator, which we coin the M-GC estimator. To
define the form of this estimator, denote x = [x(1), . . . , x(N)]
as a vector of observations and θ as the common location
parameter of the observations.

Definition 3. The M-GC estimate is defined as

̂θ = arg min
θ

⎡

⎣

N
∑

i=1

log
{

σ p + |x(i)− θ|p}
⎤

⎦. (15)

The special p = 2 and p = 1 cases yield the myriad [18] and
meridian [13] estimators, respectively. The generalization of
the M-GC estimator, for 0 < p ≤ 2, is analogous to the
GGD-based FLOM estimators and thereby provides a rich
and robust framework for signal processing applications.

As the performance of an estimator depends on the
defining objective function, the properties of the objective
function at hand are analyzed in the following.

Proposition 1. Let Q(θ) =∑N
i=1 log{σ p + |x(i)− θ|p} denote

the objective function (for fixed σ and p) and {x[i]}Ni=1 the order
statistics of x. Then the following statements hold.

(1) Q(θ) is strictly decreasing for θ < x[1] and strictly
increasing for θ > x[N].
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Figure 1: Typical M-GC objective functions for different values
of p ∈ {0.5, 1, 1.5, 2} (from bottom to top respectively). Input
samples are x = [4.9, 0, 6.5, 10.0, 9.5, 1.7, 1] and σ = 1.

(2) All local extrema of Q(θ) lie in the interval [x[1], x[N]].
(3) If 0 < p ≤ 1, the solution is one of the input samples

(selection type filter).
(4) If 1 < p ≤ 2, then the objective function has at most

2N − 1 local extrema points and therefore a finite set of local
minima.

Proof. See Appendix B.

The M-GC estimator has two adjustable parameters, σ
and p. The tail constant, p, depends on the heaviness of the
underlying distribution. Notably, when p ≤ 1 the estimator
behaves as a selection type filter, and, as p → 0, it becomes
increasingly robust to outlier samples. For p > 1, the location
estimate is in the range of the input samples and is readily
computed. Figure 1 shows a typical sketch of the M-GC
objective function, in this case for p ∈ {0.5, 1, 1.5, 2} and
σ = 1.

The following properties detail the M-GC estimator
behavior as σ goes to either 0 or ∞. Importantly, the results
show that the M-GC estimator subsumes other classical
estimator families.

Property 1. Given a set of input samples {x(i)}Ni=1, the M-GC
estimate converges to the ML GGD estimate ( Lp norm as
cost function) as σ → ∞:

lim
σ→∞

̂θ = arg min
θ

N
∑

i=1

|x(i)− θ|p. (16)

Proof. See Appendix C.

Intuitively, this result is explained by the fact that |x(i)−
θ|p/σ p becomes negligible as σ grows large compared to 1.
This, combined with the fact that log(1 + x) ≈ x when
x � 1, which is an equality in the limit, yields the resulting
cost function behavior. The importance of this result is that
M-GC estimators include M-estimators with Lp norm (0 <
p ≤ 2) cost functions. Thus M-GC (GCD-based) estimators

should be at least as powerful as GGD-based estimators
(linear FIR, median, FLOM) in light-tailed applications,
while the untapped algebraic tail potential of GCD methods
should allow them to substantially outperform in heavy-
tailed applications.

In contrast to the equivalence with Lp norm approaches
for σ large, M-GC estimators become more resistant to
impulsive noise as σ decreases. In fact, as σ → 0 the M-GC
yields a mode type estimator with particularly strong impulse
rejection.

Property 2. Given a set of input samples {x(i)}Ni=1, the M-GC
estimate converges to a mode type estimator as σ → 0. This
is

lim
σ→ 0

̂θ = arg min
x( j)∈M

⎡

⎢

⎣

∏

i,x(i) /= x( j)

∣

∣x(i)− x
(

j
)∣

∣

⎤

⎥

⎦, (17)

where M is the set of most repeated values.

Proof. See Appendix D.

This mode-type estimator treats every observation as
a possible outlier, assigning greater influence to the most
repeated values in the observations set. This property makes
the M-GC a suitable framework for applications such as
image processing, where selection-type filters yield good
results [7, 13, 18].

3.2. Robustness and Analysis of M-GC Estimators. To formally
evaluate the robustness of M-GC estimators, we consider the
influence function, which, if it exists, is proportional to ψ(x)
and determines the effect of contamination of the estimator.
For the M-GC estimator

ψ(x) = p|x|p−1 sgn(x)
σ p + |x|p , (18)

where sgn(·) denotes the sign operator. Figure 2 shows the
M-GC estimator influence function for p =∈ {0.5, 1, 1.5, 2}.

To further characterize M-estimates, it is useful to list the
desirable features of a robust influence function [4, 25].

(i) B-Robustness. An estimator is B-robust if the supre-
mum of the absolute value of the influence function
is finite.

(ii) Rejection Point. The rejection point, defined as the
distance from the center of the influence function
to the point where the influence function becomes
negligible, should be finite. Rejection point measures
whether the estimator rejects outliers and, if so, at
what distance.

The M-GC estimate is B-robust and has a finite rejection
point that depends on the scale parameter σ and the
tail parameter p. As p → 0, the influence function
has higher decay rate, that is, as p → 0 the M-GC
estimator becomes more robust to outliers. Also of note
is that limx→±∞ψ(x) = 0, that is, the influence function



6 EURASIP Journal on Advances in Signal Processing

−1.5
−10 −5 0

x

p = 0.5
p = 1

5 10

−1

−0.5

ψ
(x

)

0

0.5

1

p = 1.5
p = 2

1.5

Figure 2: Influence functions of the M-GC estimator for different
values of P. (Black:) P = .5, (blue:) P = 1, (red:) P = 1.5, and
(cyan:) P = 2.

is asymptotically redescending, and the effect of outliers
monotonically decreases with an increase in magnitude [25].

The M-GC also possesses the followings important
properties.

Property 3 (outlier rejection). For σ <∞,

lim
x(N)→±∞

̂θ(x(1), . . . , x(N)) = ̂θ(x(1), . . . , x(N − 1)). (19)

Property 4 (no undershoot/overshoot). The output of the M-
GC estimator is always bounded by

x[1] < ̂θ < x[N], (20)

where x[1] = min{x(i)}Ni=1 and x[N] = max{x(i)}Ni=1.

According to Property 3, large errors are efficiently
eliminated by an M-GC estimator with finite σ . Note that
this property can be applied recursively, indicating that M-
GC estimators eliminate multiple outliers. The proof of this
statement follows the same steps used in the proof of the
meridien estimator Property 9 [13] and is thus omitted.
Property 4 states that the M-GC estimator is BIBO stable,
that is, the output is bounded for bounded inputs. Proof of
Property 4 follows directly from Propositions 1 and 2 and is
thus omitted.

Since M-GC estimates are M-estimates, they have desir-
able asymptotic behavior, as noted in the following property
and discussion.

Property 5 (asymptotic consistency). Suppose that the sam-
ples {x(i)}Ni=1 are independent and symmetrically distributed

around θ (location parameter). Then, the M-GC estimate ̂θN
converges to θ in probability, that is,

̂θN
P−→ θ as N −→ ∞. (21)

Proof of Property 5 follows from the fact that the M-
GC estimator influence function is odd, bounded, and
continuous (except at the origin, which is a set of measure
zero); argument details parallel those in [4].

Notably, M-estimators have asymptotic normal behavior
[4]. In fact, it can be shown that

√

N
(

̂θN − θ
)

−→ Z (22)

in distribution, where Z ∼ N (0, v) and

v = EFψ2(X − θ)
(

EFψ′(X − θ)
)2 . (23)

The expectation is taken with respect to F, the underlying
distribution of the data. The last expression is the asymptotic

variance of the estimator. Hence, the variance of ̂θN decreases
as N increases, meaning that M-GC estimates are asymptot-
ically efficient.

3.3. Weighted M-GC Estimators. A filtering framework can-
not be considered complete until an appropriate weighting
operation is defined. Filter weights, or coefficients, are
extremely important for applications in which signal corre-
lations are to be exploited. Using the ML estimator under
independent, but non identically distributed, GCD statistics
(expression (13)), the M-GC estimator is extended to include
weights. Let h = [h1, . . . ,hN ] denote a vector of nonnegative
weights. The weighted M-GC (WM-GC) estimate is defined
as

̂θ = arg min
θ

⎡

⎣

N
∑

i=1

log
{

σ p + hi|x(i)− θ|p}
⎤

⎦. (24)

The filtering structure defined in (24) is an M-smoother
estimator, which is in essence a low-pass-type filter. Utilizing
the sign coupling technique [8], the M-GC estimator can
be extended to accept real-valued weights. This yields the
general structure detailed in the following definition.

Definition 4. The weighted M-GC (WM-GC) estimate is
defined as

̂θ = arg min
θ

⎡

⎣

N
∑

i=1

log
{

σ p + |hi|
∣

∣sgn(hi)x(i)− θ
∣

∣
p
}

⎤

⎦,

(25)

where h = [h1, . . . ,hN ] denotes a vector of real-valued
weights.

The WM-GC estimators inherit all the robustness and
convergence properties of the unweighted M-GC estimators.
Thus as in the unweighted case, WM-GC estimators subsume
GGD-based (weighted) estimators, indicating that WM-GC
estimators are at least as powerful as GGD-based estimators
(linear FIR, weighted median, weighted FLOM) in light-
tailed environments, while WM-GC estimator characteristics
enable them to substantially outperform in heavy-tailed
impulsive environments.
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Require: Data set {x(i)}Ni = 1 and tolerances ε1, ε2, ε3.
(1) Initialize σ (0) and θ(0).

(2) while |̂θ(m) − ̂θ(m−1)| > ε1, |σ̂ (m) − σ̂ (m−1)| > ε2 and | p̂(m) − p̂(m−1)| > ε3 do
(3) Estimate p̂(m) as the solution of (30).

(4) Estimate ̂θ(m) as the solution of (28).
(5) Estimate σ̂ (m) as the solution of (29).
(6) end while
(7) return ̂θ,σ̂ and p̂.

Algorithm 1: Multiparameter estimation algorithm.

3.4. Multiparameter Estimation. The location estimation
problem defined by the M-GC filter depends on the param-
eters σ and p. Thus to solve the optimal filtering problem,
we consider multiparameter M-estimates [26]. The applied
approach utilizes a small set of signal samples to estimate
σ and p and then uses these values in the filtering process
(although a fully adaptive filter can also be implemented
using this scheme).

Let {x(i)}Ni=1 be a set of independent observations from a
common GCD with deterministic but unknown parameters
θ, σ , and p. The joint estimates are the solutions to the
following maximization problem:

(

̂θ, σ̂ , p̂
)

= arg max
θ,σ ,p

g
(

x; θ, σ , p
)

, (26)

where

g
(

x; θ, σ , p
) =

N
∏

i=1

aσ
(

σ p + |x(i)− θ|p)−2/p
, (27)

a = pΓ(2/p)/2(Γ(1/p))2. The solution to this optimization
problem is obtained by solving a set of simultaneous equa-
tions given by first-order optimality conditions. Differentiat-
ing the log-likelihood function, g(x; θ, σ , p), with respect to
θ, σ , and p and performing some algebraic manipulations
yields the following set of simultaneous equations:

∂g

∂θ
=

N
∑

i=1

−p|x(i)− θ|p−1 sgn(x(i)− θ)

σ p + |x(i)− θ|p = 0, (28)

∂g

∂σ
=

N
∑

i=1

σ p − |x(i)− θ|p
σ p + |x(i)− θ|p = 0, (29)

∂g

∂p
=

N
∑

i=1

[

1
2p
− σ p log σ − |x(i)− θ|p log|x(i)− θ|

p
(

σ p − |x(i)− θ|p)

− log
{

σ p + |x(i)− θ|p}

p2

− 1
p2

Ψ

(

2
p

)

+
1
p2

Ψ

(

1
p

)]

= 0,

(30)

where g ≡ g(x; θ, σ , p) and Ψ(x) is the digamma function.
(The digamma function is defined as Ψ(x) = (d/dx)Γ(x),

where Γ(x) is the Gamma function.) It can be noticed that
(28) is the implicit equation for the M-GC estimator with ψ
as defined in (18), implying that the location estimate has the
same properties derived above.

Of note is that g(x; θ, σ , p) has a unique maximum in
σ for fixed θ and p, and also a unique maximum in p for
fixed θ and σ and p ∈ (0, 2]. In the following, we provide an
algorithm to iteratively solve the above set of equations.

Multiparameter Estimation Algorithm. For a given set of data
{x(i)}Ni=1, we propose to find the optimal joint parameter
estimates by the iterative algorithm details in Algorithm 1,
with the superscript denoting iteration number.

The algorithm is essentially an iterated conditional
mode (ICM) algorithm [27]. Additionally, it resembles the
expectation maximization (EM) algorithm [28] in the sense
that, instead of optimizing all parameters at once, it finds
the optimal value of one parameter given that the other two
are fixed; it then iterates. While the algorithm converges to a
local minimum, experimental results show that initializing
θ as the sample median and σ as the median absolute
deviation (MAD), and then computing p as a solution
to (30), accelerates the convergence and most often yields
globally optimal results. In the classical literature-fixed-point
algorithms are successfully used in the computation of M-
estimates [3, 4]. Hence, in the following, we solve items 3–5
in Algorithm 1 using fixed-point search routines.

Fixed-Point Search Algorithms. Recall that when 0 < p ≤ 1,
the solution is the input sample that minimizes the objective
function. We solve (28) for the 1 < p ≤ 2 case using the
fixed-point recursion, which can be written as

̂θ( j+1) =
∑N

i=1 wi

(

̂θ( j)

)

x(i)
∑N

i=1 wi

(

̂θ( j)

) (31)

withwi(̂θ( j)) = p|x(i)−̂θ( j)|p−2/(σ p+|x(i)−̂θ( j)|p) and where
the subscript denotes the iteration number. The algorithm

is taken as convergent when |̂θ( j+1) − ̂θ( j)| < δ1, where δ1

is a small positive value. The median is used as the initial
estimate, which typically results in convergence to a (local)
minima within a few iterations.
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Table 1: Multiparameter Estimation Results for GCD Process with
length N and (θ, σ , p) = (0, 1, 2).

N 10 100 1000
̂θ 0.0035 −0.0009 −0.0002

MSE 0.0302 2.4889× 10−3 1.7812× 10−4

σ̂ 0.9563 1.0224 1.0186

MSE 0.0016 1.7663× 10−5 1.1911× 10−6

p̂ 1.5816 1.8273 1.9569

MSE 0.0519 0.0109 1.5783× 10−6

Similarly, for (29) the recursion can be written as

σ̂( j+1) =
⎛

⎝

∑N
i=1 bi

(

σ̂( j)

)

x(i)
∑N

i=1 bi
(

σ̂( j)

)

⎞

⎠

1/p

(32)

with bi(σ̂( j)) = 1/(σ̂
p
( j)+|x(i)−θ|p). The algorithm terminates

when |σ̂( j+1)− σ̂( j)| < δ2 for δ2 a small positive number. Since
the objective function has only one minimum for fixed θ and
p, the recursion converges to the global result.

The parameter p recursion is given by

p̂( j+1) = 2
N

N
∑

i=1

[

Ψ

(

2
p̂( j)

)

−Ψ
(

1
p̂( j)

)

+ log
{

σ p̂( j) +|x(i)−θ| p̂( j)
}

+
p̂( j)

(

σ p̂( j) log σ−|x(i)−θ| p̂( j) log|x(i)−θ|
)

σ p̂( j) − |x(i)− θ| p̂( j)

⎤

⎦.

(33)

Noting that the search space is the interval I = (0, 2], the
function g (27) can be evaluated for a finite set of points P ∈
I , keeping the value that maximizes g, setting it as the initial
point for the search.

As an example, simulations illustrating the developed
multiparameter estimation algorithm are summarized in
Table 1, for p = 2, θ = 0, and σ = 1 (standard
Cauchy distribution). Results are shown for varying sample
lengths: 10, 100, and 1000. The experiments were run 1000
times for each block length, with the presented results the
average on the trials. Mean final θ, σ , and p estimates are
reported as well as the resulting MSE. To illustrate that the
algorithm converges in a few iterations, given the proposed
initialization, consider an an experiment utilizing data drawn
from a GCD θ = 0, σ = 1, and p = 1.5 distribution. Figure 3
reports θ, σ , p estimate MSE curves. As in the previous case,
100 trials are averaged. Only the first five iteration points are
shown, as the algorithms are convergent at that point.

To conclude this section, we consider the computational
complexity of the proposed multiparameter estimation algo-
rithm. The algorithm in total has a higher computational
complexity than the FLOM, median, meridian, and myriad
operators, since Algorithm 1 requires initial estimates of the
location and the scale parameters. However, it should be
noted that the proposed method estimates all the parameters
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Figure 3: Multiparameter estimation MSE iteration evolution for a
GCD process with (θ, σ ,P) = (0, 1, 1.5).

of the model, thus providing advantage over the aforemen-
tioned methods that require a priori parameter tuning. It is
straightforward to show that the computational complexity
of the proposed method is O(N2), assuming the practical
case in which the number of fixed-point iterations is � N .
The dominating N2 term is the cost of selecting the input
sample that minimizes the objective function, that is, the
cost of evaluating the objective function N times. However, if
faster methods that avoid evaluation of the objective function
for all samples (e.g., subsampling methods) are employed,
the computational cost is lowered.

4. Robust DistanceMetrics

This section presents a family of robust GCD-based error
metrics. Specifically, the cost function of the M-GC estimator
defined in Section 3.1 is extended to define a quasinorm over
Rm and a semimetric for the same space—the development is
analogous to Lp norms emanating from the GGD family. We
denote these semimetrics as the log-Lp (LLp) norms. (Note
that for the σ = 1 and p = 1 case, this metric defines the
log-L space in Banach space theory.)

Definition 5. Let u ∈ Rm, then the LLp norm of u is defined
as

‖u‖LLp ,σ =
m
∑

i=1

log

{

1 +
|ui|p
σ p

}

, σ > 0. (34)

The LLp norm is not a norm in the strictest sense since
it does not meet the positive homogeneity and subadditivity
properties. However, it follows the positive definiteness and
a scale invariant properties.

Proposition 2. Let c ∈ R, u, v ∈ Rm, and p, σ > 0. The
following statements hold:
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(i) ‖u‖LLp ,σ ≥ 0, with ‖u‖LLp ,σ = 0 if and only if u = 0;

(ii) ‖cu‖LLp ,σ = ‖u‖LLp ,δ , where δ = σ/|c|;
(iii) ‖u + v‖LLp ,σ = ‖v + u‖LLp ,σ ;

(iv) let Cp = 2p−1. Then

‖u + v‖LLp ,σ

≤
⎧

⎨

⎩

‖u‖LLp ,σ + ‖v‖LLp ,σ , for 0 < p ≤ 1,

‖u‖LLp ,σ + ‖v‖LLp ,σ + m log Cp, for p > 1.
(35)

Proof. Statement 1 follows from the fact that log(1 + a) ≥ 0
for all a ≥ 0, with equality if and only if a = 0. Statement 2
follows from

m
∑

i=1

log

{

1 +
|cui|p
σ p

}

=
m
∑

i=1

log

{

1 +
|ui|p

(σ/|c| )p

}

. (36)

Statement 3 follows directly from the definition of the LLp

norm. Statement 4 follows from the well-known relation |a+
b|p ≤ Cp(|a|p + |b|p), a, b ∈ R, where Cp is a constant that
depends only on p. Indeed, for 0 < p ≤ 1 we have Cp = 1,
whereas for p > 1 we have Cp = 2p−1 (for further details see
[29] for example). Using this result and properties of the log
function we have

‖u + v‖LLp ,σ =
m
∑

i=1

log

{

1 +
|ui + vi|p

σ p

}

≤
m
∑

i=1

log

{

1 +
Cp
(|ui|p + |vi|p

)

σ p

}

=
m
∑

i=1

log Cp + log

{

1
Cp

+

(|ui|p + |vi|p
)

σ p

}

≤
m
∑

i=1

log Cp + log

{

1 +

(|ui|p + |vi|p
)

σ p

}

≤
m
∑

i=1

log

{

1 +
|ui|p
σ p +

|vi|p
σ p +

|ui|p|vi|p
σ2p

}

+ m log Cp

=
m
∑

i=1

log

{(

1 +
|ui|p
σ p

)(

1 +
|vi|p
σ p

)}

+ m log Cp

= ‖u‖LLp ,σ + ‖v‖LLp ,σ + m log Cp.

(37)

The LLp norm defines a robust metric that does not heav-
ily penalize large deviations, with the robustness depending
on the scale parameter σ and the exponent p. The following
lemma constructs a relationship between the Lp norms and
the LLp norms.

Lemma 2. For every u ∈ Rm, 0 < p ≤ 2, and σ > 0, the
following relations hold:

σ p‖u‖LLp ,σ ≤ ‖u‖pp ≤ σ pm
(

e‖u‖LLp ,σ − 1
)

. (38)

Proof. The first inequality comes from the relation log(1 +
x) ≤ x, for all x ≥ 0. Setting xi = |ui|p/σ p and summing
over i yield the result. The second inequality follows from

‖u‖LLp ,σ =
m
∑

i=1

log

{

1 +
|ui|p
σ p

}

≥ max
i

log

{

1 +
|ui|p
σ p

}

= log

{

1 +
‖u‖p∞
σ p

}

.

(39)

Noting that ‖u‖∞ ≤ σ(e‖u‖LLp ,σ − 1)1/p and ‖u‖pp ≤ m‖u‖p∞
for all p > 0 gives the desired result.

The particular case p = 2 yields the well-known
Lorentzian norm. The Lorentzian norm has desirable robust
error metric properties.

(i) It is an everywhere continuous function.

(ii) It is convex near the origin (0 ≤ u ≤ σ), behaving
similar to an L2 cost function for small variations.

(iii) Large deviations are not heavily penalized as in the
L1 or L2 norm cases, leading to a more robust error
metric when the deviations contain gross errors.

Contour plots of select norms are shown in Figure 4
for the two-dimension case. Figures 4(a) and 4(c) show the
L2 and L1 norms, respectively, while the LL2 (Lorentzian)
and LL1 norms (for σ = 1) are shown in Figures 4(b)
and 4(d), respectively. It can be seen from Figure 4(b) that
the Lorentzian norm tends to behave like the L2 norm for
points within the unitary L2 ball. Conversely, it gives the same
penalization to large sparse deviations as to smaller clustered
deviations. In a similar fashion, Figure 4(d) shows that the
LL1 norm behaves like the L1 norm for points in the unitary
L1 ball.

5. Illustrative Application Areas

This section presents four practical problems developed
under the proposed framework: (1) robust filtering for
power line communications, (2) robust estimation in sensor
networks with noisy channels, (3) robust reconstruction
methods for compressed sensing, and (4) robust fuzzy
clustering. Each problem serves to illustrate the capabilities
and performance of the proposed methods.

5.1. Robust Filtering. The use of existing power lines for
transmitting data and voice has been receiving recent interest
[30, 31]. The advantages of power line communications
(PLCs) are obvious due to the ubiquity of power lines
and power outlets. The potential of power lines to deliver
broadband services, such as fast internet access, telephone,
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Figure 4: Contour plots of different metrics for two dimensions: (a) L2, (b) LL2 (Lorentzian), (c) L1, and (d) LL1 norms.

fax services, and home networking is emerging in new com-
munications industry technology. However, there remain
considerable challenges for PLCs, such as communications
channels that are hampered by the presence of large
amplitude noise superimposed on top of traditional white
Gaussian noise. The overall interference is appropriately
modeled as an algebraic tailed process, with α-stable often
chosen as the parent distribution [31].

While the M-GC filter is optimal for GCD noise, it is
also robust in general impulsive environments. To compare
the robustness of the M-GC filter with other robust filtering
schemes, experiments for symmetric α-stable noise cor-
rupted PLCs are presented. Specifically, signal enhancement
for the power line communication problem with a 4-ASK

signaling, and equiprobable alphabet v = {−2,−1, 1, 2}, is
considered. The noise is taken to be white, zero location,
α-stable distributed with γ = 1 and α ranging from 0.2 to
2 (very impulsive to Gaussian noise). The filtering process
employed utilizes length nine sliding windows to remove the
noise and enhance the signal. The M-GC parameters were
determined using the multiparameter estimation algorithm
described in Section 3.4. This optimization was applied to
the first 50 samples, yielding p = 0.756 and σ = 0.896. The
M-GC filter is compared to the FLOM, median, myriad, and
meridian operators. The meridian tunable parameter was
also set using the multiparameter optimization procedure,
but without estimating p. The myriad filter tuning parameter
was set according to the α− k curve established in [18].
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Figure 5: Power line communication enhancement. MSE for
different filtering structures as function of the tail parameter α.

The normalized MSE values for the outputs of the
different filtering structures are plotted, as a function of α,
in Figure 5. The results show that the various methods per-
form somewhat similarly in the less demanding light-tailed
noise environments, but that the more robust methods, in
particular the M-CG approach, significantly outperform in
the heavy-tailed, impulsive environments. The time-domain
results are presented in Figure 6, which clearly show that the
M-GC is more robust than the other operators, yielding a
cleaner signal with fewer outliers and well-preserved signal
(symbol) transitions. The M-GC filter benefits from the
optimization of the scale and tail parameters and therefore
perform at least as good as the myriad and meridian filters.
Similarly, the M-GC filter performs better than the FLOM
filter, which is widely used for processing stable processes [9].

5.2. Robust Blind Decentralized Estimation. Consider next a
set of K distributed sensors, each making observations of a
deterministic source signal θ. The observations are quantized
with one bit (binary observations), and then these binary
observations are transmitted through a noisy channel to a
fusion center where θ is estimated (see [32, 33] and references
therein). The observations are modeled as x = θ+n, where n
are sensor noise samples assumed to be zero-mean, spatially
uncorrelated, independent, and identically distributed. Thus
the quantized binary observations are

bk = 1{xk ∈ (τ, +∞)} (40)

for k = 1, 2, . . . ,K , where τ is a real-valued constant and
1{·} is the indicator function. The observations received at
the fusion center are modeled by

y = (2b − 1) + w = m + w, (41)

where w are zero-mean independent channel noise samples
and the transformation mk = 2bk − 1 is made to adopt a
binary phase shift keying (BPSK) scheme.

The channel noise density function is denoted by wk ∼
fw(u). When this noise is impulsive (e.g., atmospheric noise
or underwater acoustic noise), traditional Gaussian-based
methods (e.g., least squares) do not perform well. We extend
the blind decentralized estimation method proposed in [33],
modeling the channel corruption as GCD noise and deriving
a robust estimation method for impulsive channel noise
scenarios. The sensor noise, n, is modeled as zero-mean
additive white Gaussian noise with variance σ2

n , while the
channel noise, w, is modeled as zero-location additive white
GCD noise with scale parameter σw and tail constant p.
A realistic approach to the estimation problem in sensor
networks assumes that the noise pdf is known but that
the values of some parameters are unknown [33]. In the
following, we consider the estimation problem when the
sensor noise parameter σn is known and the channel noise
tail constant p and scale parameter σw are unknown.

Instrumental to the scheme presented is the fact that bk
is a Bernoulli random variable with parameter

ψ(θ) � Pr{bk = +1} = 1− Fn(τ − θ), (42)

where Fn(·) is the cumulative distribution function of nk.
The pdf of the noisy observations received at the fusion
center is given by

fy
(

y
) = ψ(θ) fw

(

y − 1
)

+
[

1− ψ(θ)
]

fw
(

y + 1
)

. (43)

Note that the resulting pdf is a GCD mixture with mixing
parameters ψ and [1 − ψ]. To simplify the problem, we first
estimate ψ = ψ(θ) and then utilize the invariance of the ML
estimate to determine θ using (42).

Using the log-likelihood function, the ML estimate of
ψ ∈ (0, 1) reduces to

ψ̂ = arg max
ψ

K
∑

k=1

log
{

ψ fw
(

yk − 1
)

+
[

1− ψ
]

fw
(

yk + 1
)}

.

(44)

The unknown parameter set for the estimation problem
is {ψ, σw, p}. We address this problem utilizing the well
known EM algorithm [28] and a variation of Algorithm 1 in
Section 3.4. The followings are the E- and M-steps for the
considered sensor network application.

E-Step. Let the parameters estimated at the j-th iteration

be marked by a superscript ( j) and Γ( j) = (σ̂
( j)
w , p̂( j)). The

posterior probabilities are computed as

qk =
ψ̂( j) fw

(

yk − 1 | Γ( j)
)

ψ̂( j) fw
(

yk − 1 | Γ( j)
)

+
[

1− ψ̂( j)
]

fw
(

yk + 1 | Γ( j)
) .

(45)

M-Step. The ML estimates {ψ̂( j+1),Γ( j+1)} are given by

ψ̂( j+1) = 1
K

K
∑

k=1

qk, Γ( j+1) = arg max
Γ

Λ(Γ), (46)
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Figure 6: Power line communication enhancement. (a) Transmitted signal, (b) Received signal corrupted by α-stable noise α = 0.4. Filtering
results with: (c) Mean, (d) Median, (e) FLOM P = .25, (f) Myriad, (g) Meridian, (h) M-GC.

where

Λ(Γ) =
K
∑

k=1

qkΥ
(

yk − 1;Γ
)

+
(

1− qk
)

Υ
(

yk + 1;Γ
)

, (47)

where Υ(u;Γ) = log a(p) + log σw − 2p−1 log(σ
p
w + |u|p) and

a(p) = pΓ(2/p)/2(Γ(1/p))2. We use a suboptimal estimate
of p in this case, choosing the value from P = {0.5, 1, 1.5, 2}
that maximizes (46).

Numerical results comparing the derived GCD method,
coined maximum likelihood with unknown generalized
Cauchy channel parameters (MLUGC), with the Gaussian

channel-based method derived in [33], referred to as maxi-
mum likelihood with unknown Gaussian channel parameter
(MLUG), are presented in Figure 7. The MSE is used as
a comparison metric. As a reference, the MSE of the
binary estimator (BE) and the clairvoyant estimator (CE)
(estimators in perfect transmission) are also included.

A sensor network with the following parameters is used:
θ = 1, τ = 0, σn = 1, and K = 1000, and the
results are averaged for 200 independent realizations. For the
channel noise we use two models: contaminated p-Gaussian
and α-stable distributions. Figure 7(a) shows results for
contaminated p-Gaussian noise with the variance set as
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Figure 7: Sensor network example with parameters: θ = 1, τ = 0, σn = 1, and K = 1000. Comparison of MLUGC, MLUG, BE, and CE. (a)
Channel noise contaminated p-Gaussian distributed with σ2

w = 0.5. MSE as function of the of the contamination parameter, p. (b) Channel
noise α-stable distributed with σw = 0.5. MSE as function of the tail parameter, α.

σ2
w = 0.5 and varying p (percentage of contamination) from

10−3 to 0.2. The results show a gain of at least an order of
magnitude over the Gaussian-derived method. Results for α-
stable distributed noise are shown in Figure 7(b), with scale
parameter σw = 0.5 and the tail parameter, α, varying from
0.2 to 2 (very impulsive to Gaussian noise). It can be observed
that the GCD-derived method has a gain of at least an order
of magnitude for all α. Furthermore, the MLUGC method
has a nearly constant MSE for the entire range. It is of note
that the MSE of the MLUGC method is comparable to that
obtained by the MLUG (Gaussian-derived) for the especial
case when α = 2 (Gaussian case), meaning that the GCD-
derived method is robust under heavy-tailed and light-tailed
environments.

5.3. Robust Reconstruction Methods for Compressed Sensing.
As a third example, consider compressed sensing, which is
a recently introduced novel framework that goes against the
traditional data acquisition paradigm [34]. Take a set of m
sensors making observations of a signal x0 ∈ Rn. Suppose
that x0 is s-sparse in some orthogonal basis Ψ, and let {φi}mi=1
be a set of measurements vectors that are incoherent with the
sparsity basis. Each sensor takes measurements projecting x0

onto {φi}mi=1 and communicates its observation to the fusion
center over a noisy channel. The measurement process can
be modeled as y = Φx0 + z, where Φ is an m× n matrix with
vectors φi as rows and z is white additive noise (with possibly
impulsive behavior). The problem is how to estimate x0 from
the noisy measurements y.

A range of different algorithms and methods have been
developed that enable approximate reconstruction of sparse
signals from noisy compressive measurements [35–39]. Most
such algorithms provide bounds for the L2 reconstruction
error based on the assumption that the corrupting noise is

bounded, Gaussian, or, at a minimum, has finite variance.
Recent works have begun to address the reconstruction of
sparse signals from measurements corrupted by outliers, for
example, due to missing data in the measurement process
or transmission problems [40, 41]. These works are based
on the sparsity of the measurement error pattern to first
estimate the error and then estimate the true signal, in an
iterative process. A drawback of this approach is that the
reconstruction relies on the error sparsity to first estimate
the error, but if the sparsity condition is not met, the
performance of the algorithm degrades.

Using the arguments above, we propose to use a robust
metric derived in Section 4 to penalize the residual and
address the impulsive sampling noise problem. Utilizing
the strong theoretical guarantees of basis pursuit (BP)
L1 minimization, for sparse recovery of underdetermined
systems of equations (see [34]), we propose the following
nonlinear optimization problem to estimate x0 from y:

min
x∈Rn

‖x‖1 subject to
∥

∥y −Φx
∥

∥

LL2,γ ≤ ε. (48)

The following result presents an upper bound for the
reconstruction error of the proposed estimator and is based
on restricted isometry properties (RIPs) of the matrix Φ (see
[34, 42] and references therein for more details on RIPs).

Theorem 1 (see [42]). Assume the matrix Φ meets an RIP,
then for any s-sparse signal x0 and observation noise z with
‖z‖LL2,γ ≤ ε, the solution to (48), denoted as x∗, obeys

∥

∥x∗ − x0
∥

∥

2 ≤ Cs · 2γ ·
√

m(eε − 1), (49)

where Cs is a small constant.

Notably, γ controls the robustness of the employed norm
and ε the radius of the feasibility set LL2 ball. Let Z be a
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Cauchy random variable with scale parameter σ and location
parameter zero. Assuming a Cauchy model for the noise
vector yields E‖z‖LL2,γ = mE log{1 + γ−2Z2} = 2m log(1 +
γ−1σ). We use this value for ε and set γ as MAD(y).

Debiasing is achieved through robust regression on a
subset of x̂ indexes using the Lorentzian norm. The subset
is set as I = {i : |x̂i| > α}, α = λmaxi|x̂i|, where 0 < λ < 1.
Thus x̃I ∈ Rd is defined as

x̃I = arg min
x∈Rd

∥

∥y −ΦIx
∥

∥

LL2,σ , (50)

where d = |I|. The final reconstruction after the regression
(x̃) is defined as x̃I for indexes in the subset I and zero outside
I . The reconstruction algorithm composed of solving (48)
followed by the debiasing step is referred to as Lorentzian
basis pursuit (BP) [42].

Experiments evaluating the robustness of Lorentzian
BP in different impulsive sampling noises are presented,
comparing performance with traditional CS reconstruction
algorithms orthogonal matching pursuit (OMP) [38] and
basis pursuit denoising (BPD) [34]. The signals are synthetic
s-sparse signals with s = 10 and length n = 1024. The
number of measurements ism = 128. For OMP and BPD, the
noise bound is set as ε = mσ2, where σ is the scale parameter
of the corrupting distributions. The results are averaged over
200 independent realizations.

For the first scenario, we consider contaminated p-
Gaussian as the model for the sampling noise, with σ2 =
10−2, resulting in an SNR of 18.9 dB when no contamination
is present (p = 0). The amplitude of the outliers is
set as δ = 103, and p is varied from 10−3 to 0.5. The
results are shown in Figure 8(a), which demonstrates that
Lorentzian BP significantly outperforms BPD and OMP.
Moreover, the Lorentzian BP results are stable over a range
of contamination factors p, up to 5% of the measurements,
making it a desirable method when measurements are lost or
erased.

The second experiment explores the behavior of
Lorentzian BP in α-stable environments. The α-stable noise
scale parameter is set as σ = 0.1 (γ in the traditional
characterization) for all cases, and the tail parameter, α, is
varied from 0.2 to 2, that is, very impulsive to the Gaussian
case. The results are summarized in Figure 8(b), which shows
that all methods perform poorly for small values of α, with
Lorentzian BP yielding the most acceptable results. Beyond
α = 0.8, Lorentzian BP produces faithful reconstructions
with an SNR greater than 20 dB, and often 30 dB greater
than BPD and OMP results. Also of importance is that
when α = 2 (Gaussian case), the performance of Lorentzian
BP is comparable with that of BPD and OMP, which are
Gaussian-derived methods. This result shows the robustness
of Lorentzian BP under a broad range of noise models, from
very impulsive heavy-tailed to light-tailed environments.

5.4. Robust Clustering. As a final example, we present a
robust fuzzy clustering procedure based on the LLp metrics
defined in Section 4, which is suitable for clustering data
points involving heavy-tailed nonGaussian processes. Dave
proposed the noise clustering (NC) algorithm to address

noisy data in [43, 44]. The NC approach is successful in
improving the robustness of a variety of prototype-based
clustering methods. This method considers the noise as a
separate class and represents it by a prototype that has a
constant distance δ.

Let X = {x j}Nj=1, x j ∈ Rn, be a finite data set and C
the given number of clusters. NC partitions the data set by
minimizing the following function proposed in [43]:

J(Z) =
C
∑

i=1

N
∑

j=1

(

ui j
)m

d
(

x j , zi
)

+
N
∑

j=1

δ

⎛

⎝1−
C
∑

i=1

ui j

⎞

⎠

m

, (51)

where Z = [z1; . . . ; zC] is a matrix whose rows are the cluster
centers, m ∈ (1,∞) is a weighting exponent, and d(x j , zi) is
the squared L2 distance from a data point x j to the center zi.
U = [ui j] is a C×N matrix, called a constraint fuzzy partition
of X, which satisfies [43]

ui j ∈ [0, 1] ∀i , j,

0 <
N
∑

j=1

ui j < N ∀i,

C
∑

i=1

ui j < 1 ∀ j.

(52)

The ui j weight represents the membership of the i-th sample
to the j-th cluster. Minimization of the objective function
with respect to U, subject to the constrains in (52), gives [43]

ui j = 1

C
∑

k=1

⎡

⎣

d
(

x j , zi
)

d
(

x j , zk
)

⎤

⎦

1/(m−1)

+

⎡

⎣

d
(

x j , zi
)

δ

⎤

⎦

1/(m−1) .

(53)

Compared with the basic fuzzy C-means (FCM), the mem-
bership constraint is relaxed to

∑C
i=1 ui j < 1. The second term

in the denominator of (53) becomes large for outliers, thus
yielding small membership values and improving robustness
of prototype-based clustering algorithms.

To further improve robustness, we propose the applica-
tion of LLp metrics in the NC approach. Substituting the LLp

norm for d in (51) yields the objective function

J(Z) =
C
∑

i=1

N
∑

j=1

(

ui j
)m∥
∥

∥x j − zi
∥

∥

∥

LLp ,σ
+

N
∑

j=1

δ

⎛

⎝1−
C
∑

i=1

ui j

⎞

⎠

m

.

(54)

Given the objective function J(Z), a set of vectors {z}Ni=1
that minimize J(Z) must be determined. As in FCM, fix-
point iterations are utilized to obtain the solution. We use a
variation of the fixed point recursion proposed in Section 3.4
to achieve this goal. Differentiating J(Z) with respect to each
dimension l of zs, treating the ui j terms as constants, and
setting it to zero yield the fixed point function. Thus the
recursion algorithm can be written as

zsl(t + 1) =
∑N

j=1 wj(t)xjl
∑N

j=1 wj(t)
(55)
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Figure 8: Comparison of Lorentzian BP with BPD and OMP for impulsive contaminated samples. (a) Contaminated p-Gaussian, σ2 = 0.01.
R-SNR as a function of the contamination parameter, p. (b) α-stable noise, σ = 0.1. R-SNR as a function of the tail parameter, α.

Require: cluster number C, weighting parameter m, δ, maximum number of iterations or terminate parameter ε.
(1) Initialize cluster centers.
(2) While ‖zs(t + 1)− zs(t)‖ > ε or a maximum number of iterations is not reached do
(3) Compute the fuzzy set U using (53) and
(4) Update cluster centers using (55).
(5) end while
(6) return Cluster centroids Z = [z1; . . . ; zC].

Algorithm 2: LLp-based noise clustering algorithm.

with

wj(t) =
umsj p

∣

∣

∣xjl − zsl(t)
∣

∣

∣

p−2

σ p +
∣

∣

∣xjl − zsl(t)
∣

∣

∣

p , (56)

where t denotes the iteration number. The recursion is
terminated when ‖zs(t+1)−zs(t)‖2 < ε for some given ε > 0.
This method is used to find the update of the cluster centers.
Alternation of (53) and (55) gives an algorithm to find the
cluster centers that converge to a local minimum of the cost
function.

In the NC approach, m = 1 corresponds to crisp mem-
berships, and increasing m represents increased fuzziness
and soft rejection of outliers. When m is too large, spurious
cluster may exist. The choice of the constant distance δ also
influences the fuzzy membership; if it is too small, then we
cannot distinguish good clusters from outliers, and if it is
too large, the result diverges from the basic FCM. Based
on [43], we set δ = (λ/N2)

∑N
i /= j ‖xi − x j‖LLp ,σ , where λ is

a scale parameter. In order to reduce the local minimum
caused by initialization of the NC approach, we use classical

k-means on a small subset of the data to initialize a set of
cluster centers. The proposed algorithm is summarized in
Algorithm 2 and is coined the LLp-based Noise Clustering
(LLp-NC) algorithm.

Experimental results show that for multigroup heavy-
tailed process, the results of the LLp based method generally
converges to the global minimum. However, to address the
problem of local minima, the clustering algorithm is per-
formed multiple times with different random initializations
(subsets randomly sampled) and with a fixed small number
of iterations. The best result is selected as the final solution.

Simulations to validate the performance of GCD-based
clustering algorithm (LLp-NC) in heavy tailed environments
are carried out and summarized in Table 2. The experiment
uses three synthetic data sets of 400 points each with different
distributions and 100 points in each cluster. The locations of
the centers for the three sets are [−6, 2], [−2,−2], [2, 4], and
[3, 0] for each set. The first set has Cauchy distributed clusters
(GCD, p = 2) with σ = 1 and is shown in Figure 9. The
second has the meridian distribution (GCD, p = 1), with σ =
1. The meridian is a very impulsive distribution. The third
set has a two-dimensional α-stable distribution with α = 0.9
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Figure 9: Data set for clustering example 1. Cauchy distributed
samples with cluster centers [−6, 2], [−2, −2], [2, 4], and [3, 0].

Table 2: Clustering results for GCD processes and α-stable process.

N MSE MAD LLp Average Distance

LLp-NC 0.34987 0.62897 0.0968 Cauchy

L1-NC 1.8186 1.8361 0.1262 15.39

Similarity-based 1.6513 1.136 0.18236

LLp-NC 0.85197 0.9283 0.1521 Meridian

L1-NC 5.887 2.7311 0.5573 50.363

Similarity–based 5.2309 2.4627 1.8416

LLp-NC 0.50408 0.73618 0.1896 α-stable

L1-NC 3.2105 2.7684 0.2174 44.435

Similarity-based 1.7578 1.6322 1.0112

and γ = 1, which is also a very impulsive case. The algorithm
was run 200 times for each set with different initializations,
setting the maximum number of iterations to 50, ε = 0.0001,
and λ = 0.1.

To evaluate the results, we calculate the MSE, the mean
absolute deviation (MAD), and the LLp distance between
the solutions and the true cluster centers, averaging the
results for 200 trials. The LLp NC approach is compared with
classical NC employing the L1 distance and the similarity-
based method in [45]. The average L2 distance between all
points in the set (AD) is shown as a reference for each sample
set. As the results show, GCD-based clustering outperforms
both traditional NC and similarity-based methods in heavy-
tailed environments. Of note is the meridian case, which is a
very impulsive distribution. The GCD clustering results are
significantly more accurate than those obtained by the other
approaches.

6. Concluding Remarks

This paper presents a GCD-based theoretical approach that
allows the formulation of challenging problems in a robust
fashion. Within this framework, we establish a statistical

relationship between the GGD and GCD families. The pro-
posed framework, due to its flexibility, subsumes GGD-based
developments, thereby guaranteeing performance improve-
ments over the traditional problem formulation techniques.
Properties of the derived techniques are analyzed. Four
particular applications are developed under this framework:
(1) robust filtering for power line communications, (2)
robust estimation in sensor networks with noisy channels,
(3) robust reconstruction methods for compressed sensing,
and (4) robust fuzzy clustering. Results from the applications
show that the proposed GCD-derived methods provide a
robust framework in impulsive heavy-tailed environments,
with performance comparable to existing methods in less
demanding light-tailed environments.

Appendices

A. Proof of Lemma 1

Let X be the RV formed as the ratio of two RVs, U and V :
X = U/V . In the case where U and V are independent, the
pdf of the RV X , fX(·), is given by [46]

fX(x) =
∫∞

−∞
|v| fU(xv) fV (v)dv, (A.1)

where fU(·) and fV (·) denote the pdf s of U and V ,
respectively. Replacing the GGD in (A.1) and manipulating
the obtained expression yield

fX(x) = C
(

αU ,β
)

C
(

αV ,β
)

×
∫∞

v=−∞
|v| exp

{

−
( |xv|
αU

)β
}

exp

{

−
( |v|
αV

)β
}

dv,

(A.2)

where C(α,β) � β/(2αΓ(1/β)). Noting that |ab| = |a‖b| and
dividing the integral give

fX(x) = C
(

αU ,β
)

C
(

αV ,β
)

×
[∫

v>0
v exp

{

−vβK(

αU ,αV ,β, x
)

}

dv

−
∫

v≤0
v exp

{

−(−v)βK
(

αU ,αV ,β, x
)

}

dv
]

,

(A.3)

where

K
(

αU ,αV ,β, x
)

� |x|β

α
β
U

+
1

α
β
V

. (A.4)

Consider first

I1(v) �
∫

v>0
v exp

{

−vβK(

αU ,αV ,β, x
)

}

dv. (A.5)

Letting z = vβK(αU ,αV ,β, x), after some manipulations,
yields

I1(v) = 1
βK2/β

(

αU ,αV ,β, x
)

∫

z>0
z(2/β)−1 exp(−z)dz.

(A.6)
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Noting that

∫

z>0
z(2/β)−1 exp(−z)dz = Γ

(

2
β

)

(A.7)

gives

I1(v) = 1
βK2/β

(

αU ,αV ,β, x
)Γ

(

2
β

)

. (A.8)

Consider next

I2(v) �
∫

v≤0
v exp

{

−(−v)βK
(

αU ,αV ,β, x
)

}

dv. (A.9)

Letting w = −v, it is easy to see that I2(v) = −I1(v), thus
I1(v)− I2(v) = 2I1(v). Thus,

fX(x) = C
(

αU ,β
)

C
(

αV ,β
)

2I1 (A.10)

gives the desired result after substituting the corresponding
expressions and letting αU/αV = ν and β = λ.

B. Proof of Proposition 1

(1) Differentiating Q(θ) yields

Q′(θ) =
N
∑

i=1

−p|x(i)− θ|p−1 sgn(x(i)− θ)

σ p + |x(i)− θ|p . (B.1)

For θ < x[1], sgn(x(i)− θ) = 1 for all i. Then Q′(θ) <
0, which implies that Q(θ) is strictly decreasing in
that interval. Similarly for θ > x[N], sgn(x(i) − θ) =
−1 for all i and Q′(θ) > 0, showing that the function
is strictly increasing in that interval.

(2) From (1) we see that Q′(θ) /= 0 if θ /∈ [x[1], x[N]], then
all local extrema of Q(θ) lie in the interval [x[1], x[N]].

(3) Let x[k] < θ < x[k+1] for any k ∈ 1, 2, . . . ,N − 1. Then
the objective function Q(θ)becomes

Q(θ) =
k
∑

i=1

log
{

σ p + (θ − x(i))p
}

+
N
∑

i=k+1

log
{

σ p + (x(i)− θ)p
}

.

(B.2)

The second derivative with respect to θ is

Q′′(θ) =
k
∑

i=1

p
(

p − 1
)

(θ − x(i))p−2σ p − p(θ − x(i))2p−2

(

σ p + (θ − x(i))p
)2

+
N
∑

i=k+1

p
(

p − 1
)

(x(i)− θ)p−2σ p − p(x(i)− θ)2p−2

(

σ p + (x(i)− θ)p
)2 .

(B.3)

From (B.3) it can be seen that if 0 < p ≤ 1,
then Q′′(θ) < 0 for x[k] < θ < x[k+1], therefore
Q(θ) is concave in the intervals Ik = (x[k], x[k+1]),

k ∈ 1, 2, . . . ,N − 1. If all the extrema points lie in
[x[1], x[N]], the function is concave in Ik, and since
the function is not differentiable in the input samples
{x(i)}Ni=1 (critical points), then the only possible local
minimums of the objective function are the input
samples.

(4) Consider the ith term in Q(θ) and define

qi(θ) = log
{

σ p + |x(i)− θ|p}. (B.4)

Clearly for each qi(θ) there exists a unique minima
in θ = x(i). Also, it can be easily shown that qi(θ)
is convex in the interval [x(i) − a, x(i) + a], where
a = σ(p − 1)1/p, and concave outside this interval
(for 1 < p ≤ 2). The proof of this statement is
divided in two parts. First we consider the case when
N = 2 and show that there exist at most 2N − 1(= 3)
local extrema for this case. Then by induction we
generalize this result for any N .

Let N = 2. If |x[2] − x[1]| < a the cost function is
convex in the interval [x[1], x[2]] since it is the sum of
two convex functions (in that interval). Thus, Q(θ)
has a unique minimizer. Now if |x[2] − x[1]| ≥ a,
the cost function has at most one inflexion point
(local maxima) between (x[1], x[2]) and at most two
local minimas in the neighborhood of x[1] and x[2]

since qi(θ), i = 1, 2, are concave outside the interval
[x[i] − a, x[i] + a]. Then, for N = 2 we have at most
2N − 1 = 3 local extrema points.

Suppose that we have N = K samples. If |x[K] −
x[1]| < a, the cost function is convex in the interval
[x[1], x[K]] since it is the sum of convex functions (in
that interval) and it has only one global minima. Now
suppose that |x[K] − x[1]| ≥ a, and also suppose that
there are at most 2K − 1 local extrema points. Let
x(K + 1) be a new sample in the data set, and without
loss of generality assume that x(K + 1) > x[K].

If |x(K − 1) − x[K]| < a, the new sample will not
add a new extrema point to the cost function, due
to convexity of qK+1(θ) for the interval [x(K + 1) −
a, x(K + 1) + a] and the fact that Q(θ) is strictly
increasing for θ > x[K]. If |x(K − 1) − x[K]| ≥ a,
the new sample will add at most two local extrema
points (one local maxima and one local minima) in
the interval (x[K], x(K + 1)]. The local maxima is an
inflexion point between (x[K], x(K +1)), and the local
minima is in the neighborhood of x(K+1). Therefore,
the total number of extrema points for N = K + 1 is
at most 2K − 1 + 2 = 2(K + 1)− 1, which is the claim
of the statement. This concludes the proof.

C. Proof of Property 1

Using the properties of the argmin function, the M-GC
estimator can be expressed as

̂θ = arg min
θ

N
∑

i=1

log

{

1 +
|x(i)− θ|p

σ p

}

. (C.1)
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Let δ = σ p. Since multiplying by a constant does not affect
the result of the arg min operator, we can rewrite (C.1) as

̂θ = arg min
θ

N
∑

i=1

δ log

{

1 +
|x(i)− θ|p

δ

}

. (C.2)

Using the fact that a log b = log ba and taking the limit as
δ → ∞ yield

lim
δ→∞

̂θ = lim
δ→∞

arg min
θ

N
∑

i=1

log

{

1 +
|x(i)− θ|p

δ

}δ

= arg min
θ

N
∑

i=1

|x(i)− θ|p,

(C.3)

where the last step follows since

lim
δ→∞

log
{

1 +
u

δ

}δ

= u. (C.4)

D. Proof of Property 2

The M-GC estimator can be expressed as

̂θ = arg min
θ

N
∑

i=1

log

{

1 +
|x(i)− θ|p

σ p

}

= arg min
θ

log

⎧

⎨

⎩

N
∏

i=1

[

1 +
|x(i)− θ|p

σ p

]

⎫

⎬

⎭

.

(D.1)

Define

Hσ(θ; x) =
N
∏

i=1

[

1 +
|x(i)− θ|p

σ p

]

. (D.2)

Since the log function is monotone nondecreasing, the M-
GC estimator can be reformulated as

̂θ = arg min
θ

Hσ(θ; x). (D.3)

It can be checked that when σ is very small

Hσ(θ; x) = O
(

1
σ p

)N−r(θ)

, (D.4)

where r(θ) is the number of times the value θ is repeated in
the sample set and O denotes the asymptotic order as σ → 0.
In the limit the exponent N − r(θ) must be minimized for

Hσ(θ; x) to be minimum. Therefore, ̂θ will be one of the most
repeated values in the input set. Define r = max j r(x( j)),
then for x( j) ∈M, expanding the product in (D.2) gives

Hσ
(

x
(

j
)

; x
) =

⎧

⎪

⎨

⎪

⎩

∏

i,x(i) /= x( j)

|x(i)− θ|p
σ p

⎫

⎪

⎬

⎪

⎭

+ O
(

1
σ p

)N−r−1

.

(D.5)

Since the first term in (D.5) is O(1/σ p)N−r , the second term is
negligible for small σ . Then, in the limit, ̂θ can be computed
as

lim
σ→ 0

̂θ = arg min
x( j)∈M

[

Hσ
(

x
(

j
)

; x
)]

= arg min
x( j)∈M

⎡

⎢

⎣

∏

i,x(i) /= x( j)

∣

∣x(i)− x
(

j
)∣

∣
p

σ p

⎤

⎥

⎦

= arg min
x( j)∈M

⎡

⎢

⎣

∏

i,x(i) /= x( j)

∣

∣x(i)− x
(

j
)∣

∣

⎤

⎥

⎦.

(D.6)
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