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We consider blind equalization for block transmissions over the frequency selective Rayleigh fading channel. In the absence of pilot
symbols, the receiver must be able to perform joint equalization and blind channel identification. Relying on a mixed discrete-
continuous state-space representation of the communication system, we introduce a blind Bayesian equalization algorithm based
on a Gaussian mixture parameterization of the a posteriori probability density function (pdf) of the transmitted data and the
channel. The performances of the proposed algorithm are compared with existing blind equalization techniques using numerical
simulations for quasi-static and time-varying frequency selective wireless channels.

1. Introduction

Blind equalization has attracted considerable attention in the
communication literature over the last three decades. The
main advantage of blind transmissions is that they avoid
the need for the transmission of training symbols and hence
leave more communication resources for data.

The pioneering blind equalizers proposed by Sato [1]
and Godard [2] use low-complexity finite impulse response
filters. However, these methods suffer from local and slow
convergence and may fail on ill-conditioned or time-varying
channels.

Other authors have proposed symbol-by-symbol soft-
input soft-output (SISO) equalizers based on trellis search
algorithms. Two such approaches have been proposed so
far to achieve SISO equalization in a blind or semiblind
context. The first approach relies on fixed lag smoothing
[3] and was further simplified in [4] by allowing pruning
and decision feedback techniques. The second approach
uses fixed interval smoothing [5, 6]. The aforementioned
methods employ a trellis description of the intersymbol
interference (ISI) [7], where each discrete ISI state has its
associated channel estimate. Another fixed interval method,
based on expectation-maximization channel identification,
has appeared recently [8], but this technique is restricted to
static channels.

In this paper, we will consider fixed interval smoothing,
which is adapted to block-oriented communications. After
modeling the ISI and the unknown channel at the receiver
side, we obtain a combined state-space formulation of our
communication system. Specifically, the ISI is modeled as
a discrete state space with memory, while the (potentially
time-varying) channel is modeled as an autoregressive (AR)
process.

Main Contributions and Related Work. The main technical
contribution of this work is the introduction of a blind
equalization technique based on Gaussian mixtures. A major
problem in blind equalization is that multiple modes arise
in the a posteriori channel pdf, which originate from the
phase ambiguities inherent to digital modulations. Assume
that an equalizer is able to represent only a single mode,
as is usually the case, it is likely that the wrong mode is
retained during a fading event or due to the occasional
occurrence of high observation noise. In such a situation,
a classical equalizer is not able to recover the correct phase
determination in a blind mode, since no pilot symbol is
available. Therefore, all the subsequent decisions in the frame
will be erroneous with high probability. The main feature
of the proposed algorithm is that the multimodality of the
channel a posteriori pdf is explicitly taken into account
thanks to a Gaussian mixture parameterization. We derive
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the corresponding SISO smoothing algorithm suitable to
solve our blind equalization problem.

Note that the idea of Gaussian mixture processing has
been presented in [9] in the context of MIMO decoding and
that the results in this paper have been partially presented in
[10]. Also the idea of exploiting Gaussian mixtures for blind
equalization appeared previously in a different form [11].

Organization. Section 2 describes the adopted system mod-
el. Section 3 introduces the Gaussian mixture-based blind
equalization technique. Finally, in Section 4, the performa-
nces of the proposed technique are assessed through
numerical simulations and compared with existing blind
equalization techniques.

Notations. Throughout the paper, bold letters indicate vec-
tors and matrices. Ne(x : m,P) will denote a complex
Gaussian distribution of the variable x, with mean m and
covariance matrix P. I,, denotes the m X m identity matrix,
while 0,, denotes the m X m all-zero matrix. The symbol
® denotes the Kronecker product. The operator det(-) will
denote the determinant of a matrix.

2. System Model

The transmitted data are organized in GSM-like bursts
containing B bits, as illustrated in Figure 1. For ease of
exposition, we consider binary phase shift keying (BPSK)
modulation, so that the bit is transmitted at instant k, by €
{—1,+1}. The tail is a short all-one vector of length equal
to the channel memory, used to set the final ISI state of the
current data burst to a known value. At the same time, this
also sets the initial ISI state of the next data burst to the
same known value. Since blind equalization is of interest, no
additional pilot symbols are inserted in the data stream.

We assume a discrete Rayleigh fading channel of memory
L as depicted in Figure 2. The elements of the impulse
response {c.}i, are modeled as independent zero-mean
complex Gaussian random variables. For a static channel, the
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channel state is defined as x¢ = [c},c;,...,cf] and evolves
according to the trivial dynamical system

Xi = Xk—1. (1)

For a time-varying channel, let B; and T denote the max-
imum Doppler shift and the symbol duration, respectively.
The channel autocorrelation can be modeled as follows [12]:

E[cick " | = Jo@rnByT), i=0,...,L, 2)

where Jy is the zero-order Bessel function of first kind. A
good approximation of the channel statistics is obtained with
an order two autoregressive process [13] of the following
form:

c,i = gblc,i_l + ¢2c};_2 + 71};, i=0,...,L, (3)

by letting
¢$2 = -1, (4)

¢1 = 2r cos(w),

where r = 0.8097"5T and w = 0.781 x 27B,T. The driving
noise term 7, is chosen as a zero-mean white complex
Gaussian process of variance

1+¢
q= 1=
(05
so as to normalize the channel coefficients to unit vari-

ance [14]. Consequently, the channel state, in the case
of a time-varying wireless channel, is defined as x; =

[(1-¢2)7 - ¢3], (5)

T .
(e, ) 1,ctrCh_1rensck ek |17 and evolves according to the
dynamical system

X, = Fxp 1 + my, (6)

where state transition matrix is given by

D 0, ... 0,
0 ® ... 0,

o R | ¢:[? %} %
0, 0, ... ®

and the process noise vector is given by

T
T = [71,?,0,71,},0,...,71,%,0] . (8)

The received complex noisy observation at instant k has
the following form:

L
Ye = chbi+ g, 9)

i=0

where ny is a complex white Gaussian noise sample with
single-sided power spectral density Np.

We define the ISI state s; as the decimal form of the
binary subsequence [bk, bx_1,. .., bk_r+1] T, which can take 2
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discrete values. Let fi denote the ISI state transition function
defined by the following relation:

sk = fr(sk—1, br). (10)

It is well known that f; can be represented graphically by a
trellis diagram containing 2" states [7].

For a time-varying channel, it is now clear from (6) and
(9) that our communication system can be described as a
mixed discrete-continuous state space of the form (sg,xx),
whose dynamics are given by

Sk = _ﬁ((skfl) bk))

Xk = Bxp-1 + 7, (11)
Vi = he(si1,56) x5 + g

The second equation in (11) can be interpreted as a linear
dynamical system with state transition matrix given by (7)
and zero-mean Gaussian process noise, with covariance
matrix

Q=ql @ [(1) 8] (12)

The third equation in (11) can be interpreted as a lin-
ear observation process, where the observation matrix
hy(sk_1, sk) has the form

hi(sk_1,5k) = (b, 0,bk-1,0,.. ., bp_1,017.  (13)

From (1) and (9), a slightly different state-space repre-
sentation is obtained for the static channel as a special case of
(11) by choosing F = I141, Q = O+, and

hy(se-155%) = (b bi—1,.. > bkr]”. (14)

3. Blind SISO Equalization Using a Gaussian
Mixture Approach

In this section, we derive a fixed-interval smoother by
propagating a mixture of N Gaussians per ISI state forward
and backward in the ISI trellis. Consequently, the ISI state s
and the channel state x; will be jointly estimated. Finally, the
desired a posteriori probabilities for the bits by are obtained
by a simple marginalization step.

3.1. Forward Filtering. A recursive expression of p(si,Xx |
Y1), where yi.c = (¥1, ¥2,. .., ¥k) is obtained by noting that

P(sio X yik) = > plsk | sk=1)p (e | hue(sk—1, sk), )

Sk—1

X JP(Xk | k1) P (Sk-1>Xk—15 Y1:k-1) dXk -1,
(15)
where the discrete summation extends over the states sx_1,

for which a valid transition (sk—1,sx) exists. In general, the
multiplications and integration in (15) cannot be expressed

in closed form, therefore, we introduce the following Gaus-
sian mixture parameterization at instant k — 1 :

p(skflaxkfl)yl:kfl)

M=

l
—

(xi(sk—l)N@ (Xk—l : X;'cfl\kfl(sk—lh P;;71|k71(5k—1))-
i

(16)

In (16), each discrete state s,_; is associated with a mixture
of N Gaussians, where N is a design parameter of choice.

Theorem 1. A closed form expression of p(sk,Xk, y1:k) is
obtained as follows:

P(Sk)xk)yl:k)

N
= > > sk, 50) Ne (Xk 1xi|k(5k—1,5k))P;dk(Sk—l)Sk)))

Sk-11=1

(17)
where the means xil «(Sk—1,8k) and covariance matrices
P2|k(5k—1,5k) associated with the state transition (sg_1, k) are
obtained from the following recursions:

X;(\k,l(Sk—l) = in,l\k,l(sk—l):
Pl (sk-1) = FPi_y (s )F7 +Q,
K (sk-1,5¢)
=P, (k) hi(seo 50"
(B (st "Rl (kDb 0" +No)
X (Sk-1> k)
= Xy (sk-1) + Kie(se-1, 5¢)
X ()/k - hk(Sk—l,Sk)TX};‘k,l(Sk—l)),
P} (sk-155¢)
=P (sk1) — K (sk-1, sty (sx-1, 56)

X Pi\k_l(sk—lh

(18)
and the weights o' (sg_1, sx) are given by
o (sk-1,5) = &' (51 ) p(sic | sk-1)
x Ne ()/k : hk(sk—l,sk)Tka_l(Sk—l);
(19)

hie(sk-1,56) TP (sk-1)

shi(se-1,5) " + No ).
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FiGure 3: Example of forward propagation of Gaussian mixtures
(with N = 4) on a 4-state trellis.

Proof. Injecting (16) into (15), one obtains

P (Sk>Xk> Y1:k)

N
=> > @ (se-)plsk | see)p (i | he(se—1,50), Xk)

Sk-11=1
XIP(Xk | Xk—1)

X Ne (%ot 03y (ken)s Pl e i(Sk-1)) 1.
(20)

In the above expression, we easily recognize the integral as
the well-known prediction step of Kalman filtering [14].
Moreover, the multiplication by p(yx | hi(sk—1, k), Xx) is the
correction step of Kalman filtering. Therefore, p(sk, Xk, y1:c)
can be written as (17). O

Figure 3 illustrates how the Gaussian mixture p(sy =
0,Xx, y1.k) is computed on a 4-state trellis. The components
of the Gaussian mixtures p(si-1 = 0,Xk—1, Y1k-1) and
p(sk—1 = 2,Xk—1, ¥1:k—1) undergo a Kalman prediction and
correction given the hypothesized data symbol on the valid
trellis branch (sx_.; = 0,sx = 0) and (sp_; = 2,8 =
0), respectively. The resulting Gaussian mixture p(sy =
0,Xk, y1.k) is obtained as a weighted sum of the resulting
mixtures.

3.2. Complexity Reduction Algorithm (CRA). A problem with
(17) is that each discrete state s; is now associated with
a mixture of more than N Gaussians. This means that
the number of terms in the Gaussian mixture will grow
with time. In order to keep the computational complexity
constant for each time instant, we need to approximate the
exact expression given by (17) as follows:

N

P (s X6 y1k) = . al(sK)Ne (Xk :X}Qk(Sk),P};‘k(Sk)), (21)
i=1

so that again N Gaussians with weight &/(s), mean Xéd (58,
and covariance P};‘ «(sx),i=1,...,N are associated with each
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state sk, as in (16). We do this by applying the CRA proposed
in [15]. Assume that . (resp. N;) is a multivariate Gaussian,
whose weight, mean, and covariance are given by w;, x;, and
P, (resp. w2, X2, P2). In [15], a practical measure of similarity
between the two densities is given by

D = wiwy [L(M | N2) + LN ]| M)], (22)

where £(-]|-) denotes the Kullback-Leibler distance. Then,
pairs of similar Gaussians with minimal D are repeatedly
merged until N Gaussians remain using the following
approximation:

wiNe (Xk : X1, P1) + waNe (Xk 1 X2, P2) = wlNe (x¢ @ x, P),

(23)
where
w=wi + wa,
wi1X] + WXo
B w1 + wy
24)
. wi H (
= it [P+ (1 - x)(x1 - %)"]
w» H
+W1 " [Pz +(x2 —x)(x% — Xx) ]

3.3. Backward Filtering. Let T denote the total number of
available observations and yis1.r = (Vk+1> Vks2>---» Y1) A
time-reversed version of the forward filter in Section 3.1
can also be derived. We seek a recursive expression of the
likelihood p(yks1:T | Sk>Xk), propagated backward in time.
We obtain the following recursion:

Pkt | Sk Xk)

= > plsksr | s) X Jp(xkﬂ | Xx)

Sk+1
X (Vi1 | B (ks Sk1)> X1 )

X P()’k+2:T | 5k+1)Xk+1)ka+1y
(25)

where the discrete summation extends over the states si1, for
which a valid transition (s, sx+1) exists.

Theorem 2. Assume that the following Gaussian mixture
parameterization:

P(}’k+2:T | Sk+1>Xk+1)

N
= > Bilsirr) Ne (Xeon Xy o (ko) Py o7 (k1)
i=1

(26)
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is available at instant k + 1, a closed form expression of
P(Vk+1:75k> Xk ) is obtained as

P (Ykrrer | S Xk)

N
= > > Biskrsee1) Ne (Xk S Xk 17 (Sko Sk1)s

Sk+1 i=1

(27)

P;dkﬂ;r(sk: Sk+1 )))

where the means x}dk 1.7 (S Ske1) and covariance matrices

P;‘clkH:T(sk,skH) associated with the state transition (Sk, Sk+1)
are obtained from the following recursions:

Ki, (s> k1)
= Pi+1\k+2;T(5k+l)hk+l(5k) k1)
X (i1 (5t ) Py (st DBt (10 560) ™ +No)
x;;+1\k+1;T(5k)5k+1)
= X;;+1\k+2;T(5k+l) + K;ﬁl(sk: Sk+1)
X (yk+1 - hk+1(Sk:5k+1)TX;i+”k+2:T(Sk+1)),
P2+1\k+1:T(5k’5k+1)
= Phtperar (k1) = Ky (56 5641)
X hgr1 (sk, 5k+1)TP§<+Hk+2:T(Sk+1),
xilk+l:T(sk’Sk+1) = FX;chllkH:T(Sk: Sk+1)s

P2|k+1:T(Sk: Sk+1) = FP;;+1|k+1;T(5kJ ske1) T+ Q,
(28)

and the weights B (sk, sk+1) are given by
B (sk> k1)
= B (sk+1) p(ske1 | sK)
X Ne (yk+1 e (St Sken) " X e (k)

hyii (s 5k+1)TP;{H\k+2;T(5k+1)hk+1(5k,5k+1)* +N0>-
(29)

The proof is obtained by injecting (26) into (25) and using the
same arguments as in the demonstration of Theorem 1.

Figure 4 illustrates how the Gaussian mixture p(ys1.1 |
sk = 1,x¢) is computed on a 4-state trellis. The components
of the Gaussian mixtures p(yi+2r | Ske1 = 2,Xke1) and
PWks2r | Sks1 = 3,Xk41) undergo a Kalman correction
and backward prediction given the hypothesized data symbol
on the valid trellis branch (sy = 1,851 = 2) and (s =
L,ske1 = 3), respectively. The resulting Gaussian mixture
P(ksrr | sk = 1,Xx) is obtained as a weighted sum of the
resulting mixtures.

Pksrrl sk = 1, xk)

FiGuURre 4: Example of backward propagation of Gaussian mixtures
(with N = 4) on a 4-state trellis.

Again, we need to apply the CRA of Section 3.2. Com-
plexity reduction algorithm to (27), so that p(yk+1.7 | Sk, Xk)
admits the desired form

P (Vrrrr | s> Xk)

N . , (30)
= 3 B0 Ne (% : Xfgprir (50, Py (s0))-
i=1

3.4. Smoothing. A two-filter smoothing formula is obtained
as follows:

P (Sk> Sk+1> Xk> Y1:7)

= p(sker | s6) p (sk> X5 Y1)
(31)
X Jp(Xkﬂ [ x)p Vit | et (S Ska1)> Xier1)
X P()’k+2:T | 5k+lan+1)ka+1-
Theorem 3. Using the Gaussian mixture approximations
for the forward and the backward filter introduced in Sec-

tions 3.1 and 3.3, respectively, a closed form expression of
D(Sk> Sk+1> Xk, Y1:1) is obtained as follows:

P (k> k1, Xk, y1.7)

M=

N
N y y
> 0% (s k1) Ne (X 2 X7 (ko Sicr)s Pl (5K k1))
i=1 j=1

(32)
where the covariances associated to transition (si, Sgy1) are
PZ{I;T(Sk,SkH)
= Pi\kH;T(SkySkH) X [Pi|k+1:T(Sk,$k+1) + P}‘dk(sk)]il

X P;’dk(sk))
(33)



and the means associated to transition (g, Sky1) are

N
Xk|]1:T(5k>5k+1)

i,j i —-1_i j -1
= Pl (st sicrn) X [ Ple(se) ™" xh g (5k) + P pop (5o Ske1)

X Xi\k.'.l;T(sks 5k+1)]a
(34)

for1 <1, j < N. The expression of the weights is given by
" (s, $k+1)
= o (s (k1) skt | 5k)b™ (g skee1)
x Ne (yk+1 : hk+1(Skx5k+1)TX]](+1‘k+2:T(5k+1),

.
hyi 1 (ks Skv1) P{gﬂ\kﬂ;T(skH)th(5k>5k+1)*+N0)-

(35)
The coefficient b (s, si+1) has the following form:
b" (s> k1)
B 1
md det[P{clkH:T(sk,skH) + P};lk(sk)]
i j H
XeXP{—[XHk(Sk) —Xk\kH;T(Sk,SkH)] (36)

; ) -1
[PLosrSto Sk + Py (s1) |

[ i o

Xk\k(sk) Xk|k+1;T(5k)5k+1)]},

where d denotes the dimension of the continuous valued state
variable.

Proof. In (31), the term p(sk,Xx, y1:k) has been calculated as

(21) and the integral, also appearing in (25), has already been
computed as

B (sk+1)

M=

1

J
i
X Ne <)’k+1 By (Sks Skr1) Xi+1|k+2;T(5k+1),
T
hyr sk, k1) P{c+1|k+2;7(5k+1)hk+1(5k,5k+1)*+N0>

% Ne (% 0 X 17 (ko Ske 1) P17 (S0 Sk61) ).
(37)
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PWks2:T ISk+1 = 3, Xkt1)

sk = 1, x5, y1:k)

FiGure 5: Illustration of the computation of smoothed Gaussian
mixtures (with N = 4) on a 4-state trellis.

Therefore, (31) can be rewritten as follows:

N N ‘ )
SN @l (5B (s plsien | sk

i=1j=1
Xe/v@(}’kﬂ s hyr (g 5k+1)Tx11;+1\k+2:T(5k+1)>
hy (Sk;5k+l)TP{;+1|k+2;T(Sk+1 Yhyei1 (s> Sk1) ™ +No)
XN@(xk : x};‘k(sk), P}'dk(sk))

XN@(Xk £ X0 17 (S Ske1))s Pi\kﬂ;T(Sk;Skﬂ))-
(38)

After straightforward algebraic manipulations on the prod-
uct of two Gaussian densities, the desired result (32) is
obtained. O

Figure 5 illustrates how the Gaussian mixture p(sy =
1, k1 = 3, Xk, y1.7) is computed on a 4-state trellis. The com-
ponents of the Gaussian mixtures p(Vs2.r | Sk+1 = 3, Xk+1)
undergo a Kalman correction and backward prediction given
the hypothesized data symbol on the valid trellis branch (s, =
I,sk41 = 3). The resulting Gaussian mixture is multiplied
with the Gaussian mixture p(sy = 1,Xx, y1x) computed in
the forward pass and by the scalar p(sgs1 = 3 | sk = 1), s0 as
to obtain p(s = 1, k11 = 3, Xk, Y1.7)-

Since we are interested in soft-output equalization, we
must compute smoothed bit-by-bit marginal probabilities.
Let B,((m) be the set of state transitions (s¢_1, k) such that the
information bit by = m, with m = —1,1. Taking (32) at
instant k — 1 and marginalizing out the vector xx_;, we obtain

N N
plok=mlyer)oc > > Do (ss0). (39)

(sk-1,sx)€By =1 j=1
The hard decision can then be written as follows:

/I;k = arg maiX 1}p(bk =m ‘ yl:T)' (40)

me{—1,+
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Similarly, the a posteriori pdf of the channel vector is
obtained as a Gaussian mixture by marginalizing out all
possible ISI state transitions

0" (sk, Sk+1)

Pl yrr) o D > '

(skosk+1) =1 j

M=

X Ne (Xk £ X5 1 (St Sk)s PR (ko 5k+1))-
(41)

Under the minimum mean square error (MMSE) crite-
rion, the forward filtered channel vector estimated at instant
k is obtained by marginalizing out the ISI state variable

N
Xk = Jxkp(xk | yr)dxi oo D> ad(se)xk(se).  (42)

Skoi=1

Similarly, the MMSE smoothed estimate of the channel
vector at instant k is obtained by marginalizing out all
possible ISI state transitions

Xk = JXkP(Xk | yrr)dxk
(43)

M=

< 2

N
.. i)'
D 0" (ks Ska )X 7 (Sko Skr1).
(Sio$ke1) =1 j=1

1

3.5. Complexity Evaluation. It is well known that the com-
plexity of one recursion of the Kalman filter is @ (d*) [16],
where d denotes the dimension of the continuous-valued
state estimate. However, in our forward and backward filters,
the complexity of one recursion of the Kalman filter reduces
to ©(d?) due to the block diagonal form of F and the fact that
the matrix inversion reduces to a division by a scalar. Thus,
the overall complexity per information bit of the forward
and backward filter is @ (2L(L + 1)>N). The complexity per
information bit of the smoothing pass can be evaluated as
O(2E(L + 1)’ N?), due to the matrix inversions.

4. Numerical Results

4.1. Comparison with Existing Methods. We consider a
memory-2 Rayleigh fading channel simulated with the
method introduced in [17]. The standard deviations of
the resulting three complex processes (cf,cj,ci) are set at
(0.407,0.815,0.407). The block size is B = 100 bits. As
illustrated in Figure 1, a tail of length 2 bits is used, which
enables the proposed algorithm to start with the correct
initial and final ISI state when processing each frame. This
is necessary to remove the +m phase ambiguity inherent
to BPSK modulation. We assume that each data block is
affected by an independent channel realization. E;, denotes
the average energy per bit.

We compare the bit error rate (BER) of our method
with two kinds of blind equalizers. The first kind of blind
equalizers consists of Baud-rate linear filters optimized with
the constant modulus algorithm (CMA) [2] or with the first
cost function (FCF) introduced in [18]. These equalizers

10°

BER

1074 L
0 5 10 15 20 25 30 35 40 45
Ey/Ny (dB)
—A— PSP
—&— FCF
—— CMA

Gaussian mixture smoother -N = 1
Gaussian mixture smoother -N = 2
—— Perfect CSI

F1GURE 6: BER performances of blind equalization at B;T = 0.

are iterated 50 times back and forth on each data block, in
order to aleviate the slow convergence problem [19]. There
is also the issue of the ambiguities inherent to these blind
equalizers. Differential encoding of the transmitted data is
used to solve the phase ambiguity problem. Also, a length-
10 known preamble is used to resolve the delay ambiguity.
The lengths of the CMA and FCF equalizers were optimized
by hand, to 5 and 15 coefficients, respectively. The second
kind of blind equalizer is the per-survivor processing (PSP)
algorithm [20], which is similar in spirit to the proposed
method, since it is a trellis-based algorithm operating on the
conventional 4-state ISI trellis [7] and using Kalman filtering
for channel estimation. However, since the path pruning
strategy employs the Viterbi algorithm [7], it is not an SISO
method.

Figure 6 illustrates the BER of the different equalizers
as a function of E;/Nj for a static Rayleigh fading channel
(B4T = 0). The CMA and FCF equalizers reach an error
floor due to residual ISI. The same phenonenon is observed
for the PSP algorithm and is due to the misacquisition
problem analysed in [21]. Our Gaussian mixture smoother
in the degenerate case, where the channel estimation is
performed with only N = 1 Gaussian per discrete ISI state,
is clearly outperformed by the proposed algorithm with
N = 2, which attains performances close to perfect channel
state information (CSI). Note that our Gaussian mixture
smoother with N = 1 is essentially the same as [3], but
adapted to block transmissions, since fixed-lag smoothing
has been replaced by fixed-interval smoothing.

Figure 7 illustrates the channel mean square error (MSE).
The forward filtered and the smoothed channel estimates
are computed according to (42) and (43), respectively. We
note that smoothing provides a dramatic improvement over
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Figure 8: BER performances of blind equalization at B;T = 1072

forward filtering alone both for N = 1 and N = 2. We
interpret this result by the fact that the smoothing pass, by
exploiting the knowledge of future observations, is able to
correct errors and phase ambiguities due to fading events or
occasionally high noise in the forward pass. As a reference,
the channel MSE attained by a genie-aided Kalman smoother
(with known symbols) is also shown.

We also study a fast-fading scenario with B;T = 1072,
in order to study the robustness of our algorithm against
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TasBLE 1: Saleh-Valenzuela model parameters.

Parameter and units

Notation and numerical value

Intercluster arrival rate (1/s) A=5/T
Intercluster decay constant (s) I'=06T
Intracluster arrival rate (1/s) A=280/T
Intracluster decay constant (s) y =0.35T

a large Doppler spread. Figures 8 and 9 illustrate the BER
and the channel MSE, respectively. Considering the BER
performances, we observe that the CMA, FCE and PSP
equalizers as well as the Gaussian mixture smoother with
N = 1 reach an error floor, while the performances of the
Gaussian mixture smoother with N = 2 are still satisfactory.
Again, the channel MSE after the smoothing pass is much
smaller than after forward filtering alone.

4.2. Performances on a Realistic Channel Model. A realistic
model for quasi-static indoor multipath propagation is given
by the Saleh-Valenzuela channel model [22], whose impulse
response is given by

h(t) = Z hid(t — 7). (44)

The 7; represent the propagation delays of the rays, which
arrive in clusters. These clusters and the rays within each
cluster form Poisson arrival processes, with different but
fixed rates. The h; are independent complex zero-mean
Gaussian coefficients whose variances decay exponentially
with the cluster and ray delay. In our simulations, the
parameters of the Saleh-Valenzuela channel model are given
in Table 1. Therefore, assuming rectangular transmit and
receive pulse shaping as well as perfect symbol and frame
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synchronization, we obtain the equivalent discrete channel
model described in Figure 2 with

)

0<7;<T

i i—T
= > h,%ﬁ- > hi(l—TT ), (45)

:0<7,<T i:T<1;<2T

C]%Z Z hiTi;T'i' Z hi(l—Ti_TZT).

i T<7;<2T i2T<7;<3T

Here, the equivalent discrete channel model is truncated to
L = 2, thus, all existing rays with propagation delay 7; = 2T
will generate unmodeled ISI. Using the fact that the h; are
statistically independent, we obtain

Ti Ti
dae]= 5 elmr)(-5) 3
Hlddr]= 3 e[mP)(1- )t @

E[cgci*] =0.

In general, the taps of the discrete-time channel model are
correlated by the transmit and receive pulse shapes and
the correlation depends on the power delay profile (PDP),
which is of course unknown to the receiver. Therefore,
the standard hypothesis of statistical independence of the
channel coefficients c};,i =0,...,L in Section 2, corresponds
to neglecting the correlations in (46).

In Figure 10, we test the Gaussian mixture smoother
with N = 2, for a Saleh-Valenzuela channel model with
parameters given in Table 1. We observe that the bit error
rate (BER) and the frame error rate (FER) exhibit an error

floor. This floor can be interpreted as the result of ignoring
the correlation between the channel coefficients and to
unmodeled ISI due to the fact that the equivalent discrete
channel model is truncated to a memory-2 channel.

5. Conclusions

In this paper, we introduced a new blind receiver for soft-
output equalization. The proposed method, adapted from an
earlier work on fixed-interval blind MIMO demodulation, is
well suited for block transmissions. In essence, the algorithm
propagates Gaussian mixtures forward and backward in the
conventional ISI trellis, in order to perform joint ISI state
and channel estimation. Numerical simulations showed that
the proposed method outperforms several well-known blind
equalization schemes and works well even in fast-fading
scenarios.

Future extensions of this work include the application of
blind Gaussian mixture-based equalization to Rician fading
and higher-order modulations. Since the proposed algorithm
is soft output in nature, its application to turbo equalization
will also be investigated.
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