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Background subtraction is a widely used operation in the video surveillance, aimed at separating the expected scene (the
background) from the unexpected entities (the foreground). There are several problems related to this task, mainly due to the
blurred boundaries between background and foreground definitions. Therefore, background subtraction is an open issue worth
to be addressed under different points of view. In this paper, we propose a comprehensive review of the background subtraction
methods, that considers also channels other than the sole visible optical one (such as the audio and the infrared channels). In
addition to the definition of novel kinds of background, the perspectives that these approaches open up are very appealing: in
particular, the multisensor direction seems to be well-suited to solve or simplify several hoary background subtraction problems.
All the reviewed methods are organized in a novel taxonomy that encapsulates all the brand-new approaches in a seamless way.

1. Introduction

Video background subtraction represents one of the basic,
low-level operations in the video surveillance typical work-
flow (see Figure 1). Its aim is to operate on the raw video
sequences, separating the expected part of the scene (the
background, BG), frequently corresponding to the static
bit, from the unexpected part (the foreground, FG), often
coinciding with the moving objects. Several techniques may
subsequently be carried out after the video BG subtraction
stage. For instance, tracking may focus only on the FG
areas of the scene [1–3]; analogously, target detection and
classification may be fastened by constraining the search
window only over the FG locations [4]. Further, recognition
methods working on shapes (FG silhouettes) are also present
in the literature [5, 6]. Finally, the recent coined term of video
analytics addresses those techniques performing high-level
reasoning, such as the detection of abnormal behaviors in a
scenery, or the persistent presence of foreground, exploiting
low-level operations like the BG subtraction [7, 8].

Video background subtraction is typically an online
operation generally composed by two stages, that is, the

background initialization, where the model of the back-
ground is bootstrapped, and background maintenance (or
updating), where the parameters regulating the background
have to be updated by online strategies.

The biggest, general problem afflicting the video BG
subtraction is that the distinction between the background
(the expected part of the scene) and the foreground (the
unexpected part) is blurred and cannot fit into the definition
given above. For example, one of the problems in video
background subtraction methods is the oscillating back-
ground: it occurs when elements forming in principle the
background, like tree branches in Figure 2, are oscillating.
This contravenes the most typical characteristic of the
background, that is, that of being static, and bring such items
to being labelled as FG instances.

The BG subtraction literature is nowadays huge and
multifaceted, with some valid reviews [9–11], and several
taxonomies that could be employed, depending on the
nature of the experimental settings. More specifically, a
first distinction separates the situation in which the sensors
(and sensor parameters) are fixed, so that the image view
is fixed, and the case where the sensors can move or
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Figure 1: A typical video surveillance workflow: after background subtraction, several, higher-order, analysis procedures may be applied.

(a) (b)
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Figure 2: A typical example of ill-posed BG subtraction issue: the oscillating background. (a) A frame representing the background scene,
where a tree is oscillating, as highlighted by the arrows. (b) A moving object passes in front of the scene. (c) The ground truth, highlighting
only the real foreground object. (d) The result of the background subtraction employing a standard method: the moving branches are
detected as foreground.

parameters can change, like cameras mounted on vehicles
or PTZ (pan-tilt-zoom) cameras, respectively. In the former
case, the scene may be nonperfectly static, especially in the
case of an outdoor setting, in which moving foliage or
oscillating/repetitively moving entities are present (like flags,
water or sea surface): methods in this class try to recover
from these noisy sources. In the case of moving sensors, the
background is no static any more, and typical strategies aim
to individuate the global motion of the scene, separating it
from all the other different, local motions that witness the
presence of foreground items.

Other taxonomies are more technical, focusing on the
algorithmic nature of the approaches, like those separat-
ing predictive/nonpredictive [12] or recursive/nonrecursive

techniques [13, 14]. In any case, this kind of partitions could
not apply to all the techniques present in the literature.

In this paper, we will contribute by proposing a novel,
comprehensive, classification of background subtraction
techniques, considering not only the mere visual sensor
channel, which has been considered by the BG subtraction
methods until six years ago. Instead, we will analyze back-
ground subtraction in the large, focusing on different sensor
channels, such as audio and infrared data sources, as well as a
combination of multiple sensor channels, like audio + video
and infrared + video.

These techniques are very recent and represent the last
frontier of the automated surveillance. The adoption of
different sensor channels other than video and their careful
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association helps in tackling classical unsolved problems for
background subtraction.

Considering our multisensor scenario, we thus rewrite
the definition of background as whatever in the scene that
is, persistent, under one or more sensor channels. From this
follows the definition of foreground—something that is,
not persistent under one ore more sensor channels—and
of (multisensor) background subtraction, from here on just
background subtraction, unless otherwise specified.

The remainder of the paper is organized as follows. First,
we present what are the typical problems that affect the BG
subtraction (Section 2) and, afterwards, our taxonomy is
described (see Figure 3), using the following structure.

In Section 3, we analyze the BG methods that operate
on the sole visible optical (standard video) sensor channel,
individuating groups of methods that employ a single
monocular camera, and approaches where multiple cameras
are utilized.

Regarding a single video stream, per-pixel and per-region
approaches can further be singled out. The rationale under
this organization lies in the basic logic entity analyzed by
the different methods: in the per-pixel techniques, temporal
pixels’ profiles are modeled as independent entities. Per-
region strategies exploit local analysis on pixel patches, in
order to take into account higher-order local information,
like edges for instance, also to strengthen the per-pixel
analysis. Per-frame approaches are based on a reasoning
procedure over the entire frame, and are mostly used as
support of the other two policies. These classes of approaches
can come as integratedmultilayer solutions where the FG/BG
estimation, made at lower per-pixel level, is refined by the
per-region/frame level.

When consideringmultiple, still video, sensors (Section 4),
we can distinguish between the approaches using sensors in
the form of a combined device (such as a stereo camera,
where the displacement of the sensors is fixed, and typically
embedded in a single hardware platform), and those in which
a network of separate cameras, characterized in general by
overlapping view fields, is considered.

In Section 5, the approaches devoted to model audio
background are investigated. Employing audio signals opens
up innovative scenarios, where cheap sensors are able to
categorize different kind of background situations, high-
lighting unexpected audio events. Furthermore, in Section 6
techniques exploiting infrared signals are considered. They
are particularly suited when the illumination of the scene is
very scarce. This concludes the approaches relying on a single
sensor channel.

The subsequent part analyzes how the single sensor
channels, possibly modeled with more than one sensor,
could be jointly employed through fusion policies in order
to estimate multisensor background models. They inherit the
strengths of the different sensor channels, and minimize
the drawbacks typical of the single separate channels. In
particular, we will investigate in Section 7 the approaches that
fuse infrared + video and audio + video signals (see Figure 3).

This part concludes the proposed taxonomy and is
followed by the summarizing Section 8, where the typical
problems of the BG subtraction are discussed, individuating

the reviewed approaches that cope with some of them. Then,
for each problem, we will give a sort of recipe, distilled
from all of the approaches analyzed, that indicates how that
specific problem can be solved. These considerations are
summed up in Table 1.

Finally, a conclusive part, (Section 9), closes the survey,
envisaging which are the unsolved problems, and discussing
what are the potentialities that could be exploited in the
future research.

As a conclusive consideration, it is worth noting that
our paper will not consider solely papers that focus in
their entirety on a BG subtraction technique. Instead, we
decide to include those works where the BG subtraction
represents a module of a structured architecture and that
bring advancements in the BG subtraction literature.

2. Background Subtraction’s Key Issues

Background subtraction is a hard task as it has to deal
with different and variable issues, depending on the kind of
environment considered. In this section, we will analyze such
issues following the idea adopted for the development of
the “Wallflower” dataset (http://research.microsoft.com/en-
us/um/people/jckrumm/WallFlower/TestImages.htm) pre-
sented in [15]. The dataset consists of different video
sequences that is, olate and portray single issues that make
the BG/FG discrimination difficult. Each sequence contains
a frame which serves as test, and that is, given together with
the associated ground truth. The ground truth is represented
by a binary FG mask, where 1 (white) stands for FG. It is
worth noting that the presence of a test frame indicates
that in that frame a BG subtraction issue occurs; therefore,
the rest of the sequence cannot be strictly considered as an
instance of a BG subtraction problem.

Here, we reconsider these same sequences together
with new ones showing problems that are not taken into
account in theWallflower work. Some sequences portray also
problems which rarely have been faced in the BG subtraction
literature. In this way, a very comprehensive list of BG
subtraction issues is given, associated with representative
sequences (developed by us or already publicly available)
that can be exploited for testing the effectiveness of novel
approaches.

For the sake of clarity, from now on we assume as false
positive a FG entity which is identified as BG, and viceversa.

Here is the list of problems and their relative rep-
resentative sequences (http://profs.sci.univr.it/∼cristanm/
BGsubtraction/videos) (see Figure 4):

Moved Object [15]. A background object can be moved.
Such object should not be considered part of the foreground
forever after, so the background model has to adapt and
understand that the scene layout may be physically updated.
This problem is tightly connected with that of the sleeping
person (see below), where a FG object stand still in the
scene and, erroneously, becomes part of the scene. The
sequence portrays a chair that is, moved in a indoor
scenario.
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Figure 3: Taxonomy of the proposed background subtraction methods.

Time of Day [15]. Gradual illumination changes alter the
appearance of the background. In the sequence the evolution
of the illumination provokes a global appearance change of
the BG.

Light Switch [15]. Sudden changes in illumination alter
the appearance of the background. This problem is more
difficult than the previous one, because the background
does evolve with a characteristic that is, typical of a
foreground entity, that is, being unexpected. In their paper
[15], the authors present a sequence where a global change
in the illumination of a room occurs. Here, we articulate
this situation adding the condition where the illumination
change may be local. This situation may happen when
street lamps are turned on in an outdoor scenario; another
situation may be that of an indoor scenario, where the
illumination locally changes, due to different light sources.
We name such problem, and the associated sequence, Local
light switch. The sequence shows an indoor scenario, where
a dark corridor is portrayed. A person moves between two
rooms, opening and closing the related doors. The light
in the rooms is on, so the illumination spreads out over
the corridor, locally changing the visual layout. A back-
ground subtraction algorithm has to focus on the moving
entity.

Waving Trees [15]. Background can vacillate, globally and
locally, so the background is not perfectly static. This implies
that the movement of the background may generate false
positives (movement is a property associated to the FG).
The sequence, depicted also in Figure 2, shows a tree that is,
moved continuously, simulating an oscillation in an outdoor
situation. At some point, a person comes. The algorithm has
to highlight only the person, not the tree.

Camouflage [15]. A pixel characteristic of a foreground
object may be subsumed by the modeled background,
producing a false negative. The sequence shows a flickering
monitor that alternates shades of blue and some white
regions. At some point, a person wearing a blue shirt moves
in front of the monitor, hiding it. The shirt and the monitor
have similar color information, so the FG silhouette tends do
be erroneously considered as a BG entity.

Bootstrapping [15]. A training period without foreground
objects is not always available in some environments, and
this makes bootstrapping the background model hard. The
sequence shows a coffee room where people walk and stay
standing for a coffee. The scene is never empty of people.

Foreground Aperture [15]. When a homogeneously colored
object moves, changes in the interior pixels cannot be
detected. Thus, the entire object may not appear as fore-
ground, causing false negatives. In the Wallflower sequence,
this situation is made even extreme. A person is asleep at his
desk, viewed from the back. He wakes up and slowly begins
to move. His shirt is uniformly colored.

Sleeping Foreground. A foreground object that becomes
motionless has to be distinguished from the background. In
[15], this problem has not been considered because it implies
the knowledge of the foreground. Anyway, this problem is
similar to that of the “moved object”. Here, the difference is
that the object that becomes still does not belong to the scene.
Therefore, the reasoning for dealing with this problem may
be similar to that of the “moved object”. Moreover, this prob-
lem occurs very often in the surveillance situations, as wit-
nessed by our test sequence. This sequence portrays a cross-
ing road with traffic lights, where the cars move and stop. In
such a case, the cars have not to be marked as background.
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Figure 4: Key problems for the BG subtraction algorithms. Each situation corresponds to a row in the figure, the images in the first two
column (starting from left) represent two frames of the sequence, the images in the third column represent the test image, and the images in
the fourth column represent the ground truth.

Shadows. Foreground objects often cast shadows that appear
different from the modeled background. Shadows are simply
erratic and local changes in the illumination of the scene,
so they have not to be considered FG entities. Here
we consider a sequence coming from the ATON project
(http://cvrr.ucsd.edu/aton/testbed/), depicting an indoor
scenario, where a personmoves, casting shadows on the floor
and on the walls. The ground truth presents two labels: one
for the foreground and one for the shadows.

Reflections. the scene may reflects foreground instances, due
to wet or reflecting surfaces, such as the floor, the road,
windows, glasses, and so for, and such entities have not to
be classified as foreground. In the literature, this problem
has been never explicitly studied, and it has been usually
aggregated with that of the shadows. Anyway, reflections
are different from shadows, because they retain edge infor-
mation that is, absent in the shadows. We present here
a sequence where a traffic road intersection is monitored.
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Table 1: A summary of the methods discussed in this paper, associated with the problems they solve. The meaning of the abbreviations is
reported in the text.

MO TD LS LLS WT C B FGA SFG SH R

Per-pixel
√ √ √ √

Per-region
√ √ √ √ √ √

Per-frame
√ √ √

Multistage
√ √ √ √ √ √

Multicamera
√ √ √ √ √ √

Infrared-sensor
√

Infrared + video
√

Infrared + video
√

The floor is wet and the shining sun provokes reflections of
the passing cars.

In the following section, we will consider these situations
with respect to how the different techniques present in the
literature solve them (we explicitly refer to those approaches
that consider the presented test sequences) or may help
in principle to reach a good solution (in this case, we
infer that a good solution is given for a problem when the
sequence considered are similar to those of the presented
dataset).

Please note that the Wallflower sequences contain only
video data, and so all the other new sequences. Therefore,
for the approaches that work on other sensor channels, the
capability to solve one of these problems will be based on
results applied on data sequences that present analogies with
the situations portrayed above.

3. Single Monocular Video Sensor

In a single camera setting, background subtraction focuses
on a pixel matrix that contains the data acquired by
a black/white or color camera. The output is a binary
mask which highlights foreground pixels. In practice, the
process consists in comparing the current frame with the
background model, individuating as foreground pixels those
not belonging to it.

Different classifications of BG subtraction methods for
monocular sensor settings have been proposed in literature.
In [13, 14], the techniques are divided into recursive and
nonrecursive ones, where recursive methods maintain a
single background model that is, updated using each new
coming video frame. Nonrecursive approaches maintain a
buffer with a certain quantity of previous video frames and
estimate a background model based solely on the statistical
properties of these frames.

A second classification [12] divides existing meth-
ods in predictive and nonpredictive. Predictive algo-
rithms model a scene as a time series and develop a
dynamic model to evaluate the current input based on
the past observations. Nonpredictive techniques neglect
the order of the input observations and build a proba-
bilistic representation of the observations at a particular
pixel.

However, the above classifications do not cover the entire
range of existent approaches (actually, there are techniques

that contain predictive and nonpredictive parts), and does
not give hints on the capabilities of each approach.

The Wallflower paper [19] inspired us a different tax-
onomy, similar to the one proposed in [20], that fills this
gap. Such work actually proposes a method that works
on different spatial levels: per-pixel, per-region, and per-
frame. Each level taken alone has its own advantages and
is prone to well defined key problems; moreover, each level
individuates several approaches in the literature. Therefore,
individuating an approach as working solely in a particular
level makes us aware of what problems that approach
can solve. For example, considering every temporal pixel
evolution as an independent process (so addressing the
per-pixel level), and ignoring information observed at the
other pixels (so without performing any per-region/frame
reasoning) cannot be adequate for managing the light switch
problem. This partition of the approaches into spatial logic
levels of processing (pixel, region, and frame) is consistent
with the nowadays BG subtraction state of the art, permitting
to classify all the existent approaches.

Following these considerations, our taxonomy organizes
the BG subtraction methods into three classes.

(i) Per-Pixel Processing. The class of per-pixel approaches
is formed by methods that perform BG/FG discrim-
ination by considering each pixel signal as an inde-
pendent process. This class of approaches is the most
adopted nowadays, due to the low computational
effort required.

(ii) Per-Region/Frame Processing. Region-based algo-
rithms relax the per-pixel independency assumption,
thus permitting local spatial reasoning in order
to minimize false positive alarms. The underlying
motivations are mainly twofold. First, pixels may
model parts of the background scene which are
locally oscillating or moving slightly, like leafs or
flags. Therefore, the information needed to capture
these BG phenomena has not to be collected and
evaluated over a single pixel location, but on a larger
support. Second, considering the neighborhood of a
pixel permits to assess useful analysis, such as edge
extraction or histogram computation. This provides
a more robust description of the visual appearance of
the observed scene.
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(iii) Per-Frame Processing. Per-frame approaches extend
the local support of the per-region methods to the
entire frame, thus facing global problems like the
light switch.

3.1. Per-Pixel Processes. In order to ease the reading, we
group together similar approaches, considering the most
important characteristics that define them. This permits also
to highlight in general pros and cons of multiple approaches.

3.1.1. Early Attempts of BG Subtraction. To the best of our
knowledge, the first attempt to implement a background
subtraction model for surveillance purposes is the one in
[21], where the differencing of adjacent frames in a video
sequence are used for object detection in stationary cameras.
This simple procedure is clearly not adapt for long-term
analysis, and suffers from many practical problems (one for
all, it does not highlight the entire FG appearance, due to the
overlapping between moving objects across frames).

3.1.2. Monomodal Approaches. Monomodal approaches
assumes that the features that characterize the BG values of a
pixel location can be segregated in a single compact support.
One of the first and widely adopted strategy was proposed in
the surveillance system Pfinder [22], where each pixel signal
z(t) is modeled in the YUV space by a simple mean value,
updated on-line. At each time step, the likelihood of the
observed pixel signal, given an estimated mean, is computed
and a FG/BG labeling is performed.

A similar approach has been proposed in [23], exploiting
a running Gaussian average. The background model is
updated if a pixel is marked as foreground for more than
m of the last M frames, in order to compensate for sudden
illumination changes and the appearance of static new
objects. If a pixel changes state from FG to BG frequently,
it is labeled as a high-frequencies background element and it
is masked out from inclusion in the foreground.

Median filtering sets each color channel of a pixel in
the background as modeled by the median value, obtained
from a buffer of previous frames. In [24], a recursive filter is
used to estimate the median, achieving a high computational
efficiency and robustness to noise. However, a notable limit
is that it does not model the variance associated to a BG
value.

Instead of independently estimating the median of each
channel, the medoid of a pixel can be estimated from
the buffer of video frames as proposed in [25]. The idea
is to consider color channels together, instead of treating
each color channel independently. This has the advantage
of capturing the statistical dependencies between color
channels.

InW4 [26, 27], a pixel is marked as foreground if its value
satisfies a set of inequalities, that is

∣
∣
∣M − z(t)

∣
∣
∣ > D ∨

∣
∣
∣N − z(t)

∣
∣
∣ > D, (1)

where the (per-pixel) parameters M, N , and D represent
the minimum, maximum, and largest interframe absolute
difference observable in the background scene, respectively.

These parameters are initially estimated from the first few
seconds of a video and are periodically updated for those
parts of the scene not containing foreground objects.

The drawback of these models are that only monomodal
background are taken into account, thus ignoring all the
situations where multimodality in the BG is present. For
example, considering a water surface, each pixel has at least
a bimodal distribution of colors, highlighting the sea and the
sun reflections.

3.1.3. Multimodal Approaches. One of the first approaches
dealing with multimodality is proposed in [28], where a
mixture of Gaussians is incrementally learned for each pixel.
The application scenario is the monitoring of an highway,
and a set of heuristics for labeling the pixels representing the
road, the shadows and the cars are proposed.

An important approach that introduces a parametric
modeling for multimodal background is the Mixture of
Gaussians (MoG) model [29]. In this approach, the pixel
evolution is statistically modeled as a multimodal signal,
described using a time-adaptive mixture of Gaussian com-
ponents, widely employed in the surveillance community.
Each Gaussian component of a mixture describes a gray
level interval observed at a given pixel location. A weight is
associated to each component, mirroring the confidence of
portraying a BG entity. In practice, the higher the weight, the
stronger the confidence, and the longer the time such gray
level has been recently observed at that pixel location. Due
to the relevance assumed in the literature and the numerous
proposed improvements, we perform here a detailed analysis
of this approach.

More formally, the probability of observing the pixel
value z(t) at time t is

P
(

z(t)
)

=
R
∑

r=1
w(t)
r N

(

z(t) | μ(t)r , σ (t)r

)

, (2)

wherew(t)
r , μ(t)r and σ (t)r are the mixing coefficients, the mean,

and the standard deviation, respectively, of the rth Gaussian
N (·) of the mixture associated with the signal at time t. The
Gaussian components are ranked in descending order using
the w/σ value: the most ranked components represent the
“expected” signal, or the background.

At each time instant, the Gaussian components are
evaluated in descending order to find the first matching with
the observation acquired (a match occurs if the value falls
within 2.5σ of the mean of the component). If no match
occurs, the least ranked component is discarded and replaced
with a new Gaussian with the mean equal to the current
value, a high variance σinit, and a low mixing coefficient winit.
If rhit is the matched Gaussian component, the value z(t) is
labeled FG if

rhit−1∑

r=1
w(t)
r > T , (3)

where T is a standard threshold. The equation that drives the
evolution of themixture’s weight parameters is the following:

w(t)
r = (1− α)w(t−1)

r + αM(t), 1 ≤ r ≤ R, (4)
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(a) (b)

Figure 5: A near infrared image (a) from CBSR dataset [16, 17] and a thermal image (b) from Terravic Research Infrared Database [17, 18].

where M(t) is 1 for the matched Gaussian (indexed by rhit)
and 0 for the others, and α is the learning rate. The other
parameters are updated as follows:

μ(t)rhit =
(

1− ρ
)

μ(t−1)rhit + ρz(t),

σ2 (t)
rhit = (1− ρ

)

σ2 (t−1)
rhit + ρ

(

z(t) − μ(t)rhit

)
T
(

z(t) − μ(t)rhit

)

,
(5)

where ρ = αN (z(t) | μ(t)rhit , σ (t)rhit ). It is worth noting that the
higher the adaptive rate α, the faster the model is “adapted”
to signal changes. In other words, for a low learning rate,
MoG produces a wide model that has difficulty in detecting a
sudden change to the background (so, it is prone to the light
switch problem, global and local). If the model adapts too
quickly, slowly moving foreground pixels will be absorbed
into the background model, resulting in a high false negative
rate (the problem of the foreground aperture).

MoG has been further improved by several authors, see
[30, 31]. In [30], the authors specify (i) how to cope with
color signals (the original version was proposed for gray
values), proposing a normalization of the RGB space taken
from [12], (ii) how to avoid overfitting and underfitting
(values of the variances too low or too high), proposing a
thresholding operation, and (iii) how to deal with sudden
and global changes of the illumination, by changing the
learning rate parameter. For the latter, the idea is that if
the foreground changes from one frame to another more
than the 70%, the learning rate value grows up, in order to
permit a faster evolution of the BG model. Note that this
improvement adds global (per-frame) reasoning to MoG,
so it does not belong properly to the class of per-pixel
approaches.

In [31], the number of Gaussian components is automat-
ically chosen, using aMaximumA-Posteriori (MAP) test and
employing a negative Dirichlet prior.

Even if per-pixel algorithms are widely used for their
excellent compromise between accuracy and speed (in com-
putational terms), these techniques present some drawbacks,
mainly due to the interpixel independency assumption.
Therefore, any situation that needs a global view of the
scene in order to perform a correct BG labeling is lost,

usually causing false positives. Examples of such situations
are sudden changes in the chromatic aspect of the scene, due
to the weather evolution or local light switching.

3.1.4. Nonparametric Approaches. In [32], a nonparamet-
ric technique estimating the per-pixel probability density
function using the kernel density estimation (KDE) [33]
technique is developed (KDEmethod is an example of Parzen
window estimate, [34]). This faces the situation where the
pixel values” density function is complex and cannot be
modeled parametrically, so a non-parametric approach able
to handle arbitrary densities is more suitable. The main
idea is that an approximation of the background density
can be given by the histogram of the most recent values
classified as background values. However, as the number of
samples is necessarily limited, such an approximation suffers
from significant drawbacks: the histogram might provide
poor modeling of the true pdf, especially for rough bin
quantizations, with the tails of the true pdf often missing.
Actually, KDE guarantees a smoothed and continuous
version of the histogram. In practice, the background pdf
is given as a sum of Gaussian kernels centered in the most
recent n background values, bi

P
(

z(t)
)

= 1
n

n
∑

i=1

(

z(t) − bi,Σt

)

. (6)

In this case, each Gaussian describes one sample data, and
not a whole mode as in [29], with n in the order of 100,
and covariance fixed for all the samples and all the kernels.
The classification of z(t) as foreground is assumed when
P(z(t)) < T . The parameters of the mixtures are updated
by changing the buffer of the background values in FIFO
order by selective update, and the covariance (in this case,
a diagonal matrix) is estimated in the time domain by
analyzing the set of differences between two consecutive
values. In [32], such model is duplicated: one model is
employed for a long-term background evolution modeling
(for example dealing with the illumination evolution in a
outdoor scenario) and the other for the short-termmodeling
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(for flickering surfaces of the background). Intersecting the
estimations of the two models gives the first stage results of
detection. The second stage of detection aims at suppressing
the false detections due to small and unmodelled movements
of the scene background that cannot be observed employing
a per-pixel modeling procedure alone. If some parts of the
background (a tree branch, for example) moves to occupy
a new pixel, but it is not part of the model for that
pixel, it will be detected as a foreground object. However,
this object will have a high probability to be a part of
the background distribution at its original pixel location.
Assuming that only a small displacement can occur between
consecutive frames, a detected FG pixel is evaluated as caused
by a background object that has moved by considering the
background distributions in a small neighborhood of the
detection area. Considering this step, this approach could
also be intended as per-region.

In their approach, the authors also propose a method for
dealing with the shadows problem. The idea is to separate
the color information from the lightness information. Chro-
maticity coordinates [35] help in suppressing shadows, but
loses lightness information, where the lightness is related to
the difference in whiteness, blackness and grayness between
different objects. Therefore, the adopted solution considers
S = R + G + B as a measure of lightness, where R, G
and B are the intensity values for each color channel of a
given pixel. Imposing a range on the ratio between a BG
pixel value and its version affected by a shadow permits to
perform a good shadow discrimination. Please note that, in
this case, the shadow detection relies on a pure per-pixel
reasoning.

Concerning the computational efforts of the per-pixel
processes, in [9] a good analysis is given: speed and memory
usage of some widely used algorithms are taken into account.
Essentially, monomodal approaches are generally the fastest,
while multimodal and non-parametric techniques exhibit
higher complexity. Regarding the memory usage, non-
parametric approaches are the most demanding, because
they need to collect for each pixel a statistics on the past
values.

3.2. Per-Region Processes. Region-level analysis considers a
higher level representation, modeling also interpixel rela-
tionships, allowing a possible refinement of the modeling
obtained at the pixel level. Region-based algorithms usually
consider a local patch around each pixel, where local
operations may be carried out.

3.2.1. Nonparametric Approaches. This class could include
also the approach of [32], above classified as per-pixel, since
it incorporats a part of the technique (the false suppression
step) that is, inherently per-region.

A more advanced approach using adaptive kernel density
estimation is proposed in [12]. Here, the model is genuinely
region-based: the set of pixels values needed to compute
the histogram (i.e., the nonparametric density estimate for a
pixel location) is collected over a local spatial region around
that location, and not exclusively on the past values of that
pixel.

3.2.2. Texture- and Edge-Based Approaches. These
approaches exploit the spatial local information for
extracting structural information such as edges or textures.
In [36], video sequences are analyzed by dividing the scene
in overlapped squared patches. Then, intensity and gradient
kernel histograms are built for each patch. Roughly speaking,
intensity (gradient) kernel histograms count pixel (edge)
values as weighted entities, where the weight is given by a
Gaussian kernel response. The Gaussian kernel, applied on
each patch, gives more importance to the pixel located in
the center. This formulation gives invariance to illumination
changes and shadows because the edge information helps
in discriminating a FG occluding object, that introduces
different edge information in the scene, and a (light) shadow,
that only weakens the BG edge information.

In [37], a region model describing local texture char-
acteristics is presented through a modification of the Local
Binary Patterns [38]. This method considers for each pixel
a fixed circular region and calculates a binary pattern of
length N where each ordered value of the pattern is 1 if the
difference between the center and a particular pixel lying on
the circle is larger than a threshold. This pattern is calculated
for each neighboring pixel that lies in the circular region.
Therefore, a histogram of binary patterns is calculated.
This is done for each frame and, subsequently, a similarity
function among histograms is evaluated for each pixel, where
the current observed histogram is compared with a set of
K weighted existing models. Low-weighted models stand for
FG, and vice versa. The model most similar to the histogram
observed is the one that models the current observation, so
increasing its weight. If no model explains the observation,
the pixel is labeled as FG, and a novel model is substituted
with the least supported one. The mechanism is similar to
the one used for per-pixels BG modeling proposed in [29].

The texture analysis for BG subtraction is considered also
in [39], where it is proposed a combined pixel-region model
where the color information associated to a pixel is defined
in a photometric invariant space, and the structural region
information derives from a local binary pattern descriptor,
defined in the pixel’s neighborhood area. The two aspects
are linearly combined in a whole signature that lives in a
multimodal space, which is modeled and evaluated similarly
to MoG. This model results particularly robust to shadows.

Another very similar approach is presented in [40], where
color and gradient information are explicitly modeled as
time adaptive Gaussian mixtures.

3.2.3. Sampling Approaches. The sampling approaches eval-
uate a wide local area around each pixel to perform complex
analysis. Therefore, the information regarding the spatial
support is collected through sampling, which in some cases
permits to fasten the analysis.

In [41], the pixel-region mixing is carried out with a
spatial sampling mechanism, that aims at producing a finer
BG model by propagating BG pixels values in a local area.
This principle resembles a region growing segmentation
algorithm, where the statistics of an image region is built
by considering all the belonging pixels. In this way, regions
affected by a local, small chromatic variation (due to a cloudy
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weather or shadows, for example), become less sensitive to
the false positives. The propagation of BG samples is done
with a particle filter policy, and a pixel values with higher
likelihood of being BG is propagated farer in the space. As
per-pixel model, a MoG model is chosen. The drawback of
the method is that it is computational expensive, due to the
particle filtering sampling process.

In [42] a similar idea of sampling the spatial neigh-
borhood for refining the per-pixel estimate is adopted.
The difference here lies in the per-pixel model, that is,
non-parametric, and it is based on a Parzen windows-like
process. The model updating relies on a random process that
substitutes old pixel values with new ones. The model has
been compared favorably with the MoG model of [31] with
a small experimental dataset.

3.2.4. BG Subtraction Using a Moving Camera. The
approaches dealing with moving cameras focus mainly
on compensating the camera ego-motion, checking if the
statistics of a pixel can be matched with the one present in
a reasonable neighborhood. This occurs through the use
of homographies or 2D affine transformations of layered
representations of the scene.

Several methods [43–46] well apply to scenes where the
camera center does not translate, that is, when using of PTZ
cameras (pan, tilt, or zoom motions). Another favorable
scenario is when the background can be modeled by a plane.
When the camera may translate and rotate, other strategies
have been adopted.

In the plane + parallax framework [47–49], a homogra-
phy is first estimated between successive image frames. The
registration process removes the effects of camera rotation,
zoom, and calibration. The residual pixels correspond either
to moving objects or to static 3D structures with large depth
variance (parallax pixels). To estimate the homographies,
these approaches assume the presence of a dominant plane
in the scene, and have been successfully used for object
detection in aerial imagery where this assumption is usually
valid.

Layer-based methods [50, 51] model the scene as piece-
wise planar scenes, and cluster segments based on some
measure of motion coherency.

In [52], a layer-based approach is explicitly suited for
background subtraction from moving cameras but report
low performance for scenes containing significant parallax
(3D scenes).

Motion segmentation approaches like [53, 54] sparsely
segment point trajectories based on the geometric coherency
of the motion.

In [55], a technique based on sparse reasoning is
presented, which also deals with rigid and nonrigid FG
objects of various size, merged in a full 3D BG. The
underlying assumptions regard the use of an orthographic
camera model and that the background is the spatially
dominant rigid entity in the image. Hence, the idea is that the
trajectories followed by sparse points of the BG scene lie in a
three-dimensional subspace, estimated through RANSAC, so
allowing to highlight outlier trajectories as FG entities, and
to produce a sparse pixel FG/BG labeling. Per-pixel labels are

then coupled together through the use of a Markov Random
Field (MRF) spatial prior. Limitations of the model concern
the considered approximation of the camera model, affine
instead of fully perspective, but, experimentally, it has been
shown not to be very limiting.

3.2.5. Hybrid Foreground/Background Models for BG Subtrac-
tion. These models includes in the BG modeling a sort of
knowledge of the FG, so they may not be classified as pure
BG subtraction methods. In [20], a BG model competes
with an explicit FG model in providing the best description
of the visual appearance of a scene. The method is based
on a maximum a posteriori framework, which exhibits the
product of a likelihood term and a prior term, in order
to classify a pixel as FG or BG. The likelihood term is
obtained exploiting a ratio between nonparametric density
estimations describing the FG and the BG, respectively,
and the prior is given by employing an MRF that models
spatial similarity and smoothness among pixels. Note that,
other than the MRF prior, also the non-parametric density
estimation (obtained using the Parzen Windows method)
works on a region level, looking for a particular signal
intensity of the pixel in an isotropic region defined on a joint
spatial and color domain.

The idea of considering a FG model together with a
BG model for the BG subtraction has been also taken into
account in [56], where a pool of local BG features is selected
at each time step in order to maximize the discrimination
from the FG objects. A similar approach has been taken
into account in [57], where the authors propose a boosting
approach which selects the best features for separating BG
and FG.

Concerning the computational efforts, per-region
approaches exhibit higher complexity, both in space and in
time, than the per-pixel ones. Anyway, the most papers claim
real-time performances.

3.3. Per-Frame Approaches. These approaches extend the
local area of refinement of the per-pixel analysis to being
the entire frame. In [58], a graphical model is used to
adequately model illumination changes of a scene. Even if
results are promising, it is worth noting that the method has
not be evaluated in its on-line version, nor it works in real-
time; further, illumination changes should be global and pre-
classified in a training section.

In [59], a per-pixel BG model was chosen from a set of
pre-computed ones in order to minimize massive false alarm.

The method proposed in [60] captures spatial correla-
tions by applying principal component analysis [34] to a
set of NL video frames that do not contain any foreground
objects. This results in a set of basis functions, whose the
first d are required to capture the primary appearance
characteristics of the observed scene. A new frame can
then be projected into the eigenspace defined by these d
basis functions and then back projected into the original
image space. Since the basis functions only model the static
part of the scene when no foreground objects are present,
the back projected image will not contain any foreground
objects. As such, it can be used as a background model.
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Themajor limitation of this approach lies just on the original
hypothesis of absence of foreground objects to compute the
basis functions which is not always possible. Moreover, it is
also unclear how the basis functions can be updated over
time if foreground objects are going to be present in the
scene.

Concerning the computational efforts, per-frames ap-
proaches usually are based on a training step and classifica-
tion step. The training part is carried out in a offline fashion,
while the classification part is well suited for a real-time
usage.

3.4. Multistage Approaches. The multistage approaches con-
sist in those techniques that are formed by several serial
heterogeneous steps, that thus cannot be included properly
in any of the classes seen before.

In Wallflower [15], a 3-stage algorithm that operates
respectively at pixel, region and frame level is presented.

At the pixel level, a couple of BGmodels is maintained for
each pixel independently: both the models are based on a 40-
coefficients, one-step Wiener filter, where the (past) values
taken into account are the predicted values by the filter in one
case, and the observed values in the other. A double check
against these two models is performed at each time step: the
current pixel value is considered as BG if it differs less than 4
times the expected squared prediction error calculated using
the two models.

At the region level, a region growing algorithm is applied.
It essentially closes the possible holes (false negative) in the
FG if the signal values in the false negative locations are
similar to the values of the surrounding FG pixels. At the
frame level, a set of global BG models is finally generated.
When a big portion of the scene is suddenly detected as FG,
the best model is selected, that is, the one that minimizes the
amount of FG pixels.

A similar, multilevel approach has been presented in
[61], where the problem of the local/global light switch is
taken into account. The approach lies on a segmentation of
the background [62] which segregates portions of the scene
where the chromatic aspect is homogeneous and evolves
uniformly. When a background region suddenly changes its
appearance, it is considered as a BG evolution instead of a
FG appearance. The approach works well when the regions
in the scene are few and wide. Conversely, the performances
are poor when the scene is oversegmented, that in general
occurs for outdoor scenes.

In [63], the scene is partitioned using a quadtree
structure, formed by minimal average correlation energy
(MACE) filters. Starting with large-sized filters (32 × 32
pixels), 3 levels of smaller filters are employed, until the
lower level formed by 4 × 4 filters. The proposed technique
aims at avoiding false positives: when a filter detects the
FG presence on more than 50% of its area, the analysis
is propagated to the 4 children belonging to the lower
level, and in turn to the 4-connected neighborhood of each
one of the children. When the analysis reaches the lowest
(4 × 4) level and FG is still discovered, the related set
of pixels are marked as FG. Each filter modeling a BG
zone is updated, in order to deal with slowly changing BG.

The method is slow and no real-time implementation is
presented by the authors, due to the computation of the
filters’ coefficients.

This computational issue has been subsequently solved in
[64]. Given the same quadtree structure, instead of entirely
analyzing each zone covered by a filter, only one pixel is
randomly sampled and analyzed for each region (filter) at the
highest level of the hierarchy. If no FG is detected, the analysis
stops; otherwise, the analysis is further propagated on the
4 children belonging to the lower level, down to reach the
lowest one. Here, in order to get the fine boundaries of the
BG silhouette, a 4-connected neighborhood region growing
algorithm is performed on each of the FG children. The
exploded quadtree is used as default structure for the next
frame in order to cope efficiently with the overlap among FG
regions between consecutive frames.

In [65], a nonparametric, per pixel FG estimation is
followed by a set of morphological operations in order
to solve a set of BG subtraction common issues. These
operations evaluate the joint behavior of similar and prox-
imal pixel values by connected-component analysis that
exploits the chromatic information. In this way, if several
pixels are marked as FG, forming a connected area with
possible holes inside, the holes can be filled in. If this area
is very large, the change is considered as caused by a fast
and global BG evolution, and the entire area is marked as
BG.

All the multistage approaches require high compu-
tational efforts, if compared with the previous analysis
paradigms. Anyway, in all the aforementioned papers the
multistage approaches are claimed to be functioning in a
real-time setting.

3.5. Approaches for the Background Initialization. In the
realm of the BG subtraction approach in a monocular
video scenario, a quite relevant aspect is the one of the
background initialization, that is, how a background model
has to be bootstrapped. In general, all of the presented
methods discard the solution of computing a simple mean
over all the frames, because it produces an image that exhibits
blending pixel values in areas of foreground presence. A
general analysis regarding the blending rate and how it may
be computed is present in [66].

In [67], the background initial values are estimated by
calculating the median value of all the pixels in the training
sequence, assuming that the background value in every pixel
location is visible more than 50% of the time during the
training sequence. Even if this method avoids the blending
effects of the mean, the output of the median will contains
large error when this assumption is false.

Another proposed work [68], called adaptive smoothness
method, avoids the problem of finding intervals of stable
intensity in the sequence. Then, using some heuristics, the
longest stable value for each pixel is selected and used as the
value that most likely represents the background.

This method is similar to the recent Local Image
Flow algorithm [69], which generates background values’
hypotheses by locating intervals of relatively constant inten-
sity, and weighting these hypotheses by using local motion
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information. Unlike most of the proposed approaches, this
method does not treat each pixel value sequence as an
i.i.d. (independent identically distributed) process, but it
considers also information generated by the neighboring
locations.

In [62], a hidden Markov model clustering approach
was proposed in order to consider homogeneous compact
regions of the scene whose chromatic aspect does uniformly
evolve. The approach fits a HMM for each pixel location,
and the clustering operates using a similarity distance which
weights more heavily the pixel values portraying BG values.

In [70], an inpainting-based approach for BG initial-
ization is proposed: the idea is to apply a region-growing
spatiotemporal segmentation approach, which is able expand
a safe, local, BG region by exploiting perceptual similarity
principles. The idea has been further improved in [71], where
the region growing algorithm has been further developed,
adopting graph-based reasoning.

3.6. Capabilities of the Approaches Based on a Single Video
Sensor. In this section, we summarize the capabilities of the
BG subtraction approaches based on a monocular video
camera, by considering their abilities in solving the key
problems expressed in Section Problems.

In general, whatever approach which permits an adap-
tation of the BG model can deal with whatever situation in
which the BG globally and slowly changes in appearance.
Therefore, the problem of time of day can generally be
solved by these kind of methods. Algorithms assuming
multimodal background models face the situation where the
background appearance oscillates between two or more color
ranges. This is particularly useful in dealing with outdoor
situations where there are several moving parts in the scene
or flickering areas, such as the tree leafs, flags, fountains, and
sea surface. This situation is wellportrayed by the waving tree
key problem. The other problems represent situations which
imply in principle strong spatial reasoning, thus requiring
per-region approaches. Let us discuss each of the problems
separately: for each problem, we specify those approaches
that explicitly focus on that issue.

Moved Objects. All the approaches examined fails in dealing
with this problem, in the sense that an object moved in
the scene, belonging to the scene, is detected as foreground
for a certain amount of time. This amount depends on the
adaptivity rate of the background model, that is, the faster
the rate, the smaller the time interval.

Time of Day. BGmodel adaptivity ensures success in dealing
with this problem, and almost each approach considered is
able to solve it.

Global Light Switch. This problem is solved by those
approaches which consider the global aspect of the scene.
The main idea is that when a global change does occur in
the scene, that is, when a consistent portion of the frame
labeled as BG suddenly changes, a recovery mechanism
is instantiated which evaluates the change as a sudden

evolution of the BG model, so that the amount of false
positive alarms re likely minimized. The techniques which
explicitly deal with this problem are [15, 58, 59, 61, 65]. In
all the other adaptive approaches, this problem generates a
massive amount of false positives until when the learning
rate “absorb” the novel aspect of the scene. Another solution
consists in considering texture or edge information [36].

Local Light Switch. This problem is solved by those
approaches which learn in advance how the illumination can
locally change the aspect of the scene. Nowadays, the only
approach which deals with this problem is [61].

Waving Trees. This problem is successfully faced by two
classes of approaches. One is the per-pixel methods that
admit a multimodal BG model (the movement of the tree
is usually repetitive and holds for a long time, causing a
multimodal BG). The other class is composed by the per-
region techniques which inspect the neighborhood of a
“source” pixel, looking whether the object portrayed in the
source has locally moved or not.

Camouflage. Solving the camouflage issue is possible when
other information other than the sole chromatic aspect
is taken into account. For example, texture information
greatly improves the BG subtraction [36, 37, 39]. The other
source of information comes from the knowledge of the
foreground; for example, employing contour information
or connected-component analysis on the foreground, it is
possible to recover the camouflage problem by performing
morphological operations [15, 65].

Foreground Aperture. Even in this case, texture information
improves the expressivity in the BGmodel, helping where the
mere chromatic information leads to ambiguity between BG
and FG appearances [36, 37, 39].

Sleeping Foreground. This problem is the most related with
the FGmodeling: actually, using only visual information and
without having an exact knowledge of the FG appearance
(which may help in detecting a still FG object which must
remain separated from the scene), this problem cannot be
solved. This is implied by the basic definition of the BG, that
is, whatever visual static element and whose appearance does
not change over time is, background.

Shadows. This problem can be faced employing two strate-
gies: the first implies a per-pixel color analysis, which aims
at modeling the range of variations assumed by the BG
pixel values when affected by shadows, thus avoiding false
positives. The most known approach in this class is [25],
where the shadow analysis holds in the HSV color space.
Other approaches try to define shadow-invariant color spaces
[30, 32, 65]. The other class of strategies considers edge
information, that is, more robust against shadows [36, 39,
40].
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Reflections. This problem has been never considered in
scenarios employing a single monocular video camera.

In general, the approaches that face simultaneously and
successfully with several of the above problems (i.e., that
present results on several Wallflower sequences) are [15, 36,
65].

4. Multiple Video Sensors

The majority of background subtraction techniques are
designed for being used in a monocular camera framework
which is highly effective for many common surveillance
scenarios. Anyway, this setting encounters difficulties in
dealing with sudden illumination changes, reflections, and
shadows.

The use of two or more cameras for background model-
ing serves to overcome these problems. Illumination changes
and reflections depend on the field of view of the camera
and can be managed observing the scene from different view
points, while shadows can be filtered out if 3D information
is available. Even if it is possible to determine the 3D world
positions of the objects in the scene with a single camera (e.g.,
[72]), this is in general very difficult and unreliable [73].

Therefore multicamera approaches to retrieve 3D infor-
mation have been proposed, based on the following.

(i) Stereo Camera. A single device integrating two or
more monocular cameras with small baseline (i.e.,
the distance between focal center of the cameras).

(ii) Multiple Cameras. A network of calibrated monoc-
ular or stereo cameras monitoring the scene from
significantly different viewpoints.

4.1. Stereo Cameras. The disparity map extracted that corre-
lates the two views of a stereo camera can be used as an input
for a disparity-based background subtraction algorithm. In
order to accurately model the background, a dense disparity
map needs to be computed.

For obtaining an accurate dense map of correlations
between two stereo images, time-consuming stereo algo-
rithms are usually required. Without the aid of specialized
hardware, most of these algorithms perform too slowly for
real time background subtraction [74, 75]. As a consequence,
state-of-the-art dedicated hardware solutions implement
simple and less accurate stereo correlations methods instead
of more precise ones [76]. In some cases, the correlation
between left and right images is unreliable, and the disparity
map presents holes due to “invalid” pixels (i.e., points with
invalid depth values).

Stereo vision has been used in [77] to build the
occupancy map of the ground plane as background model,
that is, used to determine moving objects in the scene.
The background disparity image is computed by averaging
the stereo results from an initial background learning stage
where the scene is assumed to contain no people. Pixels that
have a disparity larger than the background (i.e., closer to the
camera) are marked as foreground.

In [78], a simple bimodal model (normal distribution
plus an unmodeled token) is used to build the background

model. A similar approach is exploited in [79], where
a histogram of disparity values across a range of time
and gain conditions is computed. Gathering background
observations over long-term sequences has the advantage
that lighting variation can be included in the background
training set. If background subtraction methods are based
on depth alone [78, 80], errors due to foreground objects
in close proximity to the background or foreground objects
having homogeneous texture arise. The integration of color
and depth information reduces the effect of the following
problems:

(1) points with similar color background and foreground

(2) shadows

(3) invalid pixels in background or foreground

(4) points with similar depth in both background and
foreground.

In [81], an example of a joint (color + depth) background
estimation is given. The background model is based on
a multidimensional (depth and RGB colors) histogram
approximating a mixture of Gaussians, while foreground
extraction is performed via background comparison in depth
and normalized color.

In [82], a method for modeling the background that
uses per-pixel, time-adaptive, Gaussian mixtures in the
combined input space of depth and luminance-invariant
color is proposed. The background model learning rate is
modulated on the scene activity and the color-based seg-
mentation criteria are dependent on depth observations. The
method explicitly deals with illumination changes, shadows,
reflections, camouflage, and changes in the background.

The same idea of integrating depth information and
color intensity coming from the left view of the stereo sensor
is exploited by the PLT system in [73]. It is a real-time system,
based on a calibrated fixed stereo vision sensor. The system
analyses three interconnected representations of the stereo
data to dynamically update a model of the background, to
extract foreground objects, such as people and rearranged
furniture, and to track their positions in the world. The
background model is a composition of intensity, disparity
and edge information, and it is adaptively updated with a
learning factor that varies over time and is different for each
pixel.

4.2. Network of Cameras. In order to monitor large areas
and/or managing occlusions, the only solution is to use
multiple cameras. It is not straightforward to generalize a
single-camera system to become a multicamera one, because
of a series of problems like camera installation, camera
calibration, object matching, and data fusion.

Redundant cameras increase not only processing time
and algorithmic complexity, but also the installation cost. In
contrast, a lack of cameras may cause some blind spots, that
reduce the reliability of the surveillance system. Moreover,
calibration is more complex when multiple cameras are
employed and object matching among multiple cameras
involves finding the correspondences between the objects in
different images.
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In [83], a real time 3D tracking system using three
calibrated cameras to locate and track objects and people
in a conference room is presented. A background model
is computed for each camera view, using a mixture of
Gaussians to estimate the background color per pixel. The
background subtraction is performed on both the YUV and
the RG color spaces. Matching RG foreground regions and
YUV regions, is possible to cut off most of the shadows,
thanks to the use of chromatic information, and, at the same
time, to exploit intensity information to obtain smoother
silhouettes.

M2Tracker [84] uses a region-based stereo algorithm to
find 3D points inside an object, and Bayesian Classification
to classify each pixel as belonging to a person or the
background. Taking into account models of the foreground
objects in the scene, in addition to information about the
background, leads to better background subtraction results.

In [85], a planar homography-based method combines
foreground likelihood information (probability of a pixel
in the image belonging to the foreground) from different
views to resolve occlusions and determine the locations of
people on the ground plane. The foreground likelihood
maps in each view is estimated by modeling the background
using a mixture of Gaussians. The approach fails in presence
of strong shadows. Carnegie Mellon University developed
a system [86] that allows a human operator to monitor
activities over a large area using a distributed network of
active video sensors. Their system can detect and track
people and vehicles within cluttered scenes andmonitor their
activities over long periods of time. They developed robust
routines for detecting moving objects using a combination
of temporal differencing and template tracking.

EasyLiving project [87] aims to create a practical person-
tracking system that solves most of the real-world problems.
It uses two sets of color stereo cameras for tracking
people during live demonstrations in a living room. Colour
histograms are created for each detected person and are
used to identify and track multiple people standing, walking,
sitting, occluding, and entering or leaving the space. The
background is modeled by computing themean and variance
for each pixel in the depth and color images over a sequence
of 30 frames on the empty room.

In [74], a two-camera configuration is described, in
which the cameras are vertically aligned with respect to a
dominant ground plane (i.e., the baseline is orthogonal to
the plane on which foreground objects appear). Background
subtraction is performed by computing the normalized color
difference for a background conjugate pair and averaging
the component differences over a 3 × 3 neighborhood.
Each background conjugate pair is modeled with a mixture
of Gaussians. Foreground pixels are then detected if the
associated normalized color differences fall outside a decision
surface defined by a global false alarm rate.

4.3. Capabilities of the Approaches Based on Multiple Visual
Sensors. The use of a stereo camera represent a compact
solution, relatively cheap and easy to calibrate and set up,
able to manage shadows and illumination changes. Indeed,
the disparities information is more invariable to illumination

changes with respect to the information provided by a single
camera [88], and the insensitivity of stereo to changes in
lighting mitigates to some extent the need for adaptation
[77]. On the other hand, a multiple camera network
allows to view the scene from many directions, monitoring
an area larger than what a single stereo sensor can do.
However, multicamera systems have to deal with problems
in establishing geometric relationships between views and in
maintaining temporal synchronization of frames.

In the following, we analyze those problems, taken from
Section 2, for which the multiple visual sensor contribute in
reaching optimal solutions.

Camouflage. This problem is effectively faced by integrating
the depth information to the color information [73, 81, 82].

Foreground Aperture. Even in this case, texture information
improves the expressivity in the BGmodel, helping where the
mere chromatic information leads to ambiguity between the
BG and the FG appearance [36, 37, 39].

Shadows. This issue is solved employing both stereo cameras
[73, 81, 82] and camera networks [74, 83].

Reflections. The use of multiple camera permits to solve this
problem: the solution is based on the 3D structure of the
scene monitored. The 3D map permits to locate the ground
plane of the scene, thus, to suppress all the specularities as
those objects lying below this plane [74].

5. Single AudioMonaural Sensor

Analogously to image background modeling for video
analysis, a logical initial phase in applying audio analysis to
surveillance and monitoring applications is the detection of
background audio. This would be useful to highlight sections
of interest in an audio signal, like for example the sound of
breaking glass.

There are a number of differences between the visual
and audio domains, with respect to the data. The reduced
amount of data in audio results in lower processing
overheads, and encourages a more complex computational
approach to analysis. Moreover, the characteristics of the
audio usually exhibit a higher degree of variability. This is
due to both the superimposition of multiple audio sources
within a single input signal and the superimposition of
the same sound at different times (multipatch echoing).
Similar situations for video could occur through reflection
off partially reflective surfaces. This results in the formation
of complex and dynamic audio backgrounds.

Background audio can be defined as the recurring and
persistent audio characteristics that dominates the portion of
the signal. Foreground sounds detection can be carried out as
the departure from this BG model.

Outside the automated surveillance context, several
approaches to computational audio analysis are present,
mainly focused on the computational translation of psy-
choacoustics results. One class of approaches is the so called
computational auditory scene analysis (CASA) [89], aimed
at the separation and classification of sounds present in
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a specific environment. Closely related to this field there is
the computational auditory scene recognition (CASR) [90,
91], aimed at an overall environment interpretation instead
of analyzing the different sound sources. Besides various
psychoacoustically oriented approaches derived from these
two classes, a third approach, used both in CASA and CASR
contexts, tried to fuse “blind” statistical knowledge with
biologically driven representations of the two previous fields,
performing audio classification and segmentation tasks [92],
and source separation [93, 94] (i.e., blind source separation).
In this last approach, many efforts are addressed to the
speech processing area, in which the goal is to separate the
different voices composing the audio pattern using several
microphones [94] or only one monaural sensor [93].

In the surveillance context, some proposed methods
in the field of BG subtraction are mainly based on the
monitoring of the audio intensity [95–97], or are aimed at
recognizing specific class of sounds [98]. These methods are
not adaptive to the several possible audio situations, and they
do not exploit all the potential information conveyed by the
audio channel.

The following approaches, instead, are more general,
they are adaptive and they can cope with quite complex
backgrounds. In [99], the authors implement a version of
the Gaussian Mixture Model (GMM) method in the audio
domain. The audio signal, acquired by a single microphone,
is processed by considering its frequency spectrum: it is
subdivided in suitable subbands, assumed to convey inde-
pendent information about the audio events. Each subband
is modeled by a mixture of Gaussians. Being the model on-
line updated over time, this makes the method adaptive to
the possible different background situations. At each instant
t, FG information is detected by considering the set of
subbands that show atypical behaviors.

In [100], the authors also employ an online, unsu-
pervised and adaptive GMM to model the states of the
audio signal. Besides, they propose some solutions to more
accurately model complex backgrounds. One is an entropy-
based approach for combining fragmented BG models to
determine the BG states of the signal. Then, the number
of states to be incorporated into the background model is
adaptively adjusted according to the background complexity.
Finally, an auxiliary cache is employed, with to scope to
prevent the removal from the system of potentially useful
observed distributions when the audio is rapidly changing.

An issue not addressed by the previous methods, quite
similar to the Sleeping foreground problem in video analysis
(see below in Section 5.1), is when the foreground is gradual
and longer lasting, like a plan passing overhead. If there is
no a priori knowledge of the FG and BG, the system adapts
the FG sound as background. This particular situation is
addressed in [101], by incorporating explicit knowledge of
data into the process. The framework is composed by two
models. First, the models for the BG and FG sounds are
learnt, using a semisupervised method. Then, the learned
models are used to bootstrap the system. A separate model
detects the changes in the background, and it is finally
integrated with the audio predictions models to decide on
the final FG/BG determination.

5.1. Capabilities of the Approaches Based on a Single Audio
Sensor. The definition of audio background and its mod-
elling for background subtraction incorporates issues that
are analogous to those of the visual domain. In the following,
we will consider the problems reported in Section 2,
analyzing how they translate into the audio domain, and how
they are solved by the nowadays approaches. Moreover, once
a correspondence is found, we will define a novel name for
an audio key issue, in order to gain in clarity.

In general, whereas the visual domain may be considered
as formed by several independent entities, that is, the pixels
signals, in the audio domain the spectral subband assume the
meaning of the basic independent entities. This analogy is
the one mostly used in the literature, and it will drive us in
linking the different key problems across modalities.

Moved Object. This situation originally consists in a portion
of the visual scene that is, moved. In the audio domain, a
portion consists in an audio subband. Therefore, whatever
approach that allows a local adaptation of the audio spec-
trum related to the BG solves this problem. The adaptation
depends also in this case by a learning rate. The higher the
rate, the faster the model adaptation [99, 100]. We will name
this audio problem as Local change.

Time of Day. This problem shows in the audio when the BG
spectrum slowly changes. Therefore, approaches that develop
an adaptivemodel solve this problem [99, 100].Wewill name
this audio problem as Slow evolution.

Global Light Switch. Global light switch can be intended in
the audio as an abrupt global change of the audio spectrum.
In the video, a global change of illumination has not to
be intended as a FG entity, because the change is global
and persistent and because the structure of the scene does
not change. The structure invariance in the video can be
evaluated by employing edge or texture features, while it is
not clear neither what is the structure of a environmental
audio background, nor what are the features to model it.
Therefore, an abrupt change in the audio spectrum will
be evaluated as an evident presence of foreground and
successively absorbed as BG if the BG model is adaptive,
unless a classification-based approach is employed [99, 100],
that minimizes the amount of FG by choosing the most
suitable BG model across a set of BG models [101]. We will
name this audio problem as Global fast variation.

Waving Trees. In audio, the analog of the waving tree
problem is that of a multimodal audio background, in
the sense that each independent entity of the model,
that is, the audio subband, shows a multimodal statistics.
This happens for example when repeated signals occurs
in the scene (the sound produced by a factory machine).
Therefore, approaches that deal with multimodality (as
expressed above) in the BGmodelling deal with this problem
successfully [99, 100]. We will name this audio problem as
Repeated background.
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Camouflage. The camouflage in the audio can be reasonably
seen as the presence of a FG sound which is similar to that of
the BG. Using the audio spectrum as basic model for the BG
characterization solves the problem of camouflage, because
different sounds having the same spectral characteristic (so,
when we are in presence of similar sounds) will produce a
spectrum where the spectral intensities are summed over.
Such spectrum is different to that of the single BG sound,
where the intensities are lower. We will name this audio
problem as Audio camouflage.

Sleeping Foreground. The sleeping foreground occurs in the
audio when a FG sound continuously holds, becoming BG.
This issue may be solved explicitly by employing FG models,
as done in [101]. We will name this audio problem as
Sleeping audio foreground.

It is worth noting that in this case, the visual problems
of Local light switch, Foreground aperture, Shadows and
Reflections have not a clear correspondence in the audio
domain, and thus they are omitted from the analysis.

6. Single Infrared Sensor

Most algorithms for object detection are designed only for
daytime visual surveillance and are generally not effective
for dealing with night conditions, when the images have low
brightness, low contrast, low signal-to-noise ratio (SNR) and
nearly no color information [102].

For night-vision surveillance, two primary technologies
are used: image enhancement and thermal imaging.

Image enhancement techniques aim to amplify the light
reflected by the objects in the monitored scene to improve
visibility. Infrared (IR) light levels are high at twilight or in
halogen light, therefore a camera with good IR sensitivity
can capture short-wavelength infrared (SWIR) emissions to
increase the image quality. SWIR wavelength follows directly
from the visible spectrum (VIS), and therefore it is also called
near infrared.

Thermal imaging refers to the process of capturing the
long-wave IR radiation emitted or reflected by objects in
the scene, which is undetectable to the human eye, and
transforming it into a colored or grayscale image.

The use of infrared light and night vision devices should
not be confused with thermal imaging (see Figure 5 for a
visual comparison). If scene is completely dark, then image
enhancement methods are not effective and it is necessary to
use a thermal infrared camera. However, the cost of a thermal
camera is too high for most surveillance applications.

6.1. Near Infrared Sensors. Near infrared (NIR) sensors are
low cost (around 100 dollars) when compared with thermal
infrared sensors (around 1000 dollars) and have a much
higher resolution. NIR cameras are suitable for environments
with a low illumination level, typically between 5 and 50
lux [103]. In urban surveillance, it is not unusual to have
artificial light sources illuminating the scene at night (e.g.,
monitored parking lots next to buildings tends to be well
lit). NIR sensors represent a cheaper alternative to thermal

cameras for monitoring these urban scenarios. However,
SWIR-based video surveillance presents a series of challenges
[103].

(i) Low SNR. With low light levels, a high gain is
required to enhance the image brightness. However,
a high gain tends to amplify the sensor’s noise
introducing a considerable variance in pixel intensity
between frames that impairs the background model-
ing approaches based on statistical analysis.

(ii) Blooming. The presence of strong light sources (e.g.
car headlights and street lamps) can lead to the sat-
uration of the pixel involved, deforming the detected
shape of objects.

(iii) Reflections. Surfaces in the scene can reflect light
causing false positives.

(iv) Shadows. Moving objects cause sharp shadows with
changing orientation (with respect to the object).

In [103], a system to perform automated parking lot
surveillance at night time is presented. As a preprocessing
step, contrast and brightness of input images are enhanced
and spatial smoothing is applied. The background model
is built as a mixture of Gaussians. In [104], an algorithm
for background modeling based on spatiotemporal patches
especially suited for night outdoor scenes is presented. Based
on the spatiotemporal patches, called bricks, the background
models are learned by an on-line subspace learning method.
However, the authors claim the algorithm fails on surfaces
with specular reflection.

6.2. Thermal Infrared Sensors. Thermal infrared sensors (see
Figure 6) are not subject to color imagery problems in
managing shadows, sudden illumination changes, and poor
night-time visibility. However, thermal imagery has to deal
with its own particular challenges.

(i) Commonly used ferroelectric BST thermal sensor
yields imagery with a low SNR, which results in
limited information for performing detection or
tracking tasks.

(ii) Uncalibrated polarity and intensity of the thermal
image, that is, the disparity in terms of thermal prop-
erties between the foreground and the background is
quite different if the background is warm or cold (see
Figure 7).

(iii) Saturation or “halo effect”, that appears around very
hot or cold objects, can modify the geometrical
properties of the foreground objects deforming their
shape.

The majority of the object detection algorithms working
with the thermal domain adopt a simple thresholding
method to build the foreground mask, assuming that a
foreground object is much hotter than the background and
hence appears brighter, as an “hot-spot” [105]. In [106],
a thresholded image is computed as the first step of a
human posture estimationmethod, based on the assumption
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(a) (b)

Figure 6: A color image (a) and a thermal image (b) from OSU Color-Thermal Database [17, 105].

(a) (b)

Figure 7: Uncalibrated polarity and halo issues in thermal imagery: (a) bright halo around dark objects [105], (b) dark halo around bright
object [110].

that the temperature of the human body is hotter than
the background. The hot-spot assumption is used in [107]
for developing an automatic gait recognition method where
the silhouettes are extracted by thresholding. In [108], the
detection of hotspots is performed using a flexible threshold
calculated as the balance between the thermal image mean
intensity and the highest intensity, then a Support Vector
Machines-(SVM-) based approach aims to classify humans.
In [109] the threshold value is extracted from a training
dataset of rectangular boxes containing pedestrians, then
probabilistic templates are exploited to capture the variations
in human shape, for managing the case where contrast is low
and body parts are missing.

However, the hot-spot assumption does not hold if the
scene is monitored in different time of the day and/or at
different environmental temperatures (e.g., during winter or
summer). Indeed, in night-time (or during winter) usually,
foreground is warmer than background, but this is not always
true in day-time (or summer), when the background can be
warmer than the foreground.

Moreover, the presence of halos in thermal imagery
compromises the use of traditional visual background
subtraction techniques [105]. Since the halo surrounding
the moving object usually diverges from the background
model, it is classified as foreground introducing an error in
retrieving the structural properties of the foreground objects.

The above discussed challenges in using thermal imagery
have been largely ignored in the past [105]. Integrating visual
and thermal imagery can lead to overcome those drawbacks.
Indeed, in presence of sufficient illumination conditions,
colour optical sensors are oblivious to temperature differ-
ences in the scene and are typically more effective than
thermal cameras when the thermal properties of the objects
in the scene are similar to the surrounding environment.

6.3. Capabilities of the Approaches Based on a Single Infrared
Sensor. Taken alone and evaluated in scenarios where the
illumination is enough to perform also visual background
subtraction, infrared sensory cannot provide robust systems
for the background subtraction, for all the limits discussed
above. Anyway, infrared is effective when the illumination is
scarce, and in disambiguating a camouflage situation, where
the visual aspect of the FG is similar to that of the BG.
Infrared is also the only working solution in scenarios where
the FG objects lie on water surfaces, since the false positive
detections caused by waves can be totally filtered out.

7. Fusion of Multiple Sensors

One of the most desirable qualities of a video surveillance
system is persistence, or the ability to be effective all the
times. However, a single sensor is generally not effective



18 EURASIP Journal on Advances in Signal Processing

in all situations. The use of complementary sensors, hence,
becomes important to provide complete and sufficient
information: information redundancy permits to validate
observations, in order to enhance FG/BG separation, and it
becomes essential when one modality is not available.

Fusing data from heterogeneous information sources
arises new problems, such as how to associate distinct objects
that represent the same entity. Moreover, the complexity
of the problem increases when the sources do not have
a complete knowledge about the monitoring area and in
situations where the sensors measurements are ambiguous
and imprecise.

There is an increasing interest in developing multimodal
systems that can simultaneously analyze information from
multiple sources of information. The most interesting trends
regard the fusion of thermal and visible imagery and the
fusion of audio and video information.

7.1. Fusion of Thermal and Visible Imagery. Thermal and
color video cameras are both widely used for surveillance.
Thermal cameras are independent of illumination, so they
are more effective than color cameras under poor lighting
conditions. On the other hand, color optical sensors does
not consider temperature differences in the scene, and
are typically more effective than thermal cameras when
the thermal properties of the objects in the scene are
similar to the surrounding environment (provided that
the scene is well illuminated and the objects have color
signatures different from the background). Integrating visual
and thermal imagery can lead to overcome the draw-
back of both sensors, enhancing the overall performance
(Figure 8).

In [105], a three-stage algorithm to detect the moving
objects in urban settings is described. Background subtrac-
tion is performed on thermal images, detecting the regions
of interest in the scene. Color and intensity information
is used within these areas to obtain the corresponding
regions of interest in the visible domain. Within each image
region (thermal and visible, treated independently) the
input and background gradient information are combined
as to highlight only the contours of the foreground object.
Contour fragments belonging to corresponding region in
the thermal and visible domains are then fused, using the
combined input gradient information from both sensors.
This technique permits to filter out both halos and shadows.
A similar approach that uses gradient information from
both visible and thermal images is described in [112]: the
fusion step is based on mutual agreement between the two
modalities. In [113], the authors propose to use a IR camera
in conjunction with a standard camera for detecting humans.
Background subtraction is performed independently on
both camera images using a single Gaussian probability
distribution to model each background pixel. The couple of
detected foreground masks is extracted using a hierarchical
genetic algorithm, and the two registered silhouettes are
then fused together into the final estimate. Another similar
approach for humans detection is described in [111]. Even
in this case BG subtraction is run on the two cameras
independently, extracting the blobs from each camera.

The blobs are then matched and aligned to reject false
positives.

In [114], instead, an image fusion scheme that employs
multiple scales is illustrated. The method first computes
pixel saliency in the two images (IR and visible) at multiple
scales, then a merging process, based on a measure of the
difference in brightness across the images, produces the final
foreground mask.

7.1.1. Capabilities of the Approaches Based on the Fusion of
Thermal and Visible Imagery. In general, thermal imagery
is taken as support for the visual modality. Considering the
literature, the key problem in Section 2 where the fusion of
thermal and visible imagery results particularly effective is
that of the shadows: actually, all the approaches stress this
fact in their experimental sections.

7.2. Fusion of Audio and Video Information. Many
researchers have attempted to integrate vision and acoustic
senses, with the aim to enhance object detection and
tracking, more than BG subtraction. The typical scenario in
an indoor environment with moving or static objects that
produce sounds, monitored with fixed or moving cameras
and fixed acoustic sensors.

For completeness we report in the following some of
these methods, even if they do not tackle BG subtraction
explicitly. Usually each sense is processed separately and
the overall results are integrated in the final step. The
system developed in [115], for example, uses an array of
eight microphones to initially locate a speaker and then
steer a camera towards the sound source. The camera
does not participate in the localization of objects, but it is
used to take images of the sound source after it has been
localized. However, in [116], the authors demonstrate that
the localization integrating audio and video information
is more robust compared to the localization based on
stand alone microphone arrays. In [117], the authors detect
walking persons, with a method based on video sequences
and step sounds. The audiovisual correlation is learned
by a time-delay neural network, which then performs a
spatiotemporal search for the walking person. In [118],
the authors propose a quite complete surveillance system,
focused on the integration of the visual and the audio
information provided by different sensing agents. Static
cameras, fixed microphones and mobile vision agents work
together to detect intruders and to capture a closed image
of them. In [119], the authors deal with tracking and
identifying multiple people using discriminative visual and
acoustic features extracted from cameras and microphone
array measurements. The audio local sensor performs sound
sources localization and source separation to extract the
existing speeches in the environment; the video local sensor
performs people localization and face-color extraction. The
association decision is based on the belief theory, and the
system provides robust performances even with noisy data.

A paper that instead focuses on fusing video and acoustic
signals with the aim to enhance BG modeling is [120]. The
authors build a multimodal model of the scene background,
in which both the audio and the video are modeled by
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(a) (b) (c)

Figure 8: Example of fusion of video and thermal imagery: (a), FG obtained from the thermal camera; at the center, FG obtained from the
video camera; (b), their fusion result [111].

employing a time-adaptive mixture model. The system is
able to detect single auditory or visual events, as well as
audiovideo simultaneous situations, considering a synchrony
principle. This integration permits to address the FG sleeping
problem: an audiovisual pattern can remain an actual
foreground even if one of the components (audio or video)
becomes BG. The setting is composed by one fixed camera
and a single microphone.

7.2.1. Capabilities of the Approaches Based on the Fusion of
Audio and Video Information. Coupling the audio and the
visual signal is a novel direction for the background subtrac-
tion literature. Actually, most of the approaches presented
in the previous section propose a coupled modeling for the
foreground, instead of detailing a pure background subtrac-
tion strategy. Anyway, all those approaches work in a clear
setting, that is, where the audio signal is clearly associated
to the foreground entities. Therefore, the application of such
techniques in real-world situations need to be supported
by technique able to perform the subtraction of useless
information in both the audio and the visual channels. In this
sense, [120] is the approach that more leads in this direction
(even if it also proposes a modeling for the foreground
entities).

8. How the Key Problems of Background
SubtractionMay Be Solved?

In this paper, we examined different approaches for the
background subtraction, with a particular attention to how
they solve typical hoary issues. We consider different sensor
channels, and different multichannel integration policies.
In this section we consider together all these techniques,
summarizing for each problem what are the main strategies
adopted to solve it.

In particular, we focus in the problems presented in
Section 2, without considering the translated versions of
the problems in the audio channel (Section 5.1). The table
in Table 1 summarizes the main categories of methods
described in this paper, and the problems that they explicitly
solve.

Moreover, we individuate those that could be winning
strategies that have not been completely exploited in the

literature, hoping that some of them could be embraced and
applied satisfactorily.

Moved Object (MO). In this case, mainly visual approaches
are present in the literature, which are not able to solve this
issue satisfactorily. Actually, when an object belonging to the
scene is moved, it erroneously appears to be a FG entity,
until when the BGmodel adapts and absorbs the novel visual
layout. A useful direction to solve effectively this issue is
considering thermal information: actually, if the background
has thermal characteristics that are different from the FG
objects, the visual change provoked by an object which is
relocated may be inhibited by its thermal information.

Time of Day (TD). Adaptive BG models showed to be
effective to definitely solve this issue. When the illumination
is very scarce, thermal imagery may help. A good direction
could be building a structured model that introduces the
thermal imagery selectively, in order to maximize the BG/FG
discrimination.

Light Switch (LS). This problem has been considered under
a pure visual sense. The solutions present in the literature are
satisfying, and operate by considering the global appearance
of the scene. When a global abrupt change happens, the
BG model is suddenly adapted or selected from a set of
predetermined models, in order to minimize the amount of
false positive alarms.

Local Light Switch (LLS). Local light switch is a novel
problem, introduced here and scarcely considered in the
literature. The approaches that face this problems work
on the visual channel, studying in a bootstrap phase how
the illumination of the scene locally changes, monitoring
when a local change does occur and adapting the model
consequently.

Waving Trees (WT). The oscillation of the background is
effectively solved in the literature under a visual perspective.
The idea is that the BG models have to be multimodal: this
works well especially when the oscillation of the background
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(or part of it) is persistent and well located (i.e., the oscilla-
tion has to occur for a long time in the same area; in other
words, it has to be predictable). When the oscillations are
rare or unpredictable, approaches that consider per-region
strategies are decisive. The idea is that per-pixel models share
their parameters, so that a background value in a pixel may
be evaluated as BG even if it occurs in a local neighborhood.

Camouflage (C). Camouflage effects derive from the simi-
larity between the features that characterize the foreground
and those used for modeling the background. Therefore,
the more discriminating features, the better the separation
between FG and BG entities. In this case, under a visual
perspective, gray level is the worst solution as feature.
Moving to color values offers a better discriminability, that
can be further ameliorated by employing edge and texture
information. Particularly effective is the employment of
stereo sensors, that introduce depth information in the
analysis. Again, thermal imagery may help. A mixing of
visual and thermal channels exploiting stereo devices has
been never taken into account, and seems to be a reasonable
novel strategy.

Bootstrapping (B). Bootstrapping methods are explicitly
faced only under a visual perspective, by approaches of
background initialization. These approaches offer good
solutions: they essentially build statistics for devising a BG
model by exploiting the principle of temporal persistence
(elements of the scene which appear continuously with
the same layout represent the BG) and spatial continuity
(i.e., homogeneously colored surfaces or portions of the
scene which exploit edge continuity belong to the BG).
Bootstrapping considering other sensor channels has never
been taken into account.

Foreground Aperture (FA). The problem of the spatiotem-
poral persistence of a foreground object, and its partial
erroneous absorption in the BG model, has been faced in
the literature under the sole visual modality. This problem
primarily depends on a too fast learning rate of the BG
model. Resolutive approaches employ per-region reasoning,
by examining the detected FG regions and looking for
holes, filling them by morphological operators. Foreground
aperture considering other sensor channels has never been
taken into account.

Sleeping Foreground (SF). This problem is the one that more
implies a sort of knowledge of the FG entities, crossing
the border towards goals that are typical of the tracking
literature. In practice, the intuitive solution for this problem
consists to inhibit the absorption mechanism of the BG
model whereas a FG object occurs in the scene. In the
literature, a solution comes through the use of multiple
sensor channels. Employing thermal imagery associated to
visual information permits to discriminate between FG
and BG in an effective way. Actually, the background is
assumed to be at a different temperature with respect to
the FG objects: this contrast has to be maintained over

time, so a still foreground will be always differentiated from
the background. Employing audio signals is another way.
Associating an audio pattern to a FG entity permits to enlarge
the set of features that need to be constant in time for
provoking a total BG absorption. Therefore, a visual entity
(a person) which is still, that however maintains FG audio
characteristics (i.e., that of being unexpected) remains a FG
entity. Employing multiple sensor channels allows to solve
this problem without relying on tracking techniques: that is,
the idea is to enrich the BG model, in order to detect better
FG entities, that is, entities that diverge from that model.

Shadows (SH). The solution for the shadows problem comes
from the visual domain or employing multiple sensors or
considering thermal imagery. In the first way, color analysis
is applied, by building a chromatic range over which a
background color may vary when affected by shadows.
Otherwise, edge, or texture analysis, that has been shown to
be robust to shadows, is applied. Stereo sensors discard the
shadows simply relying on depth information, and multiple
cameras are useful to build a 3D map where the items that
are projected on the ground plane of the scene are labelled as
shadows. Thermal imagery is oblivious to shadows issues.

Reflections (R). Reflections is a brand-new problem for the
background subtraction literature, in the sense that very
few approaches have been focused on this issue. It is more
difficult than dealing with the shadows, because, as visible
in our test sequence, reflections carry color, edge, or texture
information which is not brought by shadows. Therefore,
methods that rely on color, edge, and texture analysis fail.
The only satisfying solution comes through the use of
multiple sensors. A 3D map of the scene can be built (so,
the BG model is enriched and made more expressive) and
geometric assumptions on where a FG object could appear or
not help in discarding reflection artifacts. The use of thermal
imagery and stereo sensor is intuitively useful to solve this
problem, but in the literature there are not approaches that
explicitly deal with this problematic.

9. Final Remarks

In this paper, we present an essay of background subtraction
methods. It has two important characteristics that make it
diverse and appealing with respect to the other reviews. First,
it considers different sensor channels and various integration
policies of heterogeneous channels with which background
subtraction may be carried out. This has never appeared
before in the literature. Second, it is problem-oriented, that
is, it individuates the key problems for the background
subtraction and we analyze and discuss how the different
approaches behave with respect to them. This permits to syn-
thesize a global snapshot of the effectiveness of the nowadays
background subtraction approaches. Almost each problem
analyzed has a proper solution, that comes from different
modalities or multimodal integration policies. Therefore, we
hope that this problem-driven analysis may serve in devising
an even more complete background subtraction system, able
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to join sensor channels in an advantageous way, facing all
the problems at the same time and providing convincing
performances.
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