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We consider the reconstruction of signals from nonuniformly spaced samples using a projection onto convex sets (POCSs)
implemented with the evolutionary time-frequency transform. Signals of practical interest have finite time support and are nearly
band-limited, and as such can be better represented by Slepian functions than by sinc functions. The evolutionary spectral theory
provides a time-frequency representation of nonstationary signals, and for deterministic signals the kernel of the evolutionary
representation can be derived from a Slepian projection of the signal. The representation of low pass and band pass signals is
thus efficiently done by means of the Slepian functions. Assuming the given nonuniformly spaced samples are from a signal
satisfying the finite time support and the essential band-limitedness conditions with a known center frequency, imposing time and
frequency limitations in the evolutionary transformation permit us to reconstruct the signal iteratively. Restricting the signal to
a known finite time and frequency support, a closed convex set, the projection generated by the time-frequency transformation
converges into a close approximation to the original signal. Simulation results illustrate the evolutionary Slepian-based transform

in the representation and reconstruction of signals from irregularly-spaced and contiguous lost samples.

1. Introduction

The problem of signal reconstruction from Nonuniformly
spaced samples is central in many practical problems in
image and signal processing [1-11]. Nonuniform sampling
is a common result of Nyquist-Shannon sampling caused
by jittering in the sampler, but it is also the case when
samples are missing, either according to some distribution
or in segments.

Reconstruction of Nonuniformly sampled signals can be
approached numerically by considering sinc basis as frames
[12]. Unfortunately, it is an ill-posed problem given the
characteristics of the basis. Signals in practice have finite
supports and can be approximated as nearly band-limited
signals, based on this in [13, 14] it is shown that a more
appropriate basis for signal interpolation is the Prolate
Spheroidal Wave or Slepian functions [15]. It is thus possible
to develop the projection of signals of finite time support
that are nearly band-limited. The representation of bandpass
signals, as the modulation of baseband components, can be

obtained using modulated Slepian basis. The discrete prolate
spheroidal sequences (DPSSs) are the discrete form of the
prolate spheroidal wave functions (PSWFs) [16] and can be
used as the basis for the projection of the sampled signal.
Using DPSS as an orthogonal basis [14, 17], it is shown to
reduce the sampling rate and reconstruction error.

The reconstruction of finite energy signals can thus
be viewed as an interpolation or an estimation problem
in which projection of the observed signal minimizes an
error criteria. Constraining the solution to satisfy time and
frequency conditions iteratively, a close approximation to
the signal, with the given samples, is obtained. This is
the basic idea of the projection onto convex sets (POCSs)
method. This method was introduced by [1, 2] as an
iterative algorithm for signal restoration. Since then, the
POCS method has been successfully used in many signal
and image recovery problems [3-11]. Time-frequency signal
representations using short-time [9] and fractional Fourier
transform [10, 11] have been recently used to implement this
type of reconstruction.



To obtain the POCS iterative solution, we consider that
the signals of interest have a finite time support and an
approximately finite frequency support. As such, the Slepian
projection are used for this class of signals. To jointly consider
time and frequency constraints, we develop a time-frequency
representation from the Slepian projection. This can be
done using the evolutionary spectral theory [18], where a
signal can be represented in terms of a kernel which in turn
can be obtained from the windowed signal. The magnitude
square of the kernel is associated with the way the energy
of the signal is distributed in time and frequency. It is also
possible to obtain a similar representation, the discrete evo-
lutionary transform (DET), for deterministic signals having
components with time-varying frequency components [19].
Imposing time and frequency limitations in the DET permits
us to reconstruct the signal iteratively, that is, the iterative
projection generated by the time-frequency transformation
converges into a close approximation to the original signal
with the given Nonuniform samples.

The rest of the paper is organized as follows. In Section 2,
we consider the reconstruction of Nonuniformly sampled
signals. In this section we show why the PSWF basis is
more appropriate than the sinc basis for the reconstruction
from Nonuniform samples when the signal is of finite
time support and essentially band-limited. In Section 3 we
propose the time-frequency discrete evolutionary transform
(DET) as the projection operator for the implementation of
a recursive projection onto complex sets (POCSs) to recover
missing samples. Assuming that the baseband components of
a bandpass signal has finite support in time and frequency,
a DET based in PSWF or Slepian functions is possible.
This will be presented in Section 4. In Section 5 we
illustrate the Slepian-based DET, and its application in the
reconstruction of signals missing samples randomly and in
blocks. Conclusions follow.

2. Reconstruction of Nonuniformly
Sampled Signals

The sinc interpolation obtained in the Shannon-Nyquist
sampling theory [20] for finite energy signals is fundamental
in signal processing. However, it has some limitations. These
limitations are (i) that the signal x(¢) is sampled uniformly
at nT, for some sampling period Ts, and (ii) that x(f)
is band-limited, that is, Qmax is the maximum frequency
present in the signal. Under these conditions the signal can be
reconstructed from the uniform samples {x(nT;)} according
to the following sinc interpolation:

x(t) = > x(kTs)S(t — kT), (1)
k

where S(-) is the sinc function. Several issues of practical
interest arise when numerically implementing this interpola-
tion. Besides the infinite dimension of the problem, uniform
sampling is not realistic. Moreover, band-limitedness is just
an approximation to reality.

If Nonuniform samples are available, the signal recon-
struction suffers from dimensionality and ill-conditioning
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[12]. Indeed, if the set of time-shifted sinc functions is
considered a frame for x(t), a Gramian matrix equation
represents the following interpolation:

Sc = x, (2)

where S is a matrix containing shifted sinc functions, x is a
vector with entries the samples of the signal, and c are the
expansion coefficients of the projection in terms of the sinc
functions. The infinite dimension of this problem makes it
unsolvable, and when the dimension is reduced the problem
becomes ill-posed [12].

The problem in part is due to using shifted sinc
functions as basis: these functions are not appropriate for the
interpolation given that time-limited signals are of infinite
frequency support according to the uncertainty principle. A
more appropriate basis is given by the Prolate Spheroidal
Wave functions (PSWFs) [15].

The PSWFs are real-valued functions, with finite time
support 2T, that maximize their energy in a given band-
width. These functions {y,(t)} are the eigenfunctions of the
sinc-based integral equation

1 T
wnlt) = - | wn(0S(e = 0, 3)

where A, is the eigenvalue corresponding to the eigenfunc-
tion ¥,(f). Given the orthogonality of the sinc functions,
the above definition leads to the orthogonality of the PSWF
functions, so that they, like the sinc functions, are basis
for finite energy signals. Thus the sinc function S(-), which
belongs to the space of band-limited signals, can be expanded
in terms of the PSWFs as

S(t - kTs) = Z V/m(kTs)V/m(t) (4)

m=0

Replacing this equation in the sinc interpolation gives an
interpolation in terms of the PSWFs:

o]

x(t) = Z)’mV/m(t) (5)

m=0

with expansion coefficients

Ym = Zx(kTs)‘//m(kTs) (6)
k=0

If the signal x(¢) has a finite support in time and approxi-
mately finite support in frequency, the above sums become
finite. In that case, the upper limit of the sum in (5) depends
on the approximately maximum frequency of x(t), and in (6)
the upper limit of the sum depends on the finite support of
x(t). A sampled-version of the signal could then be

N-1M-1

x(nTs) = Z Zx(kTs)V/m(nTs)V/m(kTs)y (7)

k=0 m=0

where N relates to the time support, and M to the frequency
support of x(1).
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Thus, if x(¢) is time-limited and essentially band-limited,
(5) and (6) provide a reconstruction of the signal from
Nonuniformly sampled signals. In [14], it is shown that
in the case of jittering sampling, that is, a subset of the
uniform samples {x(nT;)} is available, the signal can be
reconstructed.

A discrete version of the PSWF is used in these cases.
The discrete PSW functions (or discrete PSW sequences or
DPSS) are parameterized by the time bandwidth product
NW where N is their length and W = fT its normalized
bandwidth. Like their analog counterparts, they are defined
as the solution to the eigenvalue problem

N sin(2nW(n — m))
Ay (m) = %Ww(ﬂ), (8)

where 0 < n,m < N—-1,and 0 < W < 1/2. The N real
eigenfunctions yx(n) are the DPSS, and the corresponding
eigenvalues relate to the their energy concentration. The
DPSS are also orthonormal.

3. Evolutionary Spectral
Representation and POCS

The spectral representation of a stationary signal consists of
a superposition of sinusoids, of all possible frequencies, with
randomly varying amplitudes and phases. To obtain a similar
representation for non-stationary signals, one can consider
the Wold-Cramer representation [18] characterizing a non-
stationary signal as the output of a linear time-varying
system with a stationary white noise as input. Thus, a discrete
non-stationary signal x(n) can be expressed as

x(n) = > X(n, wp)el", (9)
k

where X (1, w) is an evolutionary kernel. The evolutionary
spectrum of x(n) is given by | X (n, w) 2.

In [19], it is shown that the above representation can be
extended to deterministic signals. The discrete evolutionary
transform (DET) obtained in there is a generalization of
the short-time Fourier transform as the evolutionary kernel
X (n, wy) is obtained in term of the signal windowed, but the
window in the DET varies with time and frequency. Thus the
kernel is

N-1
X(n,wi) = > x(m)Wi(n, m)e 1« (10)

m=0

where Wi (n, m) is the window which can be expressed in
nonorthogonal functions such as Gabor’s, or orthogonal
functions such as Malvar’s [19].

The POCS framework enables an iterative recovery
algorithm incorporating time and frequency constraints. A
desired signal x(n) is assumed to lie in the region defined by
the intersection of all the convex sets, that is,

x(n) € Co,  Co={Cs (11)
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FiGure 1: Baseband DPSS for N = 256, W = 1/8,and K = 64 (note
that K = [2NW ).

where C; denotes the ith closed convex set. Thus, the original
signal can be restored by using the projection operators P;
onto each convex set C;. The general form of the POCS
reconstruction is

xi+1)(n) = Pi[xu(n)], (12)

where x(;j(n) is the reconstructed signal after i iterations.
Assuming that the signal of interest is square summable and
that the DET projects a signal into another square summable
signal, under joint time-frequency constraints we develop an
iterative POCS algorithm to recover the signal from partial
information of it.

4, Evolutionary Slepian Transform-Based POCS

A bandpass real-valued signal x(¢) can be also represented in
terms of baseband signals as

x(t) = Re| (a(t) + jb(1))e 1], (13)

where a(t) and b(t) are low pass signals and Qg is the
center frequency of the Fourier transform of x(¢) and X(Q).
Assuming the a(f) and b(t) components have finite time
support and are essentially band-limited, we can represent
them using the Slepian projection presented above. In that
case, the signal x(f) can be expressed as

x(t) = Re[Z (ym + jrzm)wm(t)ef““}, (14)
m=0

that is, in terms of modulated Slepian functions.
The bandpass DPSS [21, 22] which have the highest
energy concentration in a given passband are defined by

&c(n) = e 72 Weryy (n), (15)
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FIGURE 2: An example of evolutionary Slepian spectrum: (a) x; (1), (b) |X (1, w)|

where the passband is [0 < W, — W, W, + W < 1/2]. When
the signal energy outside the given frequency band is very
small,

1
— 1X(w)|*dw ~ 0, (16)
27 Jo g (W W, Wt W)

the bandpass DPSS provide an efficient representation of
passband signals and accurate channel estimation [21, 22].
Allowing the center frequency to vary from zero to infinity
(or zero to 7 in the discrete domain) we then have a general
representation for any signal.

The general representation for a complex signal x(t) in
terms of the PSWFs is given by

X(t) = Zmem(t)a Ym = Zx(kTs)Em(kTs): (17)
m=0 k=0

where {&,,(t)} can be the band-pass or the base band (when
the center frequency is zero) Slepian functions. If the signal
x(t) is time limited, and essentially in the frequency bands
Q; + Qand —Q, + Q, then (7) becomes

M~-1N-1

x(t) = >, D x(kT)E(KT)En (1), (18)

m=0 m=0

where, as indicated before, M depends on the frequency
support and N on the time support.

In [14], the reconstruction of the original signal from
a given set of Nonuniform samples is considered, while the
effect of the distribution of the Nonuniform samples in the
reconstruction is studied in [23]. Assuming that g samples
x(kiTs),i = 0,1,...,q — 1 are missing, then letting u be the
q-dimensional vector of unknown samples and ¢ = k; T we
obtain from above

u=Au+g, (19)
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where A is a matrix with a subset of the entries of the matrix
generated by the terms in square brackets in (18) and

k#u

M-1
g(t) = Z x(kTs) |: Z Em(kth)fm(t)] (20)
m=0

The missing samples are recovered if the above equation can
be solved for u, or if I — A is invertible. Given the many
possible ways the missing samples could be distributed, this
might not be possible. However, as indicated in [12, 23]
there are cases where reconstruction is possible with the sinc
interpolation, and we will show later that it is also the case
when we are using the Slepian POCS.

To apply joint time and frequency constraint in the POCS
we develop a DET based on the Slepian representation of the
signal. Suppose a discrete signal x(n) can be represented in
terms of some orthogonal basis {¢x(n)},

K-1

x(n) = > digr(n), 0<n<N-1,
k=0 1)
N-1

di = > x(n)gj (),

n=0

0<k<K-1,

where {di} are the expansion coefficients. Rewriting x(n) as

K-1
x(n) = 3 [digi(m)e e [elrn, (22)
k=0"———r~y——’
=X(n,wk)
where wy = 27(k/N). The evolutionary kernel X (#, wx) can
be expressed in terms of x(#) by replacing the dj coefficients,

X(n, wi) = dgpr(n)e ion

N-1

= 3 x(m)[ e (m) g (myeiestnm s,

m=0 —_
=Wi(n,m)

(23)
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FiGgure 3: Comparison of evolutionary Slepian spectrum for passband test signal using baseband and bandpass DPSS. (a) x,(n) and its
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FIGURE 4: Restored results for the test signal x;(n) (a) Irregularly spaced subsamples (L = 8, 7 ~ N (0, 1)), (b) restored signal, (c) error, and

(d) convergence behaviour.

To obtain the evolutionary kernel, in particular the
window Wy (n,m), we consider the bandpass DPSS {&(n)}
as basis for the representation of baseband and passband
signals. The window is then expressed as

Wi(n,m) = &(n)&F (m)eJ@xtn=m), (24)

It is important to understand that when the signal under
consideration is modulated, that is, x(n) = g(n)e 7*"e" and
we use the bandpass Slepian functions, we can obtain the
spectrum of g(n) or |G(n, wk)|?. For a signal with bandpass
characteristics, the signal can be represented by a small
number of bandpass DPSS coefficients and then restored by
small number of projection iteration compared to baseband
DPSS based DET, which will be shown in next section.

5. Simulation

5.1. Slepian-Based DET. To illustrate the baseband and
bandpass Slepian representation and theirSlepian-based
DET, consider the test signals

Baseband signal: x;(¢) = sinc(t — 2.1) — 0.7sinc(t + 1.7),

-15<t=<15

Passband signal: x,(t) = sinc?( fst) cos (271 fot+ g),

—-05=<t=<0.5,
(25)

where fc = 25.6Hz is a carrier frequency, and fz = 2Hz.
Discrete signals x; (1) and x,(n),0 < n < N—1,N = 256, are
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Figure 5: Convergence speed and MAE performance according to
the degree of irregularity.

obtained from the uniform sampling on the signal x; (t) and
x,(t), respectively, using a sampling period T; = 30/256 and
T = 1/256 sec. For the signal x; (), the evolutionary Slepian
spectrum | X (n, wi)|? using the baseband DPSS, shown in
Figure 1, is illustrated in Figure 2. The evolutionary Slepian
spectrum shows that the energy of the test signal x;(n) is
highly concentrated in n € [100,160] and wx € [0,1/4]
rad. As shown in Figure 2(b), the DET provides accurate
representation for a nearly time-limited and band-limited
signal in the time-frequency domain.

The 256-point bandpass test signal x,(n) in Figure 3(a) is
to be represented by the evolutionary Slepian spectrum. Its
Fourier transform is shown in Figure 3(a) where the signal
energy is concentrated at normalized frequency 0.1. In many
practical applications, the exact frequency band of the signal
is known. Therefore, if we have enough knowledge about
the spectrum characteristics of the signal, we can represent
the signal with small number of DPSS. Figure 3(b) shows
the evolutionary Slepian spectrum for x,(n) using baseband
DPSS with K = 64 coefficients and normalized bandwidth of
W = 1/8. The evolutionary Slepian spectrum using bandpass
DPSS is also shown in Figure 3(c) where K = 4, W = 1/128,
and W, = 0.1. Therefore, if we project the signal that has
bandpass characteristics on the DET domain, the signal can
be restored only by a small number of basis, that is, bandpass
DPSS with the same accuracy obtained from baseband
DPSS.

5.2. Reconstruction of Irregularly Sampled Signals. In this
section, we perform three different simulations to illustrate
the effectiveness of DET-based POCS. We use the POCS
methodology for reconstruction of nonuniformly sampled
and band-limited signals.

5.2.1. Nonuniform Jittering Sampling with Known Distribu-
tion. Irregularly spaced samples {x(#;)} are obtained from
the original signal x(n) by x(n;) = x([n(N/L) + 7]) where
7 is the timing jitter with normal distribution N (0,0?)
and [| denotes the nearest integer, and L is a decimation
factor.

Figure 4(a) shows the irregularly spaced samples with 32-
point (L = 8) from the test signal x;(n). In this simulation,
the parameters for the baseband DPSS are W = 1/16, and
K = 32. As shown in Figures 4(b), 4(c), and 4(d), the
original signal can be recovered with very small error after
40 iterations. Figure 5 shows the relationship between the
degree of irregularity (t ~ M (0,02)) and the performance
in terms of mean absolute error (MAE) and the speed of
convergence. It is clear that the performance depends on the
degree of irregularity. Figure 5 also suggests that, although
the number of iterations should be increased according to the
degree of irregularity, a nearly perfect reconstruction can be
possible.

In case of nonstationary signals such as a chirp, the
restored signal using bandpass DPSS-based DET is shown in
Figure 6. The results clearly indicate that the reconstruction
of the Nonuniformly sampled nonstationary signal can be
possible with very small error.

For a speech signal, the restored results using baseband
and bandpass DPSS-based DET are shown in Figure 7.
Its frequency components are also shown in Figure 7(b)
showing that the energy of the signal is concentrated in a
normalized frequency band 0.02 < w < 0.1. Note that
the bandpass DPSS-based DET projection converges faster
than the baseband approach for a bandpass type signal.
It is clear that the bandpass type signal can be restored
only by a small number of components and the iteration,
with the same MAE performance compared to baseband
DPSS-based DET, converges faster. Therefore, the DET-based
POCS algorithm provides a fast and accurate technique for
recovering band-limited samples from the irregularly spaced
subsamples.

5.2.2. Nonuniform Jittering Sampling with Unknown Distri-
bution. In this simulation, we consider the extreme case
of irregularly spaced, that is, randomly spaced subsamples.
Figure 8 shows examples of restored signal from the
randomly spaced subsamples for test signal x;(n) and the
speech signal, given above. As shown in Figure 8, for a
time-limited signal such as x;(n), the restored performance
strongly depends on the sampling distribution. For the
speech signal, since its energy is well distributed in the
time domain, the restored signal is not sensitive to the
distribution of sampling points. Note that the MAE values
of the restored speech signals under 5 different random
sampling patterns lie between 0.2 and 0.3 after convergence.
This result clearly indicates that for a signal with uniformly
distributed energy in the time domain, the DET based POCS
algorithm is capable of signal recovery from randomly spaced
subsamples. As pointed out in [23], if the gaps between
missing samples due to randomly spaced are large, iterative
technique such as POCS is more efficient than noniterative
method.
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bandpass DPSS (K = 64, W, = 1/16) based DET, (c) error, (d) convergence behaviour.

5.2.3. Block or Contiguous Sample Losses. For the recovery of
uniformly sampled signals with contiguous lost samples, the
same projection methodology is applied in this simulation.
A general assumption is that the lost data on the sampled
signals compared to the total number of samples is small and
that the available samples are representatives of the original
signal [24]. Figure 9 shows examples of restored speech signal
by bandpass DPSS- (K = 16) based DET from the uniformly
spaced speech signal with continuous missing data. For larger
values of missing samples, since the assumption does not
hold due to severe loss of information on the signal, the
performance of signal recovery is degraded. However, the
proposed method shows very promising results as shown in
Figure 9.

6. Conclusions

In this paper, we have introduced a new discrete evolutionary
Slepian transform capable of efficient representation of
band-limited signals. For the evolutionary kernel window,
baseband and bandpass DPSS are used for the repre-
sentation of baseband and bandpass signals, respectively.
The evolutionary Slepian spectrum provides an accurate
representation of time-and-band limited signal in the time-
frequency domain. For the reconstruction, the DET-based
POCS algorithm is applied in the area of signal recovery
from nonuniformly spaced subsamples. For a signal that has
bandpass characteristics, the signal can be represented by a
small number of bandpass DPSS coefficients with the same
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FIGURE 7: Restored results for the speech signal. (a) Speech signal, (b) spectrum of speech, baseband, and bandpass DPSS, (c) irregularly
spaced subsamples (L = 4, 7 ~ N (0,1/2)), (d) convergence behaviours, (e) restored signal by baseband DPSS- (K = 64) based DET, and (f)

restored signal by bandpass DPSS- (K = 16, W, = 0.05) based DET.
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