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We consider the problem of adaptive signal detection in the presence of Gaussian noise with unknown covariance matrix. We
propose a parametric radar detector by introducing a design parameter to trade off the target sensitivity with sidelobes energy
rejection. The resulting detector merges the statistics of Kelly’s GLRT and of the Rao test and so covers Kelly’s GLRT and the Rao
test as special cases. Both invariance properties and constant false alarm rate (CFAR) behavior for this detector are studied. At
the analysis stage, the performance of the new receiver is assessed and compared with several traditional adaptive detectors. The
results highlight better rejection capabilities of this proposed detector for mismatched signals. Further, we develop two two-stage
detectors, one of which consists of an adaptive matched filter (AMF) followed by the aforementioned detector, and the other
is obtained by cascading a GLRT-based Subspace Detector (SD) and the proposed adaptive detector. We show that the former
two-stage detector outperforms traditional two-stage detectors in terms of selectivity, and the latter yields more robustness.

1. Introduction

Adaptive detection of signals embedded in Gaussian or non-
Gaussian disturbance with unknown covariance matrix has
been an active research field in the last few decades. Several
generalized likelihood ratio test- (GLRT-) based methods are
proposed, which utilize secondary (training) data, that is,
data vectors sharing the same spectral properties, to form
an estimate of the disturbance covariance. In particular,
Kelly [1] derives a constant false alarm rate (CFAR) test
for detecting target signals known up to a scaling factor;
Robey et al. [2] develops a two-step GLRT design procedure,
called adaptive matched filter (AMF). Based on the above
methods, some improved approaches have been proposed,
for example, the non-Gaussian version of Robey’s adaptive
strategy in [3—6] and the extended targets version of Kelly’s
adaptive detection strategy in [7]. In addition, considering
the presence of mutual coupling and near-field effects, De
Maio et al. [8] redevises Kelly’s GLRT detector and the AME

Most of the above methods work well, provided that
the exact knowledge of the signal array response vector

is available; however, they may experience a performance
degradation in practice when the actual steering vector is not
aligned with the nominal one. A side lobe mismatched signal
may appear subject to several causes, such as calibration
and pointing errors, imperfect antenna shape, and wavefront
distortions. To handle such mismatched signals, the Adaptive
Beamformer Orthogonal Rejection Test (ABORT) [9] is
proposed, which takes the rejection capabilities into account
at the design stage, introducing a tradeoff between the
detection performance for main lobe signals and rejection
capabilities for side lobe ones. The directivity of this detector
is in between that of the Kelly’s GLRT and the Adaptive
Coherence Estimator (ACE) [10, 11]. A Whitened ABORT
(W-ABORT) [12, 13] is proposed to address adaptive
detection of distributed targets embedded in homogeneous
disturbance via GLRT and the useful and fictitious signals
orthogonal in the whitened space, which has an enhanced
rejection capability for side lobe signals. Some alternative
approaches are devised [14—17], which basically depend on
constraining the actual signature to span a cone, whose
axis coincides with its nominal value. Moreover, in [18],



a detector based on the Rao test criterion is introduced
and assessed. It is worth noting that the Rao test exhibits
discrimination capabilities of mismatched signals better than
those of the ABORT, although it does not consider a possible
spatial signature mismatch at the design stage.

From another point of view, increased robustness to
mismatch signals can be obtained by two-stage tunable
receivers that are formed by cascading two detectors (usually
with opposite behaviors), in which case, only data vectors
exceeding both detection thresholds will be declared as the
target bearings [19-23]. Remarkably, such solutions can
adjust directivity by proper selection of the two thresholds
to trade good rejection capabilities of side lobe signals
for an acceptable detection loss for matched signals. An
alternative approach to design tunable receivers relies on
the parametric adaptive detectors, which allow us to trade
off target sensitivity with side lobes energy rejection via
tuning a design parameter [24, 25]. In particular, in [24],
Kalson devises a parametric detector obtained by merging
the statistics of Kelly’s GLRT and of the AMF, whereas in [25],
Bandiera et al. propose another parametric adaptive detector,
which is obtained by mixing the statistic of Kelly’s GLRT with
that of the W-ABORT.

In this paper, we attempt to increase the rejection
capabilities of tunable receivers and develop a novel adaptive
parametric detector, which is obtained by merging the
statistics of the Kelly’s GLRT and of the Rao test. We show
that the proposed detector is invariant under the group of
transformations defined in [26]. As a consequence, it ensures
the CFAR property with respect to the unknown covariance
matrix of the noise. The performance assessment, conducted
analytically for matched and mismatched signals, highlights
that specified with a appropriate design parameter the new
detector has better rejection capabilities for side lobe targets
than existing decision schemes. However, if the value of
the design parameter is bigger than or equals to unity, this
new detector leads to worse detection performance than
Kelly’s receiver. To circumvent this drawback, a two-stage
detector is proposed, which consists of the AMF followed
by the proposed parametric adaptive detector and can be
taken as an improved alternative of the two-stage detector in
[18]. We also give another two-stage detector with enhanced
robustness, which is obtained by cascading the GLRT-based
Subspace Detector (SD) [27] and the proposed parametric
adaptive receiver.

The paper is organized as follows. In the next section, we
formulate the problem and then propose the adaptive para-
metric detector. In Section 3, we analyze the performance
of the proposed receiver. We present two newly proposed
two-stage tunable detectors, respectively, in Sections 4 and
5. Section 6 contains conclusions and avenues for further
research. Finally, some analytical derivations are given in the
Appendix.

2. Problem Formulation and Design Issues

We assume that data are collected from N sensors and denote
by x € CV*! the complex vector of the samples where the
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presence of the useful signal is sought (primary data). As
customary, we also suppose that a secondary data set x;,
I=1,...,K,isavailable (K = N), that each of such snapshots
does not contain any useful target echo and exhibits the
same covariance matrix as the primary data (homogeneous
environment).

The detection problem at hand can be formulated in
terms of the following binary hypothesis test:

X = n,
H()I
x=n, Il=1,...,K,
(1)
X =ap+n,
H]i
x=n, I=1,...,K,
where
(i)nand n; € C¥¥, | = 1,...,K, are independent,

complex, zero-mean Gaussian vectors with covari-
ance matrix given by

E[nn']| =E[nn] =M, I=1,.,K, (2)

where E[-] denotes expectation and T conjugate
transposition;

(i) p € CV¥*! is the unit-norm steering vector of main
lobe target echo, which is possibly different from that
of the nominal steering vector po;

(iii) « € C is an unknown deterministic factor which
accounts for both target reflectivity and channel
effects.

The Rao test for the above problem [18] is given by

traO
- |x"$~'po |’
(1+xtS~1x)piS-1po (1+XTS*1x— |xtS~1py | 2/p(J)rS*lpo)
(3)

where § € CN*N is K times the sample covariance

matrix of the secondary data, that is, S = Z{il xlx;r LIt is
straightforward to show that f,,, can be recast as

2
tglrt

famf (1 - tglrt)

trao

tglrt ¢
T lalrt
tamf(l - tglrt)

L IxtsTpl?
<1+X+S Ix — T feoin
PoS™'po

(4)

-1

|x'$~'po |?

(1+xtS1x) (pSS—lpo)’
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where
xS~ 1py |2
amf = % (5)
PoS~'Po
is the AMF decision statistic, and
xt§=1py |?
tglrt = | Po { (6)

(1+xtS1x) (pgS‘lpo)

is the decision statistic of Kelly’s GLRT.
Comparing t, with fg, we propose a new detector,
termed KRAO in the following. Its decision statistic is

|st—lp0 | 2 ) —(2p-1)

firao = (1+x*81x—
° PeS~!po

7)
|x'S~po |’

. (I +xtS-1x) (pgS*lpo)

or, equivalently

; (2p—-1)

Irt

fikrao = — tglrt) (8)
tamf(l - tglrt)

where p is the design parameter.

It is clear that our detector covers Kelly’s GLRT and the
Rao test as special cases, respectively, when p = 0.5 and
p = 1. Moreover, since fiao can be expressed in terms
of the maximal invariant statistic (famf, fgirt), it is invariant
with respect to the transformations defined in [26]. As a
consequence, it ensures the CFAR property with respect to
the unknown covariance matrix of the noise.

3. Performance Assessment

In this section, we derive an analytic expression of Py, and Py
and then present illustrative examples for KRAO. Specifically,
in derivation of Py, we consider a general case, in which the
signal in the primary data vector is not commensurate with
the nominal steering vector, that is we consider detection
performance for mismatched signal. To this end, we first
introduce the random variable

-1

t§=1p, | >

_ |X+ 1P0| ) (9)
PoS™'pPo

and then consider the equivalent form of Kelly’s statistic

tort = tairt/ (1 — tgir). Thus, tirae can be expressed to be

tglrt

Tkrao = ﬁzP_l ~ -
1 + tglrt

(10)

3.1. Py, of the KRAO. Under Hy hypothesis, the following
statements hold [21]:

(i) given p, ?glrt is ruled by the complex central F-
distribution with 1, K — N + 1 degrees of freedom,
namely, tgre ~ CF1x-N115

(ii) B is a complex central beta distribution random
variable (rv) with K—N+2, N —1 degrees of freedom,
namely, /.)) ~ GﬁK—N+2,N—1'

Therefore, the KRAO associated Py, satisfies

_ 2'\lr
Pra(p,n) = P(ﬁz" 11+g7?t“ > ’1§Ho>
glr
ZP(?gln >/52'07_17;H0> (11)

1
_ L [1 ~F (8@_’]_’7)}1%(5)118,

where 7 is the threshold set beforehand, whose value depends
on the value of Py,, f3(-) is the probability density function
(pdf) of the rv 3 ~ CBk-N+2,n-1, and Fy(-) is the cumulative
distribution function (cdf) of the rv ?glrt ~ CF1 k-N+1, given
S. Then it follows

2'\hrt n
Pl —2—> ;Ho)
< I+ tglrt /32'071

0, ﬁ2p—1 < n (12)

P(?glrt > /32P_7_’1;H0>, ﬁZp—l >1.

Substituting (12) into (11) followed by some algebra, it
yields

(i)p=05andy =1

Pra(p,) =0, (13)

(ii) p>05and 0 <y < 1

1
Pralp,n) = mem [1 - FO(gzp_?_ﬂ)}fﬁ(f)d& (14)

(ili) 0 < p<05andy = 1

PUCES) 1
Pra(psn) ZL [1F0<52p—

T ﬂ)]ﬁ;(s)da, (15)

(iv)0<p=<05and0<zy<1

1
Pralp,n) = L [1 - F (82‘,'17_’7”)‘,;(8)@ (16)

For the reader ease, Figure 1 shows the contour plots
for the KRAO corresponding to different values of Py, as
functions of the threshold pairs (p, ), N = 8, and K =
24. All curves have been obtained by means of numerical
integration techniques.



Ficure 1: Contours of constant Py, for the KRAO versus 7 and p
with N = 8, K = 24.

3.2. Py of the KRAO. Now we consider hypothesis H;.
Denote ¢ the angle between p and py in the whitened-
dimensional data space, that is,
[p"™M'po|”
(ptM-1p) (piM-1py)

cos’¢p = (17)

The term cos?¢ is a measure of the mismatch between p and
Po- Its value is one for the matched case where p = po, and
less than one otherwise. A small value of cos?¢ implies a large
mismatch between the steering vector and signal. In this case,
due to the useful signal components, distributions of ?glrt and
f are given in [23]:

(i) given f3, fgm is ruled by the complex noncentral F-
distribution with 1, K — N + 1 degrees of freedom
and noncentrality parameter

835 = BSNR cos’¢, (18)

namely, ?glrt ~ CFik-N+1(0g), where SNR =
la|’pTM~!p is the total available signal-to-noise
ratio;

(ii) B is a complex noncentral beita distribution rv with
K—N+2,N —1 degrees of freedom and noncentrality
parameter

85 = SNRsin’¢, (19)

namely, B ~ CPx n+2n-1(5p).
Then Py is given by

Tar
Pa(¢) = P(ﬁzf’-lg'j > q;Hl)

1+ tglrt

1
_ JO [1 —F1<82p’17_;7>:|fﬁ(£)d£,

(20)
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where f3(-) is the pdf of the rv B ~ CBk_ni+2n-1(p), and
then, given f3, F;(-) is the cdf of the rv ?glrt ~ CFrx-N+1(3y).
Similarly as before (in Section 3.1), we have

(i)p=05andy =1

Py(¢) =0, (21)

(ii) p>0.5and 0 = y < 1

1
P = [1 -F (ezp’]_ﬂﬂ file)de,  (22)

n

(ili) 0 < p<05andy = 1

n'/(2p—1)

Pa(¢) = JO [1 R (gzp_’]_”)]f,g(s)ds, (23)

(iv)0<p=<05and0=<zy<1

1

Py(¢) = JO [1 -F (Szp?_n)]fﬁ(s)d& (24)

In the case of a perfect match, ds is equal to zero. As
a consequence, f3 is distributed as a complex central beta
distribution random variable with K — N + 2, N — 1 degrees
of freedom, and ?glrt is ruled by the complex noncentral
F-distribution with 1, K — N + 1 degrees of freedom and
noncentrality parameter

85 = BSNR. (25)

3.3. Performance Analysis. In this subsection, we present
numerical examples to illustrate the performance of the
KRAO. The curves are obtained by numerical integration and
the probability of false alarm is set to 1074,

One can see the influence of the design parameter p
in Figures 2 and 3, where the P of the KRAO is plotted
versus the SNR, considering both the case of a perfect
match between the actual steering vector and the nominal
one, namely, cos’¢ = 1, and the case where there is
a misalignment between the two aforementioned vectors,
more precisely cos’¢ = 0.7. Specifically, Figures 2 and 3
correspond to p = 0.5 and p € [0,0.5], respectively. From
Figure 2, we see that the curves associated with the KRAO
are in between that of Kelly’s GLRT and that of the Rao test
when p € (0.5,1.0), and that the KRAO outperforms the Rao
test in terms of selectivity for p > 1. However, it is also shown
that the amount of detection loss for matched signals and
sensitivity to mismatched signals depend upon the design
parameter p. More specifically, a larger value of p leads to
better rejection capabilities of the side lobe signals and the
larger detection loss for matched signals. On the other hand,
Figure 3 shows that, when p € [0,0.5), a smaller value of p
renders the performance less sensitive to mismatched signals.
In another word, robustness to mismatched signals can be
increased by setting p € [0,0.5). In summary, different values
of p represent different compromises between the detection
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— Kelly’s GLRT - KRAO:p = 0.9
—=— Rao test --- KRAO:p=1.2
--- KRAO:p = 0.7 —— KRAO:p =14

FIGURE 2: P, versus SNR for the KRAO, N = 8,K = 24,andp = 0.5.

and the rejection performance. So the appropriate value of p
is selected based on the system needs.

In Figures 4 and 5, we compare the KRAO to the ACE,
the ABORT, and Bandiera’s detector (KWA) [25] for N = 16,
K = 32, and under the constraint that the loss with respect
to Kelly’s GLRT is practically the same for the perfectly
matched case. For sake of completeness, we review these
CFAR detectors in the following:

foce = |x'S~'po |’
ace (péS‘lpo)(XTS‘lx)’
1+ xtS71Py|*/piS—1P,
= 26
Labort 2+ xS Ix > ( )
1+x'S!x
tkwa =

[1 +xt8-1x — |xtS-1py | 2/(P3371P0)]2y )

where y is the design parameter of the KWA. From Figures
4 and 5, it is clear that the KRAO is superior to the KWA in
rejecting side lobe signals with p = y + 0.1 It is also clear
that, with a proper choice of p, the KRAO outperforms the
ACE and the ABORT in terms of selectivity. Other simulation
results not reported here, in order not to burden too much
the analysis, have shown that the above results are still valid
for N =8and K = 24.

4. Two-Stage Detector Based on the KRAO

In this section, we propose a two-stage algorithm, aiming at
compensating the matched detection performance loss for
the KRAO with p = 1. Briefly, this is obtained by cascading
the AMF and the KRAO (p = 1). We term this two-stage
detector KRAO Adaptive Side lobe Blanker (KRAO-ASB).
This detector generalizes the two-stage Rao test (AMF-RAO)

SNR (dB)
— Kelly’s GLRT —— KRAO:p =0.2
—— KRAO:p =0 --- KRAO:p =0.3
== KRAO:p=0.1 KRAO: p = 0.4

FIGURE 3: P,; versus SNR for the KRAO, N = 8, K = 24,and p €
[0,0.5].

Py
(=}
w

5 10 15 20 25
SNR (dB)

FIGURE 4: P, versus SNR for the KRAO with p = 0.9, the KWA with
y = 0.8, and the ACE, N = 16, K = 32.

[18] for p = 1. We now summarize the implementation of
the proposed detector as below:

>Na >
Lamf 2 Na _’1’ Tkrao 2 Nk ﬂ’ H,
l< 1, V< 1k (27)
Hy H,

where 7, and #; form the threshold pair, which are set in
such a way that the desired Py, is available. Observe that
the KRAO-ASB is invariant to the group of transformations
given in [26], due to the fact that fy,, can be expressed



in terms of the maximal invariant statistic (famf, Lgir). It is
thus not surprising that the KRAO-ASB ensures the CFAR
property with respect to the disturbance covariance matrix
M. In what follows, we derive the closed-form expressions for
Pf, and Py of KRAO-ASB. Given a stochastic representation
for tams [20]:

famf = > (28)

the Py, follows to be
Pfa(”]a» ﬂk)P) = P[tamf > ﬂa;tkrao > I/Ik;HO]

_ /t\lrt
> Has B —5— > i Ho

~ Hk
=P |:tglrt > max (ﬁﬂa, [3213‘1—1%) 5 H():| .

(29)
Note that
1/(2p-1)
0, B=nl 7",
Pfa(ﬂa: I/Ik;P) =
1k 1/2p-1)
max</3’1a’ﬁzpl—f1k>’ [3>;1k Pl
(30)

Consequently,

Pfa (Vlm ﬂk)P)

1
= 7 Mk o
a Li“”’” P[tgm - (xn“’ X%l — ”Ik) = HO}

X fp(x)dx

1
Nk
= 4[71)1/(2‘071) [1 - F (max <x11a, g — " ) ) } fp(x)dx,

(31)

where fz(-) is pdf of the rv 8 ~ CBx _Ni2n-1,and Fy(-) is the
cdf of the rv ?glrt ~ CF1,k-N+1, given 8. Then, we consider the
standard algebra

= Nk < (32)

> = Us

) XHa> x>0,

x2p—1 _ ’7k
where o is the positive root to the equation
NaX™ ™" = fatfix = 1k = 0 (33)

and can be obtained via Newton’s method. Substituting (32)
into (31) and performing some algebra, it yields that

(1) if 7, < /(1 — 1), then g = 1

! k
Pfa(’?aa Nk> p) = Jql/(zp’l) |:1 — F() (xzp_};’ _— fb(x)dx,
k
(34)

namely, the two-stage detector achieves the same
performance as that of the KRAO test;
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FIGURE 5: P; versus SNR for the KRAO with p = 0.7, the KWA with
y = 0.6, and the ABORT, N = 16, K = 32.

(ii) if o > /(1 — ni), then o < 1

Pta(Ha> k> p) = J [1 - Fo(z'zk
o 2

+ Jl(l - F()(Xﬂa))fﬁ(X)dx.

a

(35)

It is worth noting that there exist an infinite set of infinite
triplets (#4, 77k, p) that result in the same Pg,. Figure 6 shows
the contour plots corresponding to different values of Py,
as functions of (#4,7x) for N = 8, K = 24,and p = 1.2. It
is shown that this detector provides a compromise between
the detection and the rejection performance and degenerates
to the AMF as i = 0, and the KRAO when 7, = 0. So
the appropriate operating point can be selected based on the
system requirements.

For H; hypothesis, the derivation process is similar. In
detail, if 7, < ni/(1 — 1), Py is the same as for the KRAO
test; otherwise, it can be evaluated by

Py(¢) = Jr/;/(z”’” |:1 -F (chl,_lzk_m()}f;;(x)dx

+ Ll [1 = Fi(xna) ] fp(x)dx,

(36)

where f3(-) is the pdf of the rv f ~ CPBx_ni2n-1(8p), and
Fy(-) is the cdf of the rv ?glrt ~ CF1k-n+1(dy), given f.

The matched detection performances of the KRAO-ASB,
the KRAO, and the AMF are analyzed in Figure 7, with N =
8, K = 24,p = 1.2, and Py, = 107*. For KRAO-ASB, we
show the curve corresponding to the threshold setting that
returns the minimum loss with respect to the Kelly’s GLRT.
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Threshold for the AMF

Py =10""

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3
Threshold for the KRAO

F1cure 6: Contours of constant Py, for the KRAO-ASB with N = 8,
K =24,andp = 1.2.

The curves highlight that for small-medium SNR values,
the KRAO-ASB yields better detection performance than
that obtained by performing either the AMF or the KRAO
operating alone. We argue that this behavior results from
the capability of the KRAO-ASB algorithm in combining
information from both single detectors. Similar results for
existing two-stage detectors refer to [18-21].

In Figures 8 and 9, we compare the KRAO-ASB
(equipped with p = 1.2) to the two-stage detector based
on the KWA (KWAS-ASB) [25] (affiliated with y = 1.1)
and the AMF-RAO. The threshold pairs correspond to the
most selective case and entail a loss for matched signals of
about 1dB with respect to the Kelly’s GLRT at Py = 0.9
and Ps, = 107*. Figure 8 refers to N = 8 and K = 24,
and Figure 9 assumes N = 16 and K = 32. As it can be
seen, the KRAO-ASB exhibits better rejection capabilities of
mismatched signals than the KWAS-ASB and the AMF-RAO
for the considered system parameters.

5. Improved Two-Stage Detector Based on
the KRAO

In order to increase the robustness to mismatched signals of
the KRAO-ASB, we propose another two-stage detector. This
detector is the same as KRAO-ASB, except that the AMF is
replaced by a SD. The resulting statistic is

_ x'S"'H(H'S"'H) 'HS'x

(37)
1+xtS-1x

lsd

>

whereH = [v- - - v,_;] € CY*" is a full-column-rank matrix
(r = 1). The choice of H = [s(0),s(/360)] makes this
detector robust in a homogeneous environment [21]. The
vector s(0) is defined as follows:

s(0) = L[l)ej(an/)t)sinO’.“)ej(N—l)(an/A)sing]T’ (38)

VN

where A is the radar operating wavelength, d is the interele-
ment spacing, and T denotes transposition.

This detector, which we term Subspace-based and KRAO
Adaptive Side lobe Blanker (SKRAO-ASB), can be pictorially
described as follows:

>1s >
lsd 2 s — tkrao 2 Nk SSLN H,
l< I< (39)
Ho HO)

where 7, and #x form the threshold pair which should be
set beforehand to guarantee that the overall desired P, is
available. We then derive closed-form expressions for P,
and P; of the KRAOS-ASB. First, we replace t,; with the
equivalent decision statistic ta = 1/(1 — ts). It is shown that
the following identities hold for t and tro (see derivation
in Appendix):

?sd = (1 + C)?glrt)

" _ ( 1 )Zp—l /t\glrt (40)
ka0 T\ 1% b+ c+ be 1+t

Then, under Hy hypothesis [23]:

(i) given b and c, ?glrt is ruled by the complex central F-
distribution with 1, K — N + 1 degrees of freedom,
namely, tge ~ CF1x-N+15

(ii) b is a complex central F-distribution random variable
(rv) with N — r, K — N + r + 1 degrees of freedom,
namely, b ~ CFN-_rk-N+r+15

(iii) ¢ obeys the complex central F-distribution with r —
I, K — N + 2 degrees of freedom, namely, ¢ ~
CFr1Kk-N+25

(iv) b and c are statistically independent rv’s.

Therefore, the P, of the SKRAO-ASB can be expressed
as

Pfa(ﬂs; 77r:P) = P(/t\sd > 7/7\5’ lkrao > 71k§H0)

(71 - s
_Ho [1 F0<max<1+k 1,

Nk
(1+e+k+ek) ™ —n

X fi(e) fe(k)dedk,

where 7, = 1/(1 — #5), fo(+) is the pdf of the rv b ~
CFN-rk-N+r+1> fc(+) is the pdf of the rv ¢ ~ CFr_1 xk-N+2,
and Fy(-) is the cdf of the rv ?glrt ~ CFixk-N+1> given b
and c. As can be seen from (41), the Py, of the SKRAO-
ASB depends on the threshold pairs (#;, 7x) and the design
parameter p, as a consequence of which, the SKRAO-ASB
possesses the constant false alarm rate (CFAR) property with
respect to the disturbance covariance matrix M.

For hypothesis H,, we assume that the first column of H
is po, then perform QR factorization to M~/2H:

(41)

M~?H = HyRy (42)



20

SNR (dB)

FiGure 7: Matched P, versus SNR for the KRAO-ASB, the KRAO,
and the AMF with N = 8, K = 24,and p = 1.2.

with Hy € CN*" being a slice of unitary matrix, namely,
H/H, = I, and Ry € C™ an invertible upper triangular
matrix. Then we define a unitary matrix U that rotates the
r orthonormal columns of Hy into the first r elementary

vectors, that is,
I
(43)

UH, =
0(N—r)><r

and, in particular,

UM "2py = \/piM-Ipgey, (44)

where e; is the N-dimensional column vector whose first
entry is equal to one and the remainings are zero. It turns
out that the whitened data vector z = UM~ 2x is distributed
as [28]

el? cos ¢
z2:CNy| oanptM-1p| hg,sing |, Iy |, (45)

hg, sin¢

where hg, € C=D*1 hy € CVN-1x1 with
[Ihso[1* + [l | [* = 1, (46)
where || - || denotes the Euclidean norm of a vector. Then

because of the useful signal components, the distributions of
t, b and c are given in [23]:

(i) given b and ¢, ?gm is ruled by the complex noncentral
F-distribution with 1, K — N + 1 degrees of freedom
and noncentrality parameter

5 SNRcos?¢

_ 47
% 1+b+c+bc’ (47)

namely, fgre ~ CF1x—n+1(8p);
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FIGUre 8: P; versus SNR for the KRAO-ASB with p = 1.2, the
KWAS-ASB with y =11, and the AMF-RAQ, N = 8, K = 24.

(ii) b is a complex noncentral F-distribution rv with N —
r, K =N +r+1 degrees of freedom and noncentrality
parameter

87 = SNRsin?¢||hg,||%, (48)

namely, b ~ CFn-rk-N+r+1(0p);

(iii) given b, ¢ obeys the complex noncentral F-
distribution with r — 1, K — N + 2 degrees of freedom
and noncentrality parameter

_ SNRsin2¢||h, ||

1+b (49)

82

>

namely, ¢ ~ CF, -1 k-N+2(0c).

Now, it is easy to see that the Py for the SKRAO-ASB can be
expressed as

Pd(¢) = PI:?Sd > ﬁS)trao > T’Ir;Hl]

S

ﬁs Nk
X —1, —
<max<1+K (+e+k+ek)’ 2”—11;))]

X fop(x | b =¢) fir(e)ded,

(50)

where f;(-) is the pdf of the rv b ~ CFy_rk-N+r+1(0b),
few(+ | ) is the pdf of the rv ¢ ~ CFr_1 x-n+2(6c), given
b, and F;(-) is the cdfoffglrt ~ CF1x-N+1(8p), given b and c.

In Figures 10 and 11, we plot P, versus ¢ (measured in
degrees) for the SKRAO-ASB and the KRAO-ASB for N = 8,
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FIGURE 9: P; versus SNR for the KRAO-ASB with p = 1.2, the
KWAS-ASB with y = 1.1, and the AMF-RAO, N = 16, K = 32.
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FIGURE 10: P; versus ¢ for the SKRAO-ASB with N = 8, K = 24,
p=12,H = [s(0),s(7/360)], and SNR = 18 dB.

K = 24,p = 12, H = [s(0),s(n/360)], Pr; = 1074,
and SNR = 18dB. The different curves of each plot refer
to different threshold pairs. From Figures 10 and 11, it is
clear that the SKRAO-ASB can ensure better robustness with
respect to the KRAO-ASB, due to the first stage (the SD),
which is less sensitive than the AMF to mismatched signals.
It is also clear that, for a given value of p, the SKRAO-ASB
and the KRAO-ASB exhibit the same capability to reject side
lobe signals, due to fact that the second stage (the KRAO) is
the same.

Finally, we compare the SKRAO-ASB and the KRAO-ASB
in terms of computational complexity. We focus on the first
stage of each detector, since the second stage of each detector
is to be computed only if the fist stage declares a detection.
Observe that the AMF does not require the on-line inversion

¢ (degrees)

FIGURE 11: P, versus ¢ for the KRAO-ASB with N = 8, K = 24,
p = 1.2,and SNR = 18 dB.

of the matrix H!S™'H (r > 1) and the computation of the
extra term 1 + x'S$7!x, which are necessary to implement
the SD decision statistic. It is thus apparent that the KRAO-
ASB is faster to implement than the SKRAO-ASB. Anyway,
resorting to the usual Landau notation, the SKRAO-ASB
involves O(KN?) + O(N) floating-point operations (flops),
whereas the KRAO-ASB requires O(KN?) flops.

6. Conclusions

In this paper, we consider the problem of adaptive signal
detection in the presence of Gaussian noise with unknown
covariance matrix. Contributions in this paper are summa-
rized as follows.

(i) We propose a new parametric radar detector, KRAO,
by merging the statistics of the Kelly’s GLRT test and
of the Rao test. We discuss its invariance and CFAR
property. We derive the closed-form expressions for
the probability of false alarm and the probability of
detection in matched and mismatched cases.

(ii) We demonstrate performance of KRAO via simula-
tions. Numerical results show that, with a properly
selected value for the design parameter, the pro-
posed KRAO can yield better rejection capabilities of
mismatched signals than its counterparts. However,
when the sensitivity parameter is greater than or
equal to unity, it has a nonnegligible loss for matched
signals compared with Kelly’s GLRT.

(iii) To compensate the matched detection performance
of the KRAO, we propose a two-stage detector
consisting of an adaptive matched filter followed by
the KRAO. We show that such a two-stage detector
has desirable property in terms of selectivity. Its
invariance and CFAR property have been studied.

(iv) To increase the robustness of the aforementioned
two-stage detector, we introduce another two-stage
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detector by cascading a GLRT-based subspace detec-
tor and the KRAO. It possesses the CFAR property
with respect to the unknown covariance matrix of
the noise and it can guarantee a wider range of
directivity values with respect to aforementioned
two-stage detector.

Further work will involve the analysis of the proposed
tunable receivers in a partially homogeneous (Gaussian)
environment scenario, that is, when the noise covariance
matrices of the primary and the secondary data have the
same structure but are at different power levels. It is also
needed to investigate these tunable receivers in a clutter-
dominated non-Gaussian scenario.

Appendix

Stochastic Representations of
the KRAO and the SD

In this appendix, we come up with suitable stochastic
representations for frao and tyy. First, we can recast tir.o as
follows:

tglrt

Tkrao = ﬁZp—l ~ >
l + tglrt

(A1)

where f3 is given by (9). It is shown that f3 is distributed as a
complex noncentral beta rv [28] and can be expressed as the
functions of two independent rv’s b and ¢ [21], that is,

1

= A2
B 1+b+c+bc (A.2)
It follows that fj;,, can be recast as
1 21 2'\glrt
3 = . A3
krao (1+b+c+bc> 1+ tge (A3)

As to the GLRT-based subspace detector, it is shown that [21]

fu = (1+0)(fgn +1). (A.4)
A deeper discussion on the statistical characterization of b
and c can be found in [23].
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