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The existence of clutter in maritime radars deteriorates the estimation of some physical parameters of the objects detected over
the sea surface. For that reason, maritime radars should incorporate efficient clutter reduction techniques. Due to the intrinsic
nonlinear dynamic of sea clutter, nonlinear signal processing is needed, what can be achieved by artificial neural networks (ANNs).
In this paper, an estimation of the ship size using an ANN-based clutter reduction system followed by a fixed threshold is proposed.
High clutter reduction rates are achieved using 1-dimensional (horizontal or vertical) integration modes, although inaccurate ship
width estimations are achieved. These estimations are improved using a 2-dimensional (rthombus) integration mode. The proposed
system is compared with a CA-CFAR system, denoting a great performance improvement and a great robustness against changes
in sea clutter conditions and ship parameters, independently of the direction of movement of the ocean waves and ships.

1. Introduction

The measurement of physical parameters of the sea surface by
radar systems plays an important role in ocean surveillance
and remote sensing. Depending on the application, two
different points of view can be identified. From the first
one, sea measurements contain useful information about the
ocean surface. The characterization of the nonlinear dynamic
of sea waves becomes the focal point of the study. From
the second one, if the primary objective is the detection
of objects over the sea surface, such as ships and/or boats,
and the posterior estimation of their physical parameters,
the information about the sea surface is referred as sea
clutter and viewed as an interference to suppress. The studies
presented in this paper are focused on the last case, where
the separation of sea clutter and ship information allows the
estimation of ship physical parameters.

Maritime radar systems usually only measure the inten-
sity of the returned electromagnetic echo (incoherent mea-
surement). This kind of systems is commonly used, for
instance, in maritime traffic control centers. They are con-

sidered to estimate some ship physical parameters in our
studies. Among other final applications, one part of our pro-
posal, the clutter reduction system (CRS), could improve the
information managed by automatic identification systems
(AISs) [1], such as the detection, positioning, and tracking of
surrounding ships, which lets improve the safety of maritime
navigation.

An analysis of different clutter reduction techniques can
be found in [2, 3]. They can be divided, among others,
in three categories: based on image processing; based on
statistical signal processing and constant false alarm rate
(CFAR) systems; and based on artificial neural networks
(ANNs), which are relatively novel. As explained below,
all these techniques denote that linear signal processing
cannot be applied. First, because the dynamic of sea clutter
is intrinsically nonlinear. And second, because the target
(ship/s) and clutter (waves) spectra can be overlapped
because of their spectral distributions and their relative
movement (Doppler effect). These reasons indicate that
nonlinear signal processing is needed.
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Among all the possibilities of the techniques based on
image processing, we focus on those that use transformed
domains. Clutter reduction in radar images by using a trans-
lation invariant wavelet packet decomposition is proposed
in [4, 5]. On the other hand, the information contained
in temporal radar image sequences captured by a WaMoS
II system (see Section 2.1) is used in [6, 7]. These works
use the Fourier transform to estimate certain parameters
of the ocean waves. This technique is also used in [8] to
filter sea clutter and detect ships in movement based on
the acquired experience about their spectra. However, these
solutions usually make the system working slowly (high
computational cost and memory requirements) and presents
the information with some delay, what we try to avoid in our
proposal.

The techniques based on statistical signal processing
usually suppose an statistical model known a priori (Weibull-
distributed, k-distributed, etc.) for the clutter. In this case, an
approach to reduce ground clutter is proposed in [9], where
a simple parametric model is used, what limits its application
to other kinds of clutter, such as sea clutter. The estimation of
target and clutter signal parameters by the use of likelihood-
ratio-tests is considered in [10] to reduce the level of clutter
in surface penetrating impulse radars. Other approaches
based on statistical signal processing, such as independent
and principal component analyses, were also successfully
applied in [11, 12], respectively. On the other hand, the
techniques based on CFAR systems are commonly used in
radar signal processing. Cell averaging CFAR (CA-CFAR)
systems [13, 14] are used in automatic radar detection, where
CA is used previous to detection. Other techniques could
be used, such as the ones based on order statistics [15] or
distributed CFAR processing [16], but the commonly used
CA-based system is taken as a reference in our studies.

The last category of techniques is based on ANNs. These
techniques do not need the a priori knowledge of the target
and clutter statistical distributions and their parameters,
as required by some statistical methods. These techniques
only need some preclassified input data. But, why does it
happen? Because the ANNs are able to learn during training
some statistical properties of input data. The use of ANNS,
such as the radial basis function (RBF) ANNs, denotes the
suitable applicability of these techniques in clutter reduction
to detect radar targets [17, 18]. Other kinds of ANNSs, such as
the feedforward multilayer perceptrons (MLPs), are used to
approximate the Neyman-Pearson detector [19]. Moreover,
they are also applied in [20, 21] to nonlinearly reduce sea
clutter in maritime radars when the information from a radar
image is selected in a 1-dimensional (1D) mode (horizontally
and vertically, resp.). Both algorithms were developed using
a fixed number of integrated cells, but, what happens if a
different number of integrated cells is used? Can the clutter
reduction system be improved if 2-dimensional (2D) modes
are used to select the information from the radar image? The
answer to these questions are the key points of the system
proposal presented in the current paper.

The paper is divided in several sections. Section 2
describes the instrumentation used to get the radar measure-
ments and the composition of the database of radar images

EURASIP Journal on Advances in Signal Processing

TasBLE 1: Transmission and reception characteristics of the maritime
radar system.

Radar system frequency (X-band) 10.0 GHz
Antenna polarization Hand H
Antenna rotation Speed 6.4 rpm
Pulse repetition frequency (PRF) 1000 Hz
Radar pulse width 80 ns
Azimuthal range (Coverage) 0-360 °
Azimuthal resolution 0.28 °
Distance range (Coverage)
Standard configuration 200-2150 m
Fast acquisition 150-1350 m
Range resolution 7.5 m

obtained from these measurements. The designing and
testing stages of the proposed ANN-based clutter reduction
system followed by a threshold are explained in Section 3,
where a special attention is paid to the 2D integration
mode considered in our studies. The performance achieved
with the proposed system is presented in Section 4, where
a study of the optimum number of integrated cells in
1D and 2D modes when using the ANN and CA-based
approaches is done. Moreover, subjective and objective
analyses of a specific radar image are done using both
approaches, paying special attention to the obtained ship size
estimations. Finally, Section 5 presents the main conclusions
and contributions of our study.

2. Measuring and Monitoring Maritime System:
Database Composition

The measuring and monitoring maritime system used to
obtain the electromagnetic measurements is described first.
Thereafter, the radar images obtained from these measure-
ments are grouped in different sets, composing the database
used in our experiments.

2.1. Measuring and Monitoring Maritime System. The radar
measurements considered in our experiments are obtained
from the FINO 1 (Forschungsplattformen in Nord-und
Ostsee) German research platform located in the North Sea.
This platform incorporates a measuring and monitoring
system [22], as shown in Figure 1. The standard technical
configuration is given in Table 1, where a short coverage
range is also used for fast data acquisition (the range reso-
lution is maintained constant). Both coverage configurations
are considered to achieve different radar images, which
compose the database used in our studies.

This measurement system is based on an incoherent stan-
dard X-band maritime radar, that, among other properties,
incorporates a logarithmic amplifier and has no frequency
agility. The analog video signal in the radar unity display
is digitized by the WaMoS II [23] Analog-to-Digital (A/D)
converter. In the standard configuration of the system, a
temporal sequence of 32 consecutive radar images every
five minutes (antenna rotation period) is acquired. The
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FIGURE 1: Measuring and monitoring maritime system.

image spatial resolution depends on the azimuthal and range
resolutions of the system. The intensity of each radar image
cell is coded without sign and 8 bits, what sets a cell dynamic
range of [0-255]. Finally, the digitized images are processed
by a standard computer to perform the desired radar
application by software, such as the sea clutter reduction
and ship size estimation presented in this paper. Note that,
because of the radar raw data from the WaMoS$ II system
are used, no signal preprocessing is done before the clutter
reduction system is applied.

2.2. Database of Radar Images. The database selected for the
experiments is composed of a set of 12 different sequences
of radar images obtained by the radar measurement system
presented above. All these sequences are different from
each other to cover different sea states (height, period, and
character/type of waves on the surface of a large body
of water: deep water waves and spilling breakers) and
types of ships. On one hand, sea states 1-5 of the World
Meteorological Organization [24] are considered. On the
other hand, different kinds of ships are considered: general
cargo ships, ferries, container ships and cruise ships, with
maximum widths of 31 m and maximum lengths of 281 m,
approximately. Depending on the sea state and type and
relative position of the ship present in the radar image,
different Signal-to-Clutter Ratios (SCRs) are observed. In
our case of study, for images containing information of sea
state 1, average SCRs of 17 dB are observed. Whereas, for
images containing information of sea state 5, average SCRs
of 9 dB are observed.

One half of these 12 sequences represent a radar envi-
ronment where a target (ship) is present in sea clutter. The
other half represents situations where no target is present.
Thus, this variability of sequences tries to cover the different
possibilities where the radar can work.

According to the way the proposed ANN-based clutter
reduction system is designed and tested (see Section 3.2),
8 radar image sequences are dedicated to design it: 4
to compose the training data set and 4 to compose the
validation data set, whereas the remaining 4 sequences
are dedicated to test the performance of the system once

designed. On the other hand, taking into account that each
image (N X N pixels) contains a total of 332,929 pixels
(N = 577), where a maximum of 257,307 pixels are valid
(360° coverage area), only several images from each sequence
are selected because of the training speed of the used ANN.
In this case, the different compositions and sizes of the sets
are as follows [20]:

(i) training set: 4 representative images of the 4
sequences of the training data set (16 images),

(ii) validation set: 4 representative images of the 4
sequences of the validation data set (16 images),

(iii) testing set: 8 representative images of the 4 sequences
of the testing data set (32 images).

According to the composition of the different sets, two
important aspects are emphasized. First, the number of
observation vectors obtained from the three sets (dimen-
sionality of the sets) is enough to achieve high estimation
accuracies in the designing and testing stages. And second,
the test set is composed of target (ship) and clutter (sea
states) conditions different from the ones used in the training
and validation sets. It allows the designers to estimate the
robustness of the designed system against changes in the
environmental conditions of the radar.

3. Ship Size Estimation by ANN-Based Clutter
Reduction Systems and Thresholding

In this section, the new mode to select the input data from
a radar image is investigated to improve the ANN-based
clutter reduction system performance. The ANN designing
and testing stages are described. The way of evaluating
its performance, its computational cost, and the procedure
followed to obtain the optimum number of ANN inputs
(integrated cells) are also presented.

3.1. ANN and CA-Based Approaches Using Different Input
Data Integration Modes. The way the ANN-based clutter
reduction and CA systems process the input radar image
(I) is described below. Figure 2 shows the scheme of the
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proposed system for an integration of 5 cells in 1D and 2D
modes. So, different output radar images (O) are obtained,
being analyzed in Section 4.

The analysis of the works [20, 21], where a fixed number
of measurements are selected in horizontal and vertical
modes, respectively, provoked us the following question:
why not to combine 1D modes to improve the clutter
reduction system performance? In this case, a different way
of working is proposed for clutter reduction systems: the
rhombus (R) integration mode. This mode is based on
the 2D Von Neumann neighborhood selection [25]. This
integration mode is presented in Figure 2(c) for a range of
integrated area (RIA) of 5 cells. Note that the selection of cells
is done from a square of RIA x RIA cells. Another important
parameter in our studies is the number of integrated cells
(J) in the system, where ] also denotes the number of ANN
inputs. So, ] = RIA in 1D modes, whereas they are different
in the rhombus mode, being ] = (RIA—1)((RIA—-1)/2+1)+1
[25].

The way to obtain the output (y©)) of a general clutter
reduction system for a cell under test (CUT) is shown
in Figure 2, although this figure is particularized for the
ANN-based system. The vector x at the input of the clutter
reduction system, and its relationship with the original image
is described in (1) for a vertical mode, being r and ¢ the

row and column indexes in the image, respectively, and k the
index of the image in the set. ] must be odd because the CUT
is in the middle of x.

X:[xl"'x]+1/2"'XI]

ir’c’k -
255

255

_ [ir+((RIA—1)/2),c,k o
255

Ir—((RIA=1)/2),c.k ] (1)

The dynamic range of the input data (8 bits: [0 — 255]) is
normalized to a range [0 — 1], and the output is in the range
[0—1]. This output is finally denormalized to the same range
as the input image for illustration purposes. According to
the input vector given in (1), the output of the CA system
is achieved as

J+1

J
(0) 1 ,
Yea = fealx) = = lizzlxi) i# T (2)

whereas the output of the CA-CFAR system [26] for a fixed
threshold of THR = 0.5 is obtained as

(0) xgen2 I
YCACEAR = — () 2 0.5 (3)
Yca  Ho

that is, y(C(X_CFAR is 1 or 0 if this division is greater or lower
than THR, respectively.
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On the other hand, the ANN output is computed as

PN crs = fann (%), (4)

where fann(:) denotes the ANN transfer function, being
nonlinear in our studies.

From here on, special attention is paid to the compu-
tation of the ANN output in two steps. A general ANN
structure (J/K/1) composed of J inputs, K hidden neurons,
and 1 output neuron is considered.

Consider that v(® is a vector of size [1 x K] that stores the
addition of the weighted inputs of each hidden neuron. Also,
consider that the vector y™ of size [1 x K] stores the outputs
of each hidden neuron. And finally, consider W™ being a
matrix of size [J X K] that contains the synaptic weights that
connect the ANN inputs with the ANN hidden neurons and
bM™ is a row vector of size [1 X K] that contains the hidden
neuron biases. According to W™ and b, (5) shows how
v is computed to finally obtain y™ by (6). Note that a
hyperbolic tangent activation function (Yrann(+)) [27] is used
in this layer.

v = xW® 4 b)) (5)

sinh (V(h)) ov® _ v

cosh(v)) — v 4 e—vi~

(6)

Y = g (v =

Now consider that v(®) is a variable that contains the
addition of the weighted inputs to the output neuron, as
presented in (7). Moreover, consider that w® is a column
vector of size [K X 1] that contains the connection weights
between the hidden neuron outputs and the output neuron
input, and b® denotes the bias of the output neuron. Finally,
the neuron output ( y,(&)IN,CRS) is computed by (8). Note that
because the ANN output is in the range [0 — 1], this neuron
uses a logistic activation function (Y1og(+)).

p©) = yMylo) 4 plo)) )

1
1+ev’

yx\)IN—CRS = Wlog<V(O>> = (8)

Finally, the output of the ANN-based detection system
for a fixed threshold of THR = 0.5 is achieved by (9), being
1 or 0 if it is greater or lower than THR, respectively,

(0) (0) o
JYANN-Det = YANN-CRS 2 0.5. 9)
0

3.2. Designing and Testing Stages of the ANN. As described
in the previous section, the ANN output for a certain CUT is
obtained by (5)—(8). An estimation of how good the achieved
ANN output is needed during the designing process. This
estimation is done by the mean squares (MS) error [19] (cost
function to minimize) in its nth iteration as

M N N 2

1 (dy.cx/255 — 0y.cx[1]/255)

ewsln] = o > 5 ,
(10)

k=1r=1c=1

—_

where d, .x and o, denote the elements placed at the rth
row and cth column of the kth desired (D) and obtained
(O) ANN output images of the set, respectively. N is the size
of one dimension of the squared radar images and M is the
number of radar images in the set.

In our studies, the learning algorithm based on error
back-propagation with adaptive learning rate and momen-
tum is applied, as used in [20, 21]. This learning algorithm
automatically updates the weights and biases of the ANN for
the following algorithm iteration (n + 1). Moreover, an off-
line actualization of the weights and biases and an external
validation [28] of the training process are carried out.

As observed, the error estimation carried out in the
training process needs the desired output (desired radar
image). It can be a problem in real-life situations due to
the difficulty of obtaining these ideal images. To solve this
difficulty, two procedures can be used, among others. In the
first one, using the information provided by AIS data (type of
ship: length and width) and knowing the central position and
orientation of the ship, the ideal image could be generated
to estimate the performance of the proposed system in
practically real-time. But, as the AIS data is not available in
our experiments, the procedure followed in [20] to obtain
the desired radar images for a given sequence of radar images
is selected. But, note that once the system is designed and
working in steady state, the knowledge of the desired image is
not mandatory to visually analyze the obtained radar images.
Nevertheless, the desired images are also generated in the
testing stage to report objective measurements of the system
performance.

Once the desired outputs are determined and the training
algorithm is set, the ANN-based clutter reduction system
is designed. The designing procedure [20] is summarized
in four steps: a driven initialization of 10 MLPs of size
J/K/1 is chosen; a set of training algorithm parameters
that warrants its stability and convergence [28] is used;
an external validation of the training process is applied;
and a selection of the best MLP in terms of average SCR
improvements is done.

Finally, once the system is designed, its performance is
objectively evaluated by using a set of radar images never
applied during the designing stage, the testing set.

3.3. Objective Performance Evaluation: Clutter Reduction, Ship
Size and Computational Cost Estimations. The performance
evaluation of a clutter reduction system can be done by com-
paring the input and output radar images. This comparison
presents problems because subjective interpretation is done.
This is the reason why several objective measurements are
used in our studies, apart from the MS error used in the
ANN training. Note that for the objective measurements
presented below, the knowledge of the desired output radar
images is needed. The designer could think that these
measurements of the performance could not be done, but
once the system is designed and working in steady state, these
measurements could be estimated if a detector is applied
to discern whether target is present or not in the CUTs.
These objective measurements are calculated for a given
radar image and for a set of them [20].
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TaBLE 2: Performance evaluation (SCR*™ (dB)) of CA- and ANN-based clutter reduction systems with different number of integrated
cells, J, considering 1D integration modes.

ANN-based Clutter Reduction System

CA-based System

RIA ANN struct. Horizontal mode Vertical mode Horizontal mode Vertical mode

(cells) (J/10/1) Train Val. Test Train Val. Test Train Val. Test Train Val. Test
3 03/10/1 9.9 9.7 9.6 9.6 9.5 9.2 0.4 0.4 0.4 0.5 0.5 0.5
5 05/10/1 12.5 12.4 12.1 11.5 11.3 11.1 0.6 0.6 0.6 0.7 0.7 0.7
7 07/10/1 12.6 12.5 12.2 12.2 12.0 11.7 0.9 0.9 0.9 1.1 1.1 1.1
9 09/10/1 12.7 12.7 12.4 12.6 12.6 12.3 1.2 1.2 1.2 1.2 1.2 1.2
11 11/10/1 12.8 12.7 12.4 12.6 12.5 12.3 1.2 1.2 1.2 1.2 1.2 1.2
13 13/10/1 12.6 12.5 12.2 12.6 12.4 12.3 1.1 1.1 1.1 1.1 1.1 1.1
15 15/10/1 12.3 12.1 11.8 12.6 12.4 12.2 0.8 0.8 0.8 0.9 0.9 0.9
17 17/10/1 12.0 11.9 11.7 12.4 12.2 12.0 0.8 0.8 0.8 0.9 0.9 0.9
19 19/10/1 11.5 11.5 11.2 12.1 12.0 11.6 0.7 0.7 0.7 0.8 0.8 0.8

On one hand, the objective measurements considered for

a given radar image are as follows.

(i) Consider the target and clutter powers at the system
input, PI" (dBm) and PI" (dBm), and output, P"t
(dBm) and P%" (dBm). The estimations of each
powers are done considering the CUTs where target
is present and absent, respectively. Then, the target
and clutter power improvements are

P{™ (dB) = P - PI",
‘ . (1)
PimP (dB) = PO — PIr .

(ii) The Signal-to-Clutter Ratio improvement is obtained
as
SCR™ (dB) = SCR°™ (dB) — SCR™ (dB)

= [P —po] — [P - P|  (12)

imp

=Pp;"" — pimp,

On the other hand, the objective measurements used for

a given set of M radar images are as follows:

(i) the average P; and P. improvements, denoted as
av,imp

Py

(ii) the average SCR improvement:

av,im .
and P2"P, respectively,

M .
SCR™™ (dB) = - 5'SCR(™ (dB).

i=1

(13)

The estimation of the performance of the clutter reduc-

tion systems is very important in the overall system, because
the greater the achieved SCR™™P, the more accurate the ship
size estimation, as shown in the results (see Section 4). The
estimation of the ship size is based on the positioning of a
rectangle in the radar image obtained after thresholding. The
length of the sides of this rectangle indicates the estimated
width (short side) and length (long side) of a ship. The
positioning of the rectangle is done by finding a huge area
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TaBLE 3: Performance evaluation of CA- and ANN-based clutter reduction systems with different number of integrated cells, J, considering

a 2D (rhombus (R)) integration mode.

ANN-based Clutter Reduction System

CA-based System

RIA  ANN struct. P (dB) P (dB) SCR™™ (dB) SCR™™ (dB)

(cells) (RJ/10/1) Train Val. Test Train Val. Test Train Val. Test Train Val. Test
3 R05/10/1 -11.3 -10.1 —10.0 1.3 1.3 1.1 11.6 11.4 11.1 0.6 0.6 0.6
5 R13/10/1 -13.1 -12.9 —-12.8 1.4 1.4 1.1 14.5 14.3 13.9 1.1 1.1 1.1
7 R25/10/1 -15.6 -15.3 —15.2 1.6 1.6 1.4 17.2 16.9 16.6 1.4 1.4 1.4
9 R41/10/1 -16.4 -16.0 —15.8 1.7 1.7 1.5 18.1 17.7 17.3 1.4 1.4 1.4
11 R61/10/1 -16.3 —15.7 —15.6 1.7 1.7 1.5 17.8 17.4 17.1 1.3 1.3 1.3
13 R85/10/1 -15.6 —15.2 —15.1 1.8 1.8 1.5 17.4 17.0 16.6 1.2 1.2 1.2
15 R113/10/1 —15.2 —14.8 —14.7 1.9 1.9 1.6 17.1 16.7 16.3 1.0 1.0 1.0
17 R145/10/1 —-13.9 —13.7 —13.5 1.8 1.8 1.5 15.7 15.4 15.1 0.9 0.9 0.9
19 R181/10/1 -13.6 —13.4 —-13.2 1.8 1.8 1.5 15.4 15.1 14.8 0.8 0.8 0.8

of points that surpassed the fixed threshold. In this case, the
proposed system is designed to work correctly when medium
and huge ship sizes are present in the radar coverage area.
These sizes are typical for ships that travel on the open sea.

Another important parameter of the system is the
computational cost. Equation (14) gives the number of
memory cells needed to store the ANN synaptic weights,
products, and two-element sums necessary to process each
CUT by the ANN.

Memory Cells: (J+1)-K+(K+1)-1,

Products: J- K+ K - 1, (14)

Sums: J-K+K - 1.

3.4. Determination of the Best Number of Integrated Cells
and Range of Integrated Area. The range of integrated area,
RIA, and consequently the number of integrated cells (ANN
inputs), /, are important parameters in the proposed system.
The procedure to evaluate their optimum values is based
on the objective performance evaluation (SCR*™"™P) of the
clutter reduction system in the designing stage. For this study,
an ANN with K = 10 hidden neurons is selected, being
an appropriate value to obtain high clutter reduction rates,
as discussed in [20, 21]. Following the designing procedure
presented in Section 3.2 for K = 10 and for different values
of ], the best ANN structure is selected in terms of the
highest SCR™"™ achieved with the validation set.

4. Results: System Configuration for Ship
Size Estimations

This section presents the performances (SCR improvements
and ship size estimations) achieved by the CA-CFAR system
(reference system) and the ANN-based clutter reduction
system with a fixed threshold when the different integration
modes under study are used. First, a study of the optimum
range of integrated area and number of integrated cells in the
systems is done for each integration mode. In the next stage,
subjective and objective analyses of the results obtained for a

TABLE 4: Performance improvements achieved by the CA and ANN-
based clutter reduction systems for the radar image under study of
Figure 3.

ANN-based Clut. Red. Sys CA-based System
Performance Figure Performance Figure
Horizontal / Vertical (09/10/1) Horizontal / Vertical (] = 9)

M _g8.3/-8.7 ~1.0/-12
P 12.1/42.0 4(a)/4(b) —0.3/-0.0  6(a)/6(b)
SCR™P +10.4/+10.7 +0.7/+1.2
Rhombus (R41/10/1) Rhombus (] = 7)
pimP —12.4 ~11
imp +2.3 4(c) —0.1 6(c)
SCR™ 1147 +1.0

radar image are discussed. Finally, the ship size estimations
for the different systems and configurations are presented.

4.1. Integration Modes: Best RIA and Number of Integrated
Cells (J) in Clutter Reduction Systems. A study of the
optimum RIA and number of integrated cells, J, is presented
in this section for 1D and 2D integration modes when both
the ANN-based clutter reduction and CA-CFAR systems are
considered. Moreover, a computational cost analysis is also
given for each mode in the ANN-based approach.

4.1.1. 1-D Integration Modes. Horizontal (H) and Vertical
(V). A study of the optimum values of RIA and ] using the
horizontal and vertical integration modes is given in Table 2.

After analyzing the results obtained with the validation
set (designing stage), an increase of the average SCR
improvement is observed until the optimum number of
integrated cells is achieved (J = RIA = 9 cells). The average
SCR improvements achieved, once the system is designed
(testing stage), are slightly above 12 dB. These improvements
are obtained by an average clutter power reduction slightly
above 11 dB and an average target power enhancement above
1dB. Moreover, greater values of J (15, 17, and 19 cells)
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FIGURE 4: Radar Images Processed by the ANN-based Clutter Reduction System Using its Best H, V, and R Integration Modes.

not only do not warrant an increase of the performance
improvement but also increase the performance loss.

On the other hand, considering the designing sets, the
performances achieved by the ANN-based approach are
always greater than the one of the testing set for a given J.
It is usual behavior of the ANNs, because of the learning
process. Nevertheless, note that the performances achieved
with the testing and designing sets are very similar. In this
case, their average SCR improvements only differ by 0.3 dB
for the optimum case. This effect indicates that the training
was correctly done and the system presents a great robustness
against changes in the environmental conditions (designing
and testing sets are different).

Focus now on the analysis of the results obtained with
the system taken as reference, the CA-based approach. Its
performance is always lower than the one obtained with the
proposed system for any number of integrated cells. In this
case, the optimum configuration is also RIA = ] = 9 cells.

Finally, note that the system performances are very
similar with both integration modes due to the circular
symmetry of the radar coverage. The observed marginal
differences are due to the random relative positions that the
ships can take with respect to the radar site.

4.1.2. 2D Integration Mode. Rhombus (R). The performances
of the systems which use the rhombus integration mode are
presented in Table 3. As observed, the best performance in
the ANN-based approach is achieved when RIA = 9 cells,
that is, ] = 41 inputs in the ANN. In this case, the average
SCR improvement is greater than the ones obtained when
1D modes are used. The average SCR improvement is slightly
above 17dB once designed (testing stage), reducing and
increasing the clutter and target average powers in around
16 and 1 dB, respectively.

Once again, the correct training and the great robustness
of the designed ANN-based clutter reduction system with
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FIGURE 5: Radar Images Processed by the ANN-based Detection System Using its Best H, V, and R Integration Modes.

respect to changes in the radar environmental conditions (sea
clutter and ship conditions vary in time) is demonstrated. In
this case, the difference between the average SCR improve-
ments for the designing and testing sets (maximum SCR™™P
loss of 0.8dB) is greater than when 1D modes are used,
although it is still a great robustness.

On the other hand, a different behavior is observed
for the CA-based system. The best performance is for
RIA = [7,9] cells. In this case, RIA 7 cells (J = 25
cells) are used because of the computational cost reduction.
Nevertheless, although the performances are greater than the
ones obtained when 1D modes are used, they are always
lower than the ones obtained with the proposed system.

Once the optimum RIA and ] values are selected for each
integration mode, the computational cost of the ANN using
each one is studied. In this case, the number of memory cells,
products, and sums needed to process each CUT of a radar

image (see (14)) are as follows:

(i) best case in the 1D modes (09/10/1): 111 memory
cells, 100 products, and 100 sums,

(ii) best case in the rhombus (2D) mode (R41/10/1): 431
memory cells, 420 products, and 420 sums.

As observed, the computational cost of the proposed
system using the rhombus (2D) integration mode is approx-
imately four times the computational cost needed when 1D
modes are used.

4.2. Integration Modes: Subjective and Objective Analyses
of Processed Radar Images. Once the optimum number
of integrated cells is found for each integration mode in
CA- and ANN-based clutter reduction systems, a subjective
analysis of their performances is carried out. In this case, a
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radar image containing a ship in sea clutter is selected from
the testing set (see Figure 3(a)). It is important to note that
there is only one ship (object of interest) in this radar image.
The object located in the position [0 m, —900 m] is not of
interest in our studies. It is a maritime research platform.
For this image, the worst SCR improvement and ship size
estimation of the images of the testing set has been found. For
illustration purposes, the desired radar image at the output
of the systems is presented in Figure 3(b).

The analysis of the performances of the ANN-based
clutter reduction systems is done first. In this case, the
best trained ANNSs are selected for the following integration
modes and structures: vertical 9/10/1, horizontal 9/10/1, and
rhombus 41/10/1. The processed radar images are depicted
in Figures 4 and 5. Next, the analysis of each case is carried
out.

Using the 1D modes in the ANN-based approach with
J = 9 integrated cells (see Figures 4(a) and 4(b)), the clutter
power is highly reduced in areas far away from the radar site.

Nevertheless, it is slightly reduced in areas near the radar site,
where high remanent clutter power is still present. On the
other hand, the target power is enhanced, also emphasizing
the received electromagnetic diffraction produced in the
unseen side of the ship, what makes the ship detection
and shape definition more difficult. In this case, the output
radar images of Figures 5(a) and 5(b) are obtained after
thresholding (THR = 0.5). As observed, several false alarms
are obtained where the remanent clutter power is still high.
The cells where the ship is present are correctly detected.
Nevertheless, the ship electromagnetic diffraction is also
detected, generating several problems in the final estimation
of the ship size, as discussed in Section 4.3. Finally, note that a
difference is appreciated when horizontal and vertical modes
are used. This difference is related to the way the remanent
clutter power is distributed in the processed radar image,
specially near the radar site. Whereas in the vertical mode
the remanent clutter power is highly concentrated near the
radar site, in the horizontal mode this remanent power could
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FIGURE 7: Radar Images Processed by the CA-CFAR Detection System Using its Best H, V, and R Integration Modes.

be considered like a grainy and spread remanent clutter. This
effect is due to the wave field propagating from right to left
in the radar image.

Using a 2D mode (rthombus mode) in the ANN-based
approach with J = 41 integrated cells (Figure 4(c)), better
subjective performances than using 1D modes are achieved.
In this case, the remanent clutter power is distributed in a
different way, presenting few spikes of high clutter power
instead of a uniformly distributed clutter power. On the
other hand, the ship electromagnetic diffraction is more
reduced now. So, a more accurate estimation of the ship
size could be done (compare Figure 4(c) with Figure 3(b)).
After thresholding (THR = 0.5), the output radar image
of Figure5(c) is obtained. As observed, the number of
false alarms due to the clutter and the ship electromagnetic
diffraction is reduced.

Next, the results obtained when applying the CA-CFAR
system are presented for the different integration modes
under study. Figures 6 and 7 show the radar images obtained

after applying a cell averaging and thresholding, respectively.
As observed in Figure 6, lower performances are achieved,
independently of the integration mode, because neither the
clutter power is substantially reduced nor the target power is
enhanced. This low performance is due to the linear signal
processing (cell averaging) applied. But, clutter reduction is
not the aim of a CA-CFAR system. The aim is to detect
cells of the radar coverage where ship information is present.
From the subjective analysis of Figure 7, two problems are
found. First, the huge areas where a target is absent (near
the radar site) are incorrectly detected, generating confusion
when a rectangle must be placed in the image. Second, the
electromagnetic ship diffraction is still present and detected,
generating problems in the ship size estimation, as discussed
in Section 4.3.

Finally, an analysis of performance with objective mea-
surements for the previous radar images is presented
in Table 4. The best performance is achieved when the
rhombus integration mode is used in the ANN-based
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FIGURE 9: Zoom of the Images Processed by the ANN-based Clutter Reduction System Using its Best H, V, and R Integration Modes.

approach, improving the performances of the 1D modes by
4 dB, approximately. On the other hand, the performance
improvement of the CA-based approach is practically con-
stant to 1dB, independently of the used integration mode.
These objective results support the subjective analysis carried
out previously. Moreover, note that the system performances
achieved for this radar image are lower than the average
values presented in Section 4.1 because it is the worst case
found in the testing set. This selection has been done to show
the high performance that can be achieved by the ANN-
based clutter reduction systems, even working in difficult sea
state and ship conditions.

4.3. Analysis of the Estimated Ship Sizes. An analysis of
the estimated ship sizes in the CA-CFAR and ANN-based
systems is presented. Figure 8 depicts a zoom of the most
relevant area of the input and desired radar images depicted
in Figure 3.

The same zoom is applied to the radar images at the
output of the ANN-based clutter reduction system (Figure 4)
and after thresholding (Figure 5), which are depicted in
Figures 9 and 10, respectively. Different ship size estimations
are obtained and depicted in Figure 10 depending on the
used integration mode. The error in the length estimation of
this ship (container ship) is 16 m (5.7%) using the horizontal
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FIGURE 11: Zoom of the Images Processed by the CA System Using its Best H, V, and R Integration Modes.

integration mode, 25 m (8.8%) using the vertical integration
mode and 6 m (2.1%) using the rhombus integration mode.
The error in the width estimation of this ship is 25 m (80%)
using the horizontal integration mode, 34 m (110%) using
the vertical integration mode; and 22m (70%) using the
rhombus integration mode. As observed, accurate estima-
tions of the length of this ship can be achieved, especially
when the rhombus mode is used. This good behavior is
due to the better clutter reduction and target enhancement
achieved at the ANN output (see Figure 9). Nevertheless, in
this radar image, poor ship width estimations are obtained,
independently of the integration mode. It is important to
remember that this radar image is the worst case of the testing

set because of the huge electromagnetic ship diffraction.
Substantially better results, in terms of ship size estimation,
are obtained for the remaining radar images of the set. The
average errors obtained in the estimation of the length and
width of the different ships considered in the radar images
of the testing set are, respectively, 6 m (2.1%) and 6 m (20%)
using the horizontal integration mode, 9.5 m (3.3%) and 6 m
(20%) using the vertical integration mode, and 3m (1.1%)
and 3 m (10%) using the rhombus integration mode.
Analyzing the results obtained with the CA-CFAR sys-
tem, which are depicted in Figures 11 and 12, ship size esti-
mation errors greater than the ones for the proposed ANN-
based system are obtained, even for the rhombus integration
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mode. So, when using the CA-CFAR system, the average
errors obtained in the estimation of the length and width of
the different ships considered in the radar images of the test-
ing set are, respectively, 18 m (6.3%) and 24 m (80%) using
the horizontal integration mode, 28 m (9.8%), and 21 m
(70%) using the vertical integration mode, and 15m (5.6%)
and 12 m (40%) using the thombus integration mode.

5. Conclusions

A method for improving the estimation of the ship sizes
in radar images obtained by maritime radars is proposed.
The high estimation accuracy of this method is based
on the better target enhancement and clutter reduction
rates achieved by an efficient ANN-based clutter reduction
system. Its high efficiency is achieved by the combination of
horizontal and vertical information in a 2D (rhombus) shape
at the input of the ANN. This 2D integration mode is able
to improve by 5 dB the system performance (average SCR
improvements of more than 17 dB) with respect to 1D modes
(average SCR improvements of more than 12 dB).

Focusing on the ship size estimation, it is important
to note that the system taken as reference, the CA-CFAR,
presents poor ship size estimations, with minimum length
and width average errors of 15m (5.6%) and 12m (40%),
respectively. These problems are solved by the proposed
ANN-based clutter reduction system followed by a fixed
threshold, especially for the one that uses the 2D integration
mode. In this case, accurate estimations of the length and
width of a ship can be achieved, presenting average errors in
their estimations of 3m (1.1%) and 3 m (10%), respectively.

Apart of the performance improvements achieved by the
different integration modes under study, a computational
cost analysis is given. Although the computational cost of the
ANN when using the rhombus mode is four times higher
than the one needed when the 1D modes are used, this

increase can be satisfied by the current FPGAs and DSPs
working speeds. Anyway, if the system is computationally
limited, the 1D modes can be used maintaining relatively
high system performances, being always better than the ones
achieved by the CA-CFAR system.

Finally, it is important to note that the proposed system
presents great robustness in its performance against changes
in sea clutter and ship conditions. Moreover, due to the
mutual integration of vertical and horizontal information
in the rhombus mode, this mode is able to work correctly
and independently of the relative direction of movement of
the ocean waves and ships with respect to the radar site.
Moreover, although the proposed scheme is applied for a
medium-range maritime radar, it could be also used in high-
range radars, where ships can be located farther.
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