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The contourlet transform can deal effectively with images which have directional information such as contour and texture. In
contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is
still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev
best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the
contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In
this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two
filter banks above and the image denoising applications in the contourlet hiddenMarkov tree model are implemented, respectively.
The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is
improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12
filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

1. Introduction

Images have been effectively modeled using the wavelet
transform [1–4], which offers a mutliscale and time-
frequency localized image representation. But the major
drawback of wavelets in two-dimensions is its limited ability
in capturing directional information [5, 6]. To overcome
this deficiency, recently, many researchers have considered
both the mutliscale andmutlidirectional representations that
can capture the intrinsic geometrical structures such as
smooth contours in natural images. The examples include
the steerable pyramid, brushlets, complex wavelets, and
the curvelet transform [5–8]. In particular, the curvelet
transform, pioneered by Candès and Donoho, is shown to
be optimal in a certain sense for functions in the continuous
domain with curved singularities. In addition, Do and Vet-
terli developed the contourlet transform based on an efficient
two-dimensional mutliscale and mutlidirectional filter banks
that can deal effectively with images having smooth contours
[9–11]. The contourlets not only possess the main features
of wavelets but also offer a high degree of directionality

and anisotropy. We know that the contourlet transform
consists of the Laplacian pyramid (LP) and direction filter
bank (DFB), and the core issue is a filter design problem
[12–14]. The main advantage of the contourlets is that
they allows for different and flexible number of directions
compare with other mutliscale directional transform such as
ridgelet and curverlet, achieving nearly critical sampling [15,
16]. Moreover, the basis functions of contourlet transform
can be oriented at any power of 2’s number of directions
with flexible aspect ratios. Since the contourlet transform
possesses a rich set of basis functions, it can represent
a smooth contour with fewer coefficients compared with
wavelets. Here, the contourlet transform is implemented via
a two-dimensional filter bank for decomposing an image into
several directional subbands at multiple scales. Therefore,
the corresponding location and direction in image contours
using the contourlet transform can produce significant
coefficients.

However, in contrast to wavelets for which there exist
many good wavelet filters [17–21], at present a few types
of the LP and the DFB can be used for the contourlets,
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Figure 1: The LP decomposition of contourlets.

so the filter design problem for the contourlets is still an
ongoing work. Therefore, the only existing wavelets filter
banks are utilized directly such as the 9/7, 5/3 and Haar
wavelet filter banks, and pkva filter [22, 23]. To solve this
problem, we proposed here new approach for designing
the contourlet filter banks based on the Chebyshev best
uniform approximation for image denoising applications in
the contourlet transform domain.

The paper is organized as follows. In Section 2, we give
the basic structure and its inherent relationship between
the LP and the DFB in the contourlets. In Section 3, we
propose a design approach for contourlet filter based on
the Chebyshev best uniform approximation, and give all the
parameters of new contourlet filter banks using the Parks-
McClellan algorithm, and new 9/7 filter banks based on
author’s previous works are also presented. In Section 4, we
illustrate an HMT models and their resolutions for an image
denoising in the contourlet domain. In Section 5, we give the
experimental results and their discussion. Finally, Section 6
is about the conclusions and future works of this paper.

2. Structure of Contourlet Transform

2.1. Laplacian Pyramid. The LP decomposition has derived
a coarse approximation of the original signal adopting both
the lowpass filtering and downsampling. Based on this coarse
approximation, we can predict the original signal and also
can calculate the difference as the prediction error [11], are
shown in Figure 1.

Here, the column vectors of original signals are written as
x = [x(n) : n ∈ Zd]T ; then we can express these operations
as the following matrix multiplication:

c = Hx, p = Gc. (1)

In general, H has {˜h(n − Mk)}n∈Zd as its rows and G has
{g(n−Mk)}n∈Zd as its columns. The difference signal of the
LP can be written as

d = x − p = x−GHx = (I−GH)x. (2)

By combining the previous relations, we can express the
analysis operator of the LP as follows:

[

c
d

]

︸ ︷︷ ︸

y

=
[

H
I−GH

]

︸ ︷︷ ︸

A

x. (3)

The usual inverse transform of the LP is as follows:

x̂ =
[

G I
]

︸ ︷︷ ︸

S1

[

c
d

]

. (4)

It is easy to verify that S1A = I for any H and G,
which the LP can be perfectly reconstructed (PR) with any
pair of filters H and G. Since the LP is an over-complete
representation, it must be treated as a frame operator [24].
A key consideration is that one should use the dual frame
operator for the PR. The LP frame offers a simple scheme
that has lower computational complexity, which can also
be easily extended to higher dimensions space, with small
redundancy. Moreover, the frame operator for the LP is
expressed by a left matrix multiplication with A. Since the LP
is an over-complete representation, its frame operator allow
for an infinite number of left inverses. Among those, themost
important is the dual frame operator or the pseudo inverse of
A as follows:

A† =
(

ATA
)−1

AT . (5)

In the polyphase representation, the pseudoinverse of A(z) is
given by

A†(z) = (A∗(z)A(z))−1A∗(z). (6)

Thus, the basic structure of the LP modeling is described
completely.

A drawback of the LP is implicit oversampling [25];
thus the LP is usually replaced by subband decomposition
or wavelet transform which are a critically sampled for an
image compression or denoising applications and so on.
In particular, the resulting bandpass signals of the LP do
not suffer from the aliasing frequencies as in the critical
sampling applications. Therefore, we can generate a set of
directional subband images at multiple scales satisfied the
critical sampling.

2.2. Directional Filter Banks. We know that the filter banks
play an important role in terms of both the theoretical
and practical sense for the image processing applications. In
general, the basis function of filter banks is implemented in
the one-dimensional case. For the higher dimensions, the
classical approach is to extend one-dimension transform to
higher dimensions using the separable filter banks. Thus,
both theory and practice can be completed under the low
complexity implementation.

However, we know that the nonseparable filter banks and
corresponding basis function can also be constructed in M
dimensions case [26]. In addition, the quincunx filter banks
(QFBs) which are most representative for image processing
in the contourlet domain serves as the core of the DFB. Here,
the sampling operations are defined on lattices. The lattices
in d dimensions are represented by a d × d nonsingular
integer matrixM as

LAT(M) =
{

m :m =Mn, n ∈ Zd
}

. (7)
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In other words, the indices of points belonging to the sublat-
tice LAT(M) are described as weighted integer combinations
of the columns of M. The original lattices are assumed
to be Zd. So that the following matrices are a possible
representations of the two-dimensional quincunx sublattices
in which one out of two points is retained as follows:

Q0 =
[

1 −1
1 1

]

, Q1 =
[

1 1
−1 1

]

. (8)

For anM-fold downsampling the input x(n) and the output
xd(n) are as follows:

xd(n) = x(Mn),

Xd(ω) = 1
|det(M)|

∑

k∈N(MT )

X
(

M−Tω − 2πM−Tk
)

.
(9)

Note that here N(M) is defined as the set of integer vectors
of the form Mt, where t ∈ [0, 1)d. The number of elements
inN(M) equals that of |det(M)|. The matrixM−T = (MT)

−1

generates the reciprocal lattices of LAT(M), which consists
of points representing the replicated spectra in the frequency
domain. For an M-fold upsampling, the input x(n) and the
output xu(n) are written by

xu(n) =
⎧

⎨

⎩

x
(

M−1n
)

, if n ∈ LAT(M),

0, otherwise,

Xu(ω) = X
(

MTω
)

,

Xu(z) = X
(

zM
)

.

(10)

There are special cases when the sampling operations use
unimodular integer matrices. Sampling using a unimodular
integer matrix does not change the data rate but only
rearranges the input samples, so that it is turned into a
resampling operation. The following four basic unimodular
matrices are utilized in the DFB in order to provide the
equivalence with the rotation operations:

R0 =
⎡

⎣

1 1

0 1

⎤

⎦, R1 =
⎡

⎣

1 −1
0 1

⎤

⎦,

R2 =
⎡

⎣

1 0

1 1

⎤

⎦, R3 =
⎡

⎣

1 0

−1 1

⎤

⎦.

(11)

Note that here R0R1 = R2R3 = I2×2. A commonly used
method in analyzing mutlidimensional multirate operations
is the Smith form that can diagonalize any integer matrix M
into a product UDV, whereU and V denotes the unimodular
integer matrices, andD denotes an integer diagonal matrices,
respectively. And then the quincunx matrix Q0 and Q1 can
also be expressed a Smith form as follows:

Q0 = R1D0R2 = R2D1R1,

Q1 = R0D0R3 = R3D1R0,
(12)

≡H(ω)M MH(MTω)

Figure 2: Identity for the analysis filter bank.
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Figure 3: Quincunx filter banks.

where

D0 =
[

2 0
0 1

]

, D1 =
[

1 0
0 2

]

(13)

are two diagonal matrices that correspond to dyadic sam-
pling in each dimension. For the interchange of filtering and
sampling, multirate identities can be used. The identity for
the analysis filter H(ω) is shown in Figure 2. Downsampling
usingM followed by filtering with a filter H(ω) is equivalent
to filtering with the filter H(MTω), which is obtained by
upsampling H(ω) by M, before downsampling.

The synthesis filter G(ω) can also be derived similarly. In
addition, let us analyze the QFB shown in Figure 3; here we
only consider the quincunx sampling matrix Q to be either
Q0 or Q1.

And then, using (9) and (10), the input-output relation-
ship of the QFB can be written as

̂X(ω) = 1
2
[H0(ω)G0(ω) +H1(ω)G1(ω)]X(ω)

+
1
2
[H0(ω + π)G0(ω) +H1(ω + π)G1(ω)]X(ω + π),

(14)

where π = [π π]T . Note that there is similarity between
this expression and the one for the two channels filter
bank in one-dimension. Thus, results in the one-dimension
counterpart can be extended to the quincunx scheme. In
particular, the QFB provides a biorthogonal expansion while
it satisfies the following PR condition:

H0(ω)G0(ω) +H1(ω)G1(ω) = 2,

H0(ω + π)G0(ω) +H1(ω + π)G1(ω) = 0.
(15)

Here, the PR conditions imply that the synthesis filters are
expressed through the analysis filters as follows:

G0(z) = zkH1(−z), G1(z) = −zkH0(−z). (16)

The QFB can be used to split the frequency spectrum of the
input signal into a lowpass and a highpass channels using a
diamond-shaped filter pair, or into a horizontal and a vertical
channel using a fan filter pair. Frequency characteristics of
these filters are shown in Figure 4, where the regions 0 denote
the diamond and fan filter, respectively; the regions 1 denote
the otherwise.
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Figure 4: Diamond and fan filter of (a) and (b).
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Figure 5: Directional filter bank frequency partitioning � = 3 and
there are 23 = 8 real wedge-shaped frequency bands.

Therefore, we can obtain one filter pair from the other
through simply modulating the filters using π in either the
ω0 or ω1 frequency variable. From (15) it can be found that if
the samemodulation is applied to both analysis and synthesis
filters then the PR conditions are satisfied. Thus, the design
issue for the fan QFB turn into a design of diamond-shaped
QFB. Moreover, the DFB is implemented efficiently via a �-
level tree-structured decomposition that leads to 2� subbands
with wedge-shaped frequency partition as shown in Figure 5.

To all the sampling matrix on the channel k (0 ≤ k <
2�−1) in a �-levels DFB, � ≥ 2, we have

M(�)
k = 2 ·D�−2

0 Rs�(k)
3 , (17)

where s�(k) = 2�k/2� − 2�−2 + 1, and the expressions for the
sampling matrices in (17) are as follows:

R−s�(k)3 = B(�)
k =

[

1 0
s�(k) 1

]

(18)

and B(�)
k are unimodular matrices; sampling by these matri-

ces only rearranges the coefficients in the DFB subbands,
which can improve its visual effects.

Finally, these matrices are for the first half channels with
0 ≤ k < 2�−1; the ones for the second half channels are
obtained by transposing these matrices. Through appending

a downsampling with B(�)
k at the end of the analysis stage of

the channel k in the DFB, it becomes equivalent to filtering

using H(�)
k (z) followed by downsampling in S(�)k = M(�)

k B(�)
k

where

S(�)k =
⎧

⎨

⎩

diag
(

2�−1, 2
)

, 0 ≤ k < 2�−1,

diag
(

2, 2�−1
)

, 2�−1 ≤ k < 2� .
(19)

Here, S(�)k is diagonal matrices and sampling by these matri-
ces only rearranges the coefficients in the DFB subbands,
which enhances its visualization.

3. Contourlet Filter Design

3.1. Chebyshev Best Uniform Approximation. In order to find
the Chebyshev best uniform approximation, there are some
theorems, which show conditions for the function f (x) and
the approximation expressed as [27]

F(A, x) = F(a0, a1, . . . , am; x) (20)

for which the Chebyshev best uniform approximation can
be carried out completely, and A = {a0, a1, . . . , am}, m
denote an order Chebyshev approximation. We will provide
several theorem to create the condition of existence of the
Chebyshev best uniform approximation. We first to define
a set of functions as follows. The function f (x) belongs to
Φ(x,F,w) if the following equations are true:

ρ(t0) = −ρ(t1) = · · · = (−1)m+1ρ(tm+1), (21)

where

ρ(x) = f (x)− F(A, x)
w(x)

,

a ≤ t0 < t1 < · · · < tm+1 ≤ b

(22)

have the unique solution on any subset T = {ti}m+1
i=0 of the set

of points X ∈ [a, b] and expression F(A, x).

Theorem 1. Let the approximation expression F(A, x) be
continuous for the parameters A, for x if x ∈ [a, b]; F(A, x) ∈
Φ([a, b],F,w) and the weight function w(x) > 0 is continuous
for x ∈ [a, b]. Let f (x) ∈ Φ(X ,F,w), where

X = {xi}Ni=1, N ≥ m + 2, X ∈ [a, b]. (23)

Then the following statements are true.

(i) Best Chebyshev weight approximation to the func-
tion f (x) on the set X with the help of the expression
F(A, x), which satisfies (21), exists and is unique.

(ii) This approximation is completely determined using
(21) as follows

∣

∣ρ(t0)
∣

∣ = max
∣

∣ρ(x)
∣

∣. (24)

(iii) If the initial approximation T0 = {t(0)i }m+1
i=0 = (t(0)i <

t(0)i+1) for Chebyshev alternate points are chosen in
such a way, that the error of approximation in the

point t(0)0 is not equal to zero, that is, ρ(t(0)0 ) /= 0, then
the single point exchange Parks-McClellan algorithm
will converge in the final number of steps.
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This is a very powerful theorem allows one to minimize
the Chebyshev error by directly constructing an equal ripple
approximation with the proper number of ripples. The
maximal ripple (MR) algorithm formulated the filter design
problem by requiring as many ripples as possible. It also
imposed an alternating error via an interpolation condition.
Instead of directly minimizing the worst-case error, the MR
algorithm solved a set of equations that the alternating
solution had to satisfy [28, 29]:

Hd(ωi) + (−1)i|E(ωi)| =
M
∑

k=0
ak cos(kωi), (25)

where Hd(ωi) and |E(ωi)| were the desired frequency
response of the filter and the desired Chebyshev error,
respectively. The term (−1)i forced the error to alternate
on the set of frequencies {ωi} . This set {ωi} included both
ends of the frequency axis, ω = 0 and ω = π. Equation
(25) contains M + 1 undetermined coefficients {ak}. The
coefficients {ak} can be determined by solving a set of linear
equations. Then the issue is how to choose the frequencies
{ωi}. With the weight coefficients {ak}, the error E(ω) in
the whole frequency domain can completely be viewed as
the difference between the desired function Hd(ω) and its
approximation as follows:

E(ω) = Hd(ω)−
M
∑

k=0
ak cos(kω). (26)

In order to maintain this form, the filter length is L = 2M +
1 which must be odd numbers. If there are points where
|E(ω)| > ε, then the frequencies {ωi} must be corrected.
The MR algorithm was to create new set of frequencies using
the locations where E(ω) reached its local maxima, and then
iterate this step until |E(ω)| ≤ ε. In addition, it is easy to see
that a desired function such as

Hd(ω) =
{

1, 0 ≤ ω ≤ ωp,

0, ωs ≤ ω ≤ π
(27)

is a continuous function on the closed set Ω = [0,ωp] ∪
[ωs,π], where ωp and ωs are the passband and stopband
frequencies, respectively. For a continuous function Hd(ω),
the theory of Chebyshev best uniform approximation gaves a
necessary and sufficient conditions for designing an optimal
filter. Moreover, the alternation theorem of Chebyshev best
uniform approximation indicate that the error function E(ω)
in (26) can obtain a maximum absolute value at least M + 2
times. Finally, if the frequencies at which the error reaches its
maximum absolute value are ordered

ω1 < ω2 < · · · < ωM+2, (28)

then the maximum error alternates and meaning that

|E(ωi+1)| = −|E(ωi)| for i = 1, 2, . . . ,M + 1. (29)

Assuming an equiripple type of design, and the ωp and ωs are
written as

ωp + ωs = π, (30)

and the ripples are as follows:

δ1 ≈ 10δ2. (31)

In this case, we can design an equiripple half-band filters
using the Parks-McClellan algorithm. The implementation
procedure of the Parks-McClellan algorithm is as follows:

(i) Initialization: choose an extremal set of frequencies
{ω(0)

i }.
(ii) Finite set approximation: calculate the Chebyshev

best uniform approximation on the present extremal
set giving a value δ(m) for the min-max error on the
present extremal set.

(iii) Interpolation: calculate the error function E(ω) over
the entire set of frequencies Ω using step (ii).

(iv) Lock for local maxima of |E(m)(ω)| on the set Ω.

(v) If max ω ∈ Ω, |E(m)(ω)| > δ(m), then update the
extremal set to {ω(m+1)

i } by picking new frequencies,
where |E(m)(ω)| has its local maxima. Make sure that
the error alternates on the ordered set of frequencies
described in term (iv) and (v). Return to the step (ii)
and iterate.

(vi) If max ω ∈ Ω, |E(m)(ω)| ≤ δ(m), then the algorithm

is complete. Use the set {ω(m)
i } and the interpolation

formula to compute an inverse discrete Fourier
transform to obtain the filter coefficients.

Therefore, we can use the Chebyshev best uniform
approximation to the design a lowpass filter as DFB for the
contourlet transform. In order to ensure a linear phase filter
Hg(e jω), here we have

H
(

e jω
)

= e− j(n−1)ω/2Hg

(

e jω
)

, (32)

Hg

(

e jω
)

=
M
∑

n=1
a(n) cosnω, M = N

2
, (33)

where

a(n) = 2h
(

N

2
− n

)

, n = 1, 2, . . . ,
N

2
. (34)

Let N = 12; we can obtain an optimal 6-order contourlet
filter based on Chebyshev best uniform approximation that,
all its coefficients of the filter are determined using the Parks-
McClellan algorithm as follows:

H(z) = h(1)
(

z + z−1
)

+ h(2)
(

z2 + z−2
)

+ h(3)
(

z3 + z−3
)

+ h(4)
(

z4 + z−4
)

+ h(5)
(

z5 + z−5
)

+ h(6)
(

z6 + z−6
)

,

h(1) = 0.6195, h(2) = −0.1623, h(3) = 0.0528,

h(4) = −0.0012, h(5) = −0.0214, h(6) = 0.1102,
(35)

where passband ωp is 0.4π, stopband ωs is 0.6π, a peak value
of passband wave δ1 is 0.191929, and peak value of stopband
wave δ2 is 0.019193. This optimal filter is used as a DFB in
the Contourlet transform.
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3.2. New 9/7 Filter Banks Design. According to [30, 31],
we only need to design both the lowpass filters H0(z) and
G0(z) of the 9/7 filter banks on analysis and synthesis stage
respectively, also all the coefficients of the 9/7 filter banks
family and their lifting parameters with respect to a one
control variable ξ are shown in (36) and (37).

According to the corresponding coefficients between (36)
and (37), when ξ = 1.34, all the coefficients of lowpass
filter and highpass filter in the analysis and synthesis stages
respectively, and all the lifting parameters can completely be
determined, and they are listed in Table 1:

h(0) = −8ξ3 − 18ξ2 + 7ξ − 20
16ξ

,

h(1) = 4ξ3 − 11ξ2 + 15ξ − 4
8ξ

,

h(2) = ξ − 2
4ξ

,

h(3) =
(

4ξ2 − 7ξ + 4
)

(ξ − 1)
8ξ

,

h(4) =
(

4ξ2 − 7ξ + 4
)

(2ξ − 1)
32ξ

,

g(0) = ξ + 1
4

,

g(1) = 2ξ + 7
32

,

g(2) = −ξ − 1
8

,

g(3) = −2ξ − 1
32

,

(36)

α1 = 1− 2ξ
4(ξ − 1)

,

α2 = −(ξ − 1)2,

α3 = 1
4ξ(ξ − 1)

,

α4 = ξ3 − 7
4
ξ2 + ξ,

K = 2
ξ
.

(37)

4. Contourlet Domain HMTModels

4.1. Model Definition. We know that compositionality in a
generative stochastic model can be achieved using proba-
bilistic independence. According to [32, 33], the structure
of hidden Markov tree models can be graphically described
through the belief networks as shown in Figure 6, where
black and white notes represent observation and hidden class
variables, respectively.

Also, Y denote a labeled m-ary tree, and each node
v is labeled by a K-tuple of random variables, and is

X(r) Y(r)

X(v) Y(v)

Figure 6: Structure of hidden Markov tree models.

denoted by Y(v). For each tree Y, we can write P(Y) =
P(Y(r),Y1,Y2, . . . ,Ym), where Y(r) is the label at the root
node r and Yi are random subtrees. In addition, we see that
the first-order Markov tree property is satisfied for Y if the
following formula is true:

P
(

Yi | Yj ,Y(r)
)

= P(Yi | Y(r)), ∀i, j = 1, 2, . . . ,m. (38)

From this property, the following expression can be proved
by the induction:

P(Y) = P(Y(i))
∏

v∈V\{r}
P
(

Y(v) | Y(pa[v])), (39)

where pa[v] denotes the parent of vertex v and V denotes
the set of vertices of Y . However, the model formulated
by (39) has two disadvantages. First, the conditional inde-
pendence assumption as shown in (38) is unrealistic and
does not allow the model to capture correlations between
any two nonadjacent nodes. Second, the parameterization
of P(Y(v) | Y(pa[v])) might be problematic since the
number of parameters grows exponentially with the number
of attributes in each label. Here, we let χ = {x1, x2, . . . , xn}
be a finite set of states. And, we assume that each tree
Y is generated by an underlying hidden tree X, a data
structure defined as follows: the skeleton of X is identical
to the skeleton of Y. Nodes of X are labeled by hidden
state variables X(v), taking realizations on χ. In this way,
P(Y) = ∑

X P(X), where the sum over X indicates the
marginalization over all the hidden trees. The first-order
tree-Markov property in the case of hidden tree models holds
if the two following conditions are exist.

(i) The first-order tree-Markov property must hold for
the hidden tree X.

(ii) For any possible v, the observation Y(v) is indepen-
dent of the rest given X(v).

These conditions imply the following global factorization
formula:

P(Y,X) = P(X(r))P(Y(r) | X(r))

×
∏

v∈V\{r}
P(Y(v) | X(v))P(X(v) | X(pa[v])).

(40)

The corresponding stochastic model is a hidden Markov tree
(HMT) model.
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Table 1

(a) All the coefficients of new 9/7 filter banks

Number Analysis filter Synthesis filter

k lowpass highpass lowpass highpass

0 117/200 370187/335000 370187/335000 117/200

±1 −121/400 −373301/670000 373301/6700000 121/400

±2 −17/400 −33/268 −33/268 −17/400
±3 21/400 −38301/670000 38301/670000 −21/400
±4 757/10720 757/10720

(b) All the lifting parameters of new 9/7 filter banks

Parameters Values

α1 −21/17
α2 −289/2500
α3 625/1139

α4 150951/250000

K 100/67

4.2. Parameterization. According to (40), we know that
parameters for the HMT model are P(X(r)), a prior on the
root hidden state, P(Y(v) | X(v)), the emission parameters,
and P(X(v) | X(pa[v])), the transition parameters. These
parameters vary with the node, and will generate a large total
number of parameters that might result in overfitting issue.
In addition, we see that a HMTmodel is fully stationary if it is
both transition and emission stationary. In this case, the total
number of parameters is n(1+n+K) being K the number of
parameters in each emission model P(Y | X = x). Moreover,
we also know that the above model is locally stationary if it is
emission stationary and

P
(

X(v) | X(pa[a])) = P
(

X(ω) | X(pa[ω])), (41)

where v and ω are both the ith children of their parent in the
tree. This assumption will yield n(1 + nm + K) parameters.
Finally, the model mentioned above is level stationary if the
following formulae are true:

P
(

X(v) | X(pa[v])) = P
(

X(ω) | X(pa[ω])),
P(Y(v) | X(v)) = P(Y(ω) | X(ω)),

(42)

where v and ω belong to the same level of the tree.

4.3. Inference and Learning. Inference consists of computing
all the conditional probabilities of hidden states, given the
evidence entered into the observation nodes. Since the
network as shown in Figure 6 is singly connected, the
inference problem can be solved either by π-λ propagation
or by the junction tree algorithm [34]. Given such structure
of the HMT model in Figure 6, no moralization is required
and cliques forming the junction tree are of two kinds: one
containing X(v) and X(pa[v]), the other one containing
Y(v) and X(v). In both cases, only two variables are
contained in a clique. It should be remarked that P(Y) is
simply obtained as the normalization factor in any clique
after propagation in the junction tree. Inference in HMT

model is very efficient and runs in time proportional to
the number of nodes in Y and to the number of states in
χ. Each model λi is trained using examples belonging to
class ci. Learning is formulated in the maximum-likelihood
framework and the presence of hidden variables requires
an iterative algorithm for solving the optimization problem.
In the implementation above, the Expectation-Maximization
(EM) algorithm is chosen [35].

5. Results and Discussion

We partition the finest and second finest scales into eight
directional subbands, and the two next coarser scales into
four directional subbands, and obtain a frequency partition.
In order to verify the effectiveness of the two novel filters for
image denoising in the contourlet HMT model, we choose a
texture images that vary from simple edge dominant images
to highly textured images such as Barbara, a grayscale image
of resolution 512× 512 pixels and 8 bits per pixel.

The experimental platform is in a CPU3.0GHz, memory
2.0GB, andWindows XP. And, a control variable ξ of the 9/7
filter banks family is selected as [0, 4]; the interval of a control
variable ξ is 0.1. According to denoising method of [12], we
carried out the image denoising experiments to test image
Barbara, the results are shown in Figure 7.

In addition, we choose a control variable ξ in the
interval of 0.001 to implement the image denoising and
the performances of tested results are shown in Figure 8.
Moreover, we chooses five datasets, formed by the values on
the upper layers in Figure 8, to complete the data fitting using
a fourth-order polynomial for each dataset; the resulting
curves are shown in Figure 9. From this figure we can see
that the five fitting curves almost focus on a single point at
1.34; we take 1.34 as the optimal point: ξopt = 1.34. Given ξopt
all the coefficients and the lifting parameters of the optimal
9/7 filter banks are rational numbers and are determined
completely through (36) and (37), the results are listed
Table 1. Moreover, if the above two optimal filter banks are
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Figure 7: The results of image denoising.
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Figure 8: Denoising result within a narrow range.

used in the contourlet HMT model and on the experimental
platform presented by Po and Do [12], the image denoising
performance in terms of the PSNR is maximum and equals
23.53 dB.

In [12], Po and Do used the CDF 9/7 filter on the
LP decomposition stage and pkva 12 filter on the DFB
decomposition stage in the contourlet HMTmodel for image
denoising. This paper differs from [12] in the use of both
new 9/7 filter with rational coefficients and their lifting
implementation, and new pkva 12 filter above on the LP
andDFB decomposition stage, respectively. Since the new 9/7
filter banks are all the rational coefficients, so that the com-
putational complexity can greatly be reduced, VLSI hardware
implementation becomes easier and speeds up by 50% than
the CDF 9/7 filter banks with irrational coefficients. As an
objective comparison between the two methods, the image
denoising effects using contourlet domain HMT models for
different images on various noise levels are shown in Table 2.

FromTable 2 we see that the ourmethod improved image
denoising with 0.33 and 0.28 dB compared to [12] for images
Zelda and Lena, respectively; it is only 0.16 dB less compared
with the result of [12] for the Barbara image denoising while
the noise level σ equals 50. Because the Lena is a smooth
image with many of the low-frequency areas than Barbara
which is a texture image with many of the high-frequency
details, so that the proposed approach works better for the
image denoising compared to [12]. Also, since the low-
frequency areas of the Zelda image are fewer than the Lena
image, thus the denoisng performances of the Zelda image
are slightly lower quality than the Lena image.
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Figure 9: Data fitting result about optimal samples.

Table 2: Denoising effects comparison for different images on
various noise levels (PSNR in dB).

Image Noise level σ Po and Do’s method Our method

Lena
30 28.18 28.42

40 27.00 27.14

50 26.04 26.32

Barbara
30 25.27 25.20

40 24.79 24.45

50 23.74 23.58

Zelda
30 30.00 29.98

40 28.29 28.46

50 27.07 27.40

Moreover, we present also the subjective comparison
using the new 9/7 filter banks with rational coefficients
mentioned above on the LP decomposition stage and the
new pkva 12 filter on the DFB decomposition stage in the
contourlet domain HMT model; the results are shown in
Figure 10. In Figure 10(b), Gaussian noise with σ = 50 is
added to the original image. Comparing Figures 10(c) and
10(d) we can see that the visual quality using the image
denoising approach of this paper is as good as the result of
[12].

6. Conclusions

The design approach for the contourlet filter banks based
on the Chebyshev best uniform approximation method is
effective, and both the optimal 9/7 filter banks with rational
coefficients and the new pkva 12 filter for implementing
the Zelda image denoising in the contourlet HMT models
are improved by 0.33 dB. Also, the contourlet HMT model
based on the above two filter banks is improved for the
other image denoising applications. Particularly, since the
optimal 9/7 filter banks with rational coefficients have
two advantages of the low computational complexity and
easy hardware implementation, so that the image denoising
approach presented in this paper can widely be applied to the
digital camera and multimedia device.
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(a) (b) (c) (d)

Figure 10: Subjective comparison for denoising performance, (a) original image, (b) noise image, (c) Po and Do’s result, and (d) our result.
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