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This paper considers a VDSL downstream system where crosstalk is compensated by linear precoding. Starting from a recently
introduced mathematical model for FEXT channels, simple analytical methods are derived for evaluating the average bit rates
achievable, taking into account three of the most important nonidealities. First, absolute and relative estimation errors in the
crosstalk coefficients are discussed, and explicit formulas are obtained to express their impact. A simple approach is presented
for computing the maximum line length where linear precoding overcomes the noncoordinate system. Then, the effect of out-of-
domain crosstalk is analyzed. Finally, quantization errors in precoding coefficients are considered. We show that by the assumption
of a midtread quantization law with different thresholds, a relatively small number of quantization bits is sufficient, thus reducing
the implementation complexity. The presented formulas allow to quantify the impact of practical impairments and give a useful
tool to design engineers and service providers to have a first estimation of the performance achievable in a specified scenario.

1. Introduction

As well known, the performance of very high speed digital
subscriber line (VDSL) systems is basically limited by
crosstalk. Generally, near-end crosstalk (NEXT) is not a
problem, since it can be easily avoided by using frequency
division duplexing. Far-end crosstalk (FEXT) is much more
critical. It can be of in-domain type, when all the lines of a
binder are controlled by a single operator and terminate on
the same line card, or of out-of-domain (alien) type, when
more operators provide services within the same binder (or
a single operator is not able to guarantee that all the binder
lines terminate on the same line card).

Several processing techniques have been proposed to
eliminate the FEXT. Focusing on the downstream transmis-
sions, that will be considered in the following, a very efficient
solution consists in using a Diagonalizing Precoder (DP) [1].
It is based on a channel diagonalizing criterion and has a
much lower complexity than competing solutions, like the
Tomlinson-Harashima Precoder (THP) [2], since it does not
require any additional receiver-side operation. (In order to

further reduce complexity, a simplified version of DP has also
been proposed in [3].)

The main concern of the DP approach is that precise
estimates of the crosstalk channels are needed; these are
usually found by using multiple-input multiple-output
(MIMO) channel identification techniques, with some infor-
mation communicated back to the transmitter side. Classic
estimation techniques, like Least Mean Squares (LMS) and
its variants [4–6], can be employed. (Algorithms for fast
estimation have also been presented in [7–9].) Unfortunately,
errors occurring in the estimation can reduce the achievable
capacity, particularly for short line lengths. As we will
show in this paper, LMS is indeed able to guarantee very
small errors and, hence, effective precompensation. Once
the crosstalk channels have been determined, however,
they cannot be retained valid for all time: temperature
changes and lines activation/deactivation oblige to update
the estimation [10]; in other words, the precoder must track
variations in the crosstalk environment [11].

Moving from these premises, a valuable task consists
in evaluating the impact of FEXT estimation on the VDSL
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system capacity, in terms of both absolute errors (due to the
estimation algorithm) and relative errors (induced by the
crosstalk channel variations). Typically, this kind of problems
is faced through measurements, by invoking the specificities
of each implementation [12]. However, simple analytical
expressions would be very useful for design engineers to
have a first idea of the achievable performance and correctly
address the design without resorting to long measurement
campaigns.

Previous literature is rather poor of contributions of
this kind. Among the most significant papers in the field,
a statistical analysis has been outlined in [13], where the
authors, however, do not refer to any practical model and
do not elaborate on the analytical problem. Very recently, in
[14], random variable theory has been applied in the context
of dynamic spectrum management algorithms at level 2
(i.e., without distortion compensation). A two-port FEXT
estimator proposed by the same authors was considered, and
a statistical sensitivity analysis was conducted to investigate
the effects on the system capacity of measurement errors due
to uniform quantization.

Indeed, the problem of calculating the effect of esti-
mation errors is made involved by the need of a reliable
analytical model for the crosstalk channels. Until now, DSL
standards usually relied on the so-called 1% worst-case
model [15], which means that there is only a 1% chance
that the actual FEXT coupling strength in a real bundle is
worse than some value prefixed by the standard. Actually, the
inappropriateness of the 1% worst-case model, particularly
when applied to complex scenarios (i.e., with different
interferers), has been widely debated [16], and an improved
Full Service Access Network (FSAN) method has also been
accepted as a standard [17]. More recently, two relevant
contributions on FEXT modelling have been produced [18,
19]. Both, they describe the FEXT coupling dispersion by
using a Gaussian variable or a Beta distribution, respectively,
to model the amplitude, and a uniform distribution to
model the phase. (In [19], the phase exhibits an additional
contribution due to the direct channel.) As it will be shown
afterwards, by exploiting such new models, the effect of the
estimation errors can be described in statistical terms by
obtaining, for example, the mean value of the bit loading in
nonideal conditions.

The Gaussian channel model in [18] well matches
European cables, while the Beta channel model of [19] is
more tailored for North American cables. As we are mainly
interested in considering European settings, the analytical
treatment developed in this paper focuses on the Gaussian
channel model. Its main statistical features will be derived in
Section 2.3.

The object of this paper is to start from the FEXT channel
model and to formulate a simple analytical framework for
the calculation of the average bit rates in the presence
of estimation errors, by taking into account the stochastic
nature of the channel model. A relevant feature of the
proposed analysis is that it can also be applied to the out-
of-domain crosstalk, this way permitting to evaluate the
impact of such a further interference contribution, without
the need of long simulations or measurements. Moreover, as

the precoding system is also affected by quantization errors,
we can evaluate in the same way the effect of finite word
length in the representation of precoder variables. This issue
has been faced only recently in the literature [20], but it
is extremely important due to its influence on the perfor-
mance/complexity tradeoff: coarse quantization can imply
an intolerable loss but, on the other hand, a large number
of quantization bits can yield high hardware complexity and
a great amount of memory needed for the precoding process.
In [20], it has been shown that to obtain a capacity loss, due
to quantization errors, below a prefixed small percentage, a
14 bits representation of the precoder entries is necessary. We
will verify that by adopting a quantization law that exploits
the row-wise diagonal dominant (RWDD) character of the
downstream VDSL channel, the same loss can be reached by
adopting a smaller number of bits.

The organization of the paper is as follows. In Section 2,
we remind the structure of the considered precoding system.
In Section 3 we face the problem of residual absolute
estimation errors, and we also write conditions that permit to
establish the superiority, on average, of the vectored system
against the nonvectored system. In Section 4, for the case of
relative errors, we consider three different approximations
of the average bit rate; the effect of uncertainty in the
knowledge of the channel statistical parameters is discussed
as well. In Section 5, the analysis is extended to the out-
of-domain (alien) crosstalk, by evaluating its impact in
absence of cancellation techniques. In Section 6, the same
statistical approach is adopted to estimate the rate loss due
to quantization errors in representing the elements of the
precoding matrix, by using different quantization laws and
different numbers of quantization bits. The validity of the
theoretical analysis presented in Sections 2–6 is confirmed
by several numerical examples at the end of each section.
Conclusions are drawn in Section 7.

2. SystemDescription

In this paper, we consider the VDSL 998 17 standard
[21], characterized by 4096 tones with frequency separation
Δ = 4312.5 Hz, focusing attention on the downstream
transmission. Noting by smask

k the value fixed by the standard
[21] for the Power Spectral Density (PSD) at the kth tone,
the power transmitted on line n at tone k must satisfy the
constraint Pn

k ≤ smask
k Δ. On each line, we consider a total

power Pn
T = ∑

k P
n
k equal to 14.5 dBm (a typical value

for cabinet transmission), distributed by the water-filling
algorithm (see, e.g., [22]) on the 2454 tones allocated for
downstream.

The scheme of Figure 1 refers to L lines in the same
binder. In the figure:

(i) Xk = [X1
k,X2

k , . . . ,XL
k ]

T
is an L-component vector

grouping the symbols transmitted on tone k by each
of the L users;

(ii) Hk = {Hij
k } is the L× L channel matrix: the diagonal

terms Hii
k represent the direct channels, while the

other terms H
ij
k , i /= j, represent the FEXT;
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Figure 1: VDSL channel for L lines in a binder.

(iii) Nk is an L-component vector describing the additive
thermal noise contributions Ni

k.

The matrix Hk is RWDD; this means that, on each
row of Hk, the diagonal element has typically much larger
magnitude than the off-diagonal elements (i.e., |Hii

k | �
|Hij

k |, for all j /= i). Such RWDD character will be verified
numerically in Section 2.4.

The signal-to-noise ratio for the nth receiver at the kth
tone, in the presence of FEXT, is
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where σ2
N is the variance of the thermal noise (independent

of k and n): a constant noise power spectral density equal to
−140 dBm/Hz will be considered in the numerical examples
throughout the paper.

By using the well-known gap approximation, the number
of bits/symbol of user n at tone k is given by

cnk =
[

min

{

log2

(

1 +
�SNR

n

k

Γ

)

, cmax

}]

, (2)

where [z] is the integer part of z, Γ is the transmission gap,
and cmax represents the maximum admitted value for the
number of bits on each tone for VDSL (bit clipping).

The value of Γ includes the nonideality of QAM constel-
lation at a given bit error rate, the coding gain and the system
margin. In this paper, we will assume a value Γ = 12.8 dB,
that is typical for practical implementations [13]. Moreover,
according to the VDSL standard [21], we will consider cmax =
15 bits (the largest constellation allowed is a 32768-QAM).

The achievable bit rate, expressed in bit/s, is then given
by

Cn = RS

Q∑

k=1

cnk , (3)

where RS = 4000 symbol/s is the net symbol rate (which
differs from Δ because of the cyclic prefix), and Q is the
number of tones available for each user.

2.1. Diagonalizing Precoder. If all the L lines of the binder
are controlled by the same operator, and the line drivers are
colocated (in the same cabinet or central office), then the
vector of symbols Xk can be made available to an apparatus
able to coordinate the L lines. Ideally, this knowledge can

Xk Xk
Pk Hk

Yk

Nk

ZkZk βk diag (Hk)−1

+

Decision

Figure 2: Schematic representation of the vectored system based on
DP.

be used to completely eliminate the FEXT interference by
applying a proper precoder [2].

In ideal conditions, that is, when all the channel elements
H

ij
k are perfectly known, the FEXT is removed and the signal-

to-noise ratio for the nth receiver at the kth tone is

SNRn
k =

Pn
k

∣
∣
∣Hnn

k

∣
∣
∣

2

σ2
N

(4)

that, inserted in (2) (in place of �SNR
n

k) and (3), provides
the achievable bit rates: they can be considerably larger than
those of the noncoordinate system.

Among the solutions proposed in the literature to realize
precoding, the so called Diagonalizing Precoder (DP) [1] is
particularly effective. The DP system is schematically shown
in Figure 2, with reference to the kth downstream tone fk.
The diagonalizing precoder matrix Pk is defined as

Pk = β−1
k H−1

k diag(Hk), (5)

with βk � maxi‖[H−1
k diag(Hk)]row i‖.

It is possible to verify that, because of the RWDD
character of the channel matrix, βk is always close to unity
[1].

2.2. Channel Models. Equation (1) can be, obviously, applied

in an experimental framework, where the values of H
nj
k are

determined by measurements. However, useful information
can be obtained by developing a theoretical framework
that aims at expressing the signal-to-noise ratio in simple
analytical terms. For this purpose, a reliable channel model
is required.

As regards the direct channel, a general consensus exists
on the adoption of the so-called Marconi (MAR) model,
which provides the value of Hnn

k as a function of the
frequency fk = kΔ and the line length d [23].

As for the crosstalk terms, in this paper, we adopt the
model proposed in [18]. The starting point of the model is
a multiple-input multiple-output (MIMO) extension of the
MAR model, according to which the FEXT transfer function
at frequency fk (in MHz) from line j, of length dj (in km), to
line n, of length dn, can be expressed as

H
nj
k =

∣
∣
∣Hnn

k

∣
∣
∣ fk

√

min
(
dj ,dn

)
χ10−X/20e jφ, (6)
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where χ = 10−2.25 is a coupling coefficient, and X and φ are
random variables. X is described as a Gaussian variable, with
mean value (in dB) μX and standard deviation (in dB) σX .
The values of μX and σX depend on the type of cable adopted
but are related one each other as μX = 2.33σX . As an example,
in this paper, we consider the case of 10-pair binders for
which μX = 18.174 dB and σX = 7.8 dB. The random variable
φ is uniformly distributed between 0 and 2π.

This Gaussian model will be used for the subsequent
analysis. As mentioned in the Introduction, recently a Beta
channel model has also been proposed [19] that is more
tailored for North American cables. The approach we present
could be extended to cover the Beta model, too.

2.3. Crosstalk Statistical Features for the Gaussian Channel

Model. The average value of |Hnj
k |

2
can be easily computed,

and will be useful in the subsequent bit rate analysis. In fact,
by (6), we can write
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As X is a Gaussian variable, Y = 10−X/10 is a log-normal
variable whose mean value and variance are, respectively,

〈Y〉 = μY = exp
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, (8)
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So, as a consequence of (8), we can write
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For the subsequent analysis, it will also be useful to know
the statistical properties of

I =
L∑

j=1
j /=n

Aj · 10−Xj /10, (11)

where Xj is a Gaussian variable and Aj = min(dj ,dn)P
j
k ;

thus, I is the sum of L − 1 properly weighted log-normal
variables. It is generally well accepted that the distribution of
I can be approximated by another log-normal distribution
[24]. The mean value and the standard deviation of I can
be determined by using the so-called Wilkinson’s method
[25] that has the advantage to permit a simple and explicit
analytical formulation. Other approaches are possible (like
the Schwartz and Yeh’s method [26]) and are even more
accurate, but they require a recursive solution that does not
allow for further analytical derivations.

By using Wilkinson’s method, assuming that all Xj ’s have
the same statistics and are uncorrelated one each other, it is
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Figure 3: Average value of |Hnj
k |2, normalized to the square

modulus of the direct channel, for interfering lines of 1 km.

easy to find

〈I〉 = μI = μY

L∑

j=1
j /=n

Aj , (12)

σ2
I = σ2

Y

L∑

j=1
j /=n

A2
j , (13)

this way generalizing (8) and (9).
It must be said that Wilkinson’s method permits us to

deal also with correlated Xj ’s; in such case, (12) still holds,
while (13) should be modified for including the effect of the
nonnull correlation coefficient [25]. In this paper, however,
we only consider uncorrelated variables.

2.4. Numerical Results: Verification of the RWDDCharacter for
the Channel Matrix. By using (8) and (10) and computing

|Hnn
k |2 through the MAR model, the ratio 〈|Hnj

k |
2〉/|Hnn

k |2
can be determined, for a specific scenario. An example is
shown in Figure 3, for the case dj = dn = 1 km, as a function
of the carrier frequency. This example confirms the RWDD
character of the channel matrix.

3. Effect of In-Domain Crosstalk Estimation
Errors: Absolute Errors

Let use denote by Ĥk the estimated channel matrix at the
kth tone. If an estimation error is present, it can be modeled
through a matrix Ek such that:

Ĥk = Hk + Ek. (14)
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Matrix Ĥk should replace, in (5), the actual matrix Hk.
Looking at Figure 2 and by applying some algebra, we can
compute the received symbol, which is given by

Zk =
{

I−
[

diag
(

Ĥk

)]−1 · diag
(

Ek · Ĥ−1
k

)
· diag

(
Ĥk

)}

·Xk

−
[

diag
(

Ĥk

)]−1 ·
[

Ek · Ĥ−1
k − diag

(
Ek · Ĥ−1

k

)]

· diag
(

Ĥk

)
·Xk + βk

[
diag

(
Ĥk

)]−1 ·Nk,

(15)

where I is the identity matrix.

3.1. Some Consequences of the RWDD Nature of the Channel
Matrix. Since it is reasonable to assume that the direct
channels are estimated correctly [2], Ek can be written as

Ek =

⎡

⎢
⎢
⎢
⎢
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0 ε12
k · · · ε1L

k

ε21
k 0 · · · ε2L

k
...

...
. . .

...
εL1
k εL2

k · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
. (16)

As mentioned in Section 2.1, we can assume, βk ≈ 1.
Moreover, in Appendix A, it is demonstrated that, because of
the RWDD character of the channel matrix, diag(Ek ·Ĥ−1

k ) ≈
0.

By introducing these approximations, (15) can be simpli-
fied as follows:

Zk ≈ Xk −
[

diag
(

Ĥk

)]−1 · Ek ·Xk +
[

diag
(

Ĥk

)]−1 ·Nk.

(17)

We note that the residual crosstalk due to the estimation
error adds to the thermal noise contribution: a reduction in
the achievable bit rate is therefore expected.

3.2. Absolute Errors for LS Methods. By assuming the adop-
tion of a Least Square (LS) estimator [27], denoting by S the
length of the training sequence, the mean square value of the

absolute error εnjk (S) on the estimation of H
nj
k results in
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k

. (18)

This expression holds when the H
nj
k ’s are individually esti-

mated. In practical applications, a more efficient approach
can be adopted, that consists in estimating simultaneously all
the crosstalk coefficients, at the kth tone, for the nth line. In
this case, during the training phase, for a given frequency, all

lines must transmit the same power, that is, it should be P
j
k =

Pk. Under such condition, we demonstrate in Appendix B
that (18) is valid also in this case.

3.3. The Signal-to-Noise Ratio Expression Taking into Account
Absolute Errors. Multiplying (18) by the power of the jth

transmitted signal and summing up the crosstalk contribu-
tions from L − 1 interfering lines, the signal-to-noise ratio
for the nth user at the k th tone results in
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(19)

Based on this very simple expression, in comparison with (4),
we can say that the final effect of the absolute estimation error
is to amplify the thermal noise by a factor [1 + (L − 1)/S].
So, if the value of S is sufficiently large, the impact of the
estimation error after application of the LS procedure can be
made negligible. This will be shown next through numerical
examples.

3.4. Estimation of the Maximum Line Length where the DP
Improves the System. The previous analysis allows to estimate
the line length above which, if the channel is measured
by the LS method, the DP loses its advantage with respect
to the noncoordinate system. By comparing (19) with (1),
that refers to the case without precoding, we can derive the
condition by which vectoring provides, on average, a greater
signal-to-noise ratio on the nth line and the kth tone, and
then, a greater (or, at least, equal) bit rate. This occurs as long
as the following inequality is satisfied

∑

j /=n
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σ2
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This condition can be extended to the whole set of
downstream tones for the nth line

∑
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and to the whole set of active lines

∑

n

∑
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As in (20)–(22), even taking into account its statistical

nature, the modulus of H
nj
k decreases for increasing lengths,

a threshold length should exist above which the application
of DP is no longer expedient.

More precisely, although (20)–(22) can be applied in

specific scenarios, and then for specific values of H
nj
k , it

can be useful, for a design engineer or a service provider,
to have an idea of the maximum lengths achievable by
considering the average crosstalk power. Such information

can be obtained by replacing |Hnj
k |

2
with 〈|Hnj

k |
2〉. So, by

using (12), with Aj = min(dj ,dn)P
j
k , condition (20) becomes
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Figure 4: Maximum value of d, in a system with lines of equal
length, for which DP outperforms the nonvectored scheme, as a
function of the number of training symbols S.

where the dependence of Hnn
k on the line length has also been

written for clarity. The same substitution can be done in (21)
and (22).

3.5. Numerical Results: Performance in the Presence of Absolute
Estimation Errors. Let us consider a scenario with L = 8 and
four different line lengths di, i = 1, . . . , 8: d1 = d2 = 0.3 km,
d3 = d4 = 0.6 km, d5 = d6 = 0.9 km, d7 = d8 = 1.2 km.
The average bit rates, as functions of the number of training
symbols, are shown in Table 1, and compared with the results
of the nonvectored scheme (obtained through simulation—
see Table 2) and the ideal vectored scheme. From the table,
we see that, just by using S = 100 training symbols, the
average bit rate is very close to the ideal result, thus providing
the expected gain with respect to the nonvectored system.

As an example of application of the formulas in
Section 3.4, let us consider a scenario with lines of equal
length d. We wish to find the maximum length, denoted
by dmax, above which application of vectoring is no longer
useful. The cost function adopted is the overall bit rate for
each user, which implies to study condition (21). Under the
established assumptions, the average of (23) over the Q tones
results in

2.42 · 10−6d
Q∑

k=1

|Hk(d)|2 f 2
k Pk ≥ Q

σ2
N

S
, (24)

as Hnn
k does not depend on n and P

j
k does not depend on

j. It is also interesting to observe that this expression is
independent of the number of lines. This is a consequence of
the fact that we are analyzing the average behavior. The plot
of dmax, as a function of S, is reported in Figure 4. The figure
shows that just assuming S in the order of 100, vectoring
is convenient for any line length of practical interest (i.e.,
< 2.5 km). Obviously, this favorable conclusion implies the
implementation of an ideal LS estimator, that is able to

ensure the mean square value of the estimation error given
by (18).

4. Effect of In-Domain Crosstalk Estimation
Errors: Relative Errors

The analysis developed in the previous section demonstrates
that, by using an effective estimation algorithm, the residual
estimation errors have not a significant impact on the bit
loading achievable. The previous analysis, however, relies on
two important assumptions:

(i) there is no quantization noise in representing the
matrix coefficients at the precoder;

(ii) the crosstalk channels are static.

The impact of the quantization noise will be discussed in
Section 6. In this section, instead, we study in statistical
terms, that is, by evaluating the average degradation, the
effect of a change in the crosstalk contributions after the
precoder has been synchronized.

The crosstalk environment can vary, for example, as
a consequence of a temperature change or lines activa-
tion/deactivation. To cope with these variations, adaptive
training algorithms can be adopted [28]. Adaptive algo-
rithms require almost continuous transmission of informa-
tion about the error at the output of the frequency-domain
equalizer (FEQ) at the receiver; such information flows from
the VDSL2 Transceiver Unit at the remote side (VTU-R) to
the vectoring control entity (VCE) at the Digital Subscriber
Line Access Multiplexer (DSLAM). This transmission can be
a critical issue, as only a very low data rate special operations
channel may be available to feed back the error samples. On
the other hand, precoder updating should be fast.

Although clever solutions can be conceived for overcom-
ing the problem of low data rate over the upstream channel
[11], to evaluate the impact of modified crosstalk conditions
remains a valuable task. As mentioned in the Introduction,
the topic has been faced in the past by considering worst-
case conditions or simplified statistical approaches. Next, we
demonstrate that it is possible to find explicit formulas that
permit to estimate the degradation in the achievable bit rate
under more realistic assumptions.

4.1. The Signal-to-Noise Ratio Expression Taking into Account
Relative Errors. Let us assume that, because of a channel
change, the crosstalk coefficients are known, at the precoder,
with a relative (percent) error e. (For the sake of simplicity,
we assume that the relative error is the same for all coef-
ficients; the analysis could be easily extended by removing
such hypothesis.) This means that the error matrix Ek can be
written as:

Ek = e

⎡

⎢
⎢
⎢
⎢
⎣

0 H12
k · · · H1L

k

H21
k 0 · · · H2L

k
...

...
. . .

...
HL1

k HL2
k · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
. (25)
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Table 1: Example of average bit rates as functions of the number of training symbols.

Line length Nonvectored Vectored S = 1 Vectored S = 10 Vectored S = 100 Vectored S = 1000 Vectored ideal

(km) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)

0.3 88.50 127.81 138.54 140.98 141.22 141.25

0.6 69.51 71.81 88.57 93.40 94.11 94.19

0.9 49.36 42.76 54.49 57.98 58.42 58.46

1.2 34.77 28.12 35.12 37.36 37.65 37.67

Using expression (17) for the received symbol, the signal-
to-noise ratio for the nth user at the kth tone, that takes into
account the presence of the relative error e, is

SNRn
k =

Pn
k

∣
∣
∣Hnn

k

∣
∣
∣

2

|e|2∑ j /=n

∣
∣
∣H

nj
k

∣
∣
∣

2
P
j
k + σ2

N

. (26)

We observe that assuming e = −1 results in the nonvectored
system; correspondingly, (26) reduces to (1).

4.2. Techniques for Estimating the Impact of Relative Errors.
Let us define

a =
Pn
k

∣
∣
∣Hnn

k

∣
∣
∣

2

Γ
, b = |e|2

∣
∣
∣Hnn

k

∣
∣
∣

2
f 2
k χ

2, (27)

and let us take into account the definition of I , given by
(11), whose mean value and variance have been computed
in Section 2.3.

Wishing to find the average bit rate, taking into account

the statistical features ofH
nj
k for a fixed value of e (assumed as

a parameter), a first possibility consists in replacing, in (26),

the mean value of |Hnj
k |

2
. This way, we find

〈
cnk
〉

1
=
[

min

{

log2

(

1 +
a

bμI + σ2
N

)

, cmax

}]

, (28)

where μI is given by (12). We call this approach Approxima-
tion 1.

A more accurate analysis consists in determining the
probability density function (p.d.f.) of the SNRn

k in (26), and
then deriving the mean value of cnk accordingly. In this case,
it is easy to find

〈
cnk
〉

2
=

⎡

⎢
⎣min

⎧
⎪⎨

⎪⎩

〈
cnk
〉

1
+ log2

⎡

⎣

√
√
√
√

(
bμI + σ2

N

)2
+ b2σ2

I
(
bμI + a + σ2

N

)2
+ b2σ2

I

(

1 +
a

bμI + σ2
N

)⎤

⎦, cmax

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦, (29)

where σ2
I is given by (13), we call this approach Approxima-

tion 2.

Sometimes, to simplify the analysis (also in a simulator),
another method can be used, which consists in neglecting σ2

X

in (8). We call this approach Approximation 3 and denote
the corresponding estimated average number of bits per
symbol as 〈cnk〉3. As, by this choice, the crosstalk power is
underestimated, we expect that Approximation 3 provides
too optimistic values for the expected bit rate.

For the sake of comparison, it can be useful to consider
also the standard 1% worst-case model. The presence
of different interferers, that is, characterized by different
coupling lengths and transmit powers, is taken into account
through the FSAN method [29]. Noting by U the number of
different interferer types and by li the number of interferers
of type i (that is with length di and transmit power Pi

k),
the number of bits/symbol using the FSAN method results
in

(
cnk
)

FSAN
=

⎡

⎢
⎣min

⎧
⎪⎨

⎪⎩
log2

⎛

⎜
⎝1+

a

b
(∑U

i=1 A
1/0.6
i li

)0.6
+ σ2

N

⎞

⎟
⎠, cmax

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦,

(30)

with Ai = min(di,dn)Pi
k; moreover, b is computed from (27)

assuming |e| = 1.
Although the FSAN method certainly improves the way

to sum crosstalk from different sources, the 1% worst-case
model is not able to capture the positive effects of coupling
dispersion. For this reason, it usually provides too pessimistic
values for the expected bit rate.

Note that it may be interesting to extend the statistical
analysis beyond the mere evaluation of the average values,
for example to analyze the dispersion around the mean.
In this case, the presented approach permits to derive, by
simulation, the plots of the cumulative distribution function
(c.d.f.), defined as the probability that the bit rate is equal
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to or smaller than a given value. In turn, by making the
derivative of the c.d.f., the p.d.f. can be obtained.

The numerical results relative to the proposed approx-
imations and the c.d.f. behavior will be presented in
Section 4.4. In the next subsection, instead, we address
another potential nonideality.

4.3. Uncertainty in the Knowledge of σX . The previous analy-
sis assumes the knowledge of the standard deviation σX (and,
hence, the mean value μX). Really, this parameter usually
results from a campaign of measurements that obviously can
suffer some uncertainty level. In particular, in our analysis
for the case of 10-pair binders, we have used a set of data
measurements provided by Telecom Italia. Based on these
data, we have established that a 95% confidence interval is
lower bounded by σX |l.b. = 7.4 dB and upper bounded by
σX |u.b. = 8.1 dB. Corresponding bounds can be found for
the mean value μX as well, by using the relationship μX =
2.33σX , that are: μX |l.b. = 17.242 dB and μX |u.b. = 18.873 dB.
Once having defined the range, we have explored possibile
sensitivity of the bit rates on such variability. Results are
shown in the next subsection.

4.4. Numerical Results: Performance in the Presence of Relative
Estimation Errors. Let us consider a scenario with L =
8 and four different line lengths di, with i = 1, . . . , 8:
d1 = d2 = 0.3 km, d3 = d4 = 0.6 km, d5 = d6 =
0.9 km, d7 = d8 = 1.2 km. Table 2 shows the estimated
average bit rates 〈Cn〉i = RS

∑Q
k=1 〈cnk〉i, i = 1, 2, 3, for

some values of e, according with the three approximations
presented in Section 4.2. The case e = −1 corresponds
to the nonvectored system. Actually, in all approximations,
only the |e| concurs to determine the estimated value.
However, the sign of e must be taken into account when
deriving the expected bit rate through simulations. The latter
consist of generating samples of the crosstalk coefficients,
according with the specified statistics, without using the
analytical expressions. So, they provide reference values the
approximated results must compare with. Actually, in the
table, the results of two different simulations are shown, the
former using the exact expression (15) and the latter the
simplified expression (17). The difference between these two
approaches is almost negligible, as expected, being related
with the RWDD character of matrix Hk. From the table,
we see that Approximation 2 generally gives results that
are in good agreement with the simulation, particularly for
the shortest lengths; Approximation 1 may underestimate
the true values whilst, conversely, Approximation 3 may
overestimate, even significantly, the true values. The last
column in Table 2 shows the behavior of 〈Cn〉FSAN =
RS
∑Q

k=1 (cnk)FSAN. As expected, the values derived from the
1% worst-case method, that is at the basis of the FSAN
approach, are smaller than those obtained from the statistical
analysis.

As mentioned before, the statistical analysis can be inte-
grated by the computation of the c.d.f. curves. Simulation is
used for such purpose. The c.d.f.’s of the bit rates for e = −0.5
are plotted, by considering the above scenario, in Figure 5.

30 40 50 60 70 80 90 100 110

Bit rate (Mbps)

0

0.2

0.4

0.6

0.8

1

c.
d.

f.

d = 0.3 km
d = 0.6 km

d = 0.9 km
d = 1.2 km

Figure 5: Estimated c.d.f. with e = −0.5.

We see that the dispersion around the mean, for all lengths,
is very limited, so that the average value gives a very good
approximation of the true value.

Finally, Table 3 shows the average bit rates for the
nonvectored system (e = −1), considering the mean value
of σX as well as the lower and the upper bounds on the 95%
confidence interval. The ideal bit rate, achieved by perfect
compensation of the crosstalk, is also reported as a reference.
From the table we see that the sensitivity of the average
bit rate on the parameters identifying the model is rather
limited: the change in the precoding gain, for example, is
in the order of 5% for the shortest lengths and 1% for the
longest lengths, when passing from the lower bound to the
upper bound of the confidence interval.

5. Effect of out-of-Domain Crosstalk

Let us suppose that the L active lines are also disturbed by
M out-of-domain crosstalk contributions. This means that
M lines within the binder are not controlled by the operator
that, therefore, cannot apply to them the coordinated
vectoring action.

5.1. Out-of-Domain Crosstalk Model. Let us denote by Gk =
{Gij

k } the L×M matrix collecting this kind of contributions,

and by Ak = [A1
k,A2

k, . . . ,AM
k ]

T
the M-component vector of

the out-of-domain signals. It is reasonable to assume that the
symbols Ai

k’s have the same properties of the Xi
k’s.

Under the same approximations used in (17), the
expression of the received symbol becomes

Zk ≈ Xk −
[

diag
(

Ĥk

)]−1 · Ek ·Xk +
[

diag
(

Ĥk

)]−1

·Gk · Ak +
[

diag
(

Ĥk

)]−1 ·Nk.

(31)

So, even in the case of perfect in-domain crosstalk compen-
sation, the nth line is affected by a disturbance at the kth tone

Vn
k =

M∑

j=1

G
nj
k A

j
k + Nn

k . (32)
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Table 2: Example of average bit rates in the presence of relative estimation error e.

Line length Simulation based Simulation based 〈Cn〉1 〈Cn〉2 〈Cn〉3 〈Cn〉FSAN

(km) on (15) (Mbps) on (17) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)

e = −0.1

0.3 135.60 135.63 129.84 135.96 138.68 113.83

0.6 92.61 92.65 92.78 93.38 93.94 87.31

0.9 58.16 58.17 58.18 58.23 58.40 56.73

1.2 37.62 37.62 37.60 37.60 37.66 37.15

e = −0.5

0.3 106.39 106.39 96.33 105.55 114.89 71.33

0.6 80.23 80.24 78.17 83.70 88.40 60.58

0.9 54.27 54.27 53.33 55.65 57.08 44.62

1.2 36.64 36.64 35.88 36.78 37.27 31.39

e = −1

0.3 88.50 88.50 77.74 87.54 98.09 52.82

0.6 69.51 69.51 65.09 72.98 79.95 44.82

0.9 49.36 49.36 47.33 51.12 54.06 35.40

1.2 34.77 34.77 32.85 34.96 36.19 26.08

Table 3: Effect of uncertainty in the knowledge of σX for the nonvectored system.

Line length Nonvectored Nonvectored Nonvectored Ideal vectored

(km) (σX = 7.4 dB) (σX = 7.8 dB) (σX = 8.1 dB) (Mbps)

(Mbps) (Mbps) (Mbps)

0.3 86.72 88.50 89.80 141.25

0.6 68.45 69.51 70.28 94.19

0.9 48.84 49.36 49.70 58.46

1.2 34.56 34.77 34.90 37.67

The correlation properties of this overall noise have been
studied in depth [30]; for the purposes of this paper, however,
it is enough to determine the power of the extranoise that,
under the usual hypotheses, can be obtained as

〈∣
∣
∣Vn

k

∣
∣
∣

2
�

=
M∑

j=1

〈∣
∣
∣G

nj
k

∣
∣
∣

2
�

AT
j
k + σ2

N , (33)

where AT
j
k is the power transmitted, at the kth tone, on the

jth out-of-domain line.
Including the out-of-domain crosstalk contribution in

(19), we obtain the signal-to-noise ratio in the presence

of an absolute estimation error and noncompensated alien
crosstalk:

SNRn
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. (34)

Similarly, we can combine the out-of-domain contributions
with the relative estimation errors analysis; for example,
using Approximation 1 and writing explicitly the various
contributions, (28) becomes

〈
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To compute (34) or (35), modeling of the out-of-domain
crosstalk channels is also required. In general, the same
model used for the in-domain contributions can be adopted.

So, by using the Gaussian channel model, (10) can be

applied by replacing 〈|Hnj
k |

2〉 with 〈|Gnj
k |

2〉; in this case,
however, dj is the length of the jth out-of-domain interfering
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line whereas dn is the length of the considered in-domain
disturbed line.

To evaluate the impact of the out-of-domain crosstalk,
we introduce the following two parameters:

Tn
1 =

〈
Cn
I

〉− 〈Cn
VA

〉

〈
Cn
I

〉 · 100,

Tn
2 =

〈
Cn
VA

〉− 〈Cn
NA

〉

〈
Cn
VA

〉 · 100,

(36)

where, with reference to the nth line:

(i) Cn
I = ideal bit rate,

(ii) Cn
VA = bit rate of the vectored system with alien noise,

(iii) Cn
NA = bit rate of the nonvectored system with alien

noise.

Tn
1 is a measure of the loss due to the presence of the alien

noise, also in the case of negligible estimation error (when
the value of S is large); Tn

2 is a measure of the loss due to the
absence of vectoring when the alien noise is also present.

5.2. Numerical Results: Performance in the Presence of out-of-
Domain Crosstalk. Let us consider a scenario with L = M =
4 and S = 1000. Both for the in-domain and the out-of-
domain lines, the line lengths are: d1 = 0.3 km; d2 = 0.6 km;
d3 = 0.9 km; d4 = 1.2 km. Table 4 shows the values of the
rates and the corresponding Tn

1 and Tn
2 parameters.

As shown in this example, the impact of the alien
crosstalk can be significant, yielding a great reduction in
the achievable bit rate, particularly for the shortest lengths.
Consequently, the potential advantage of precoding can be
compromised if the out-of-domain noise problem is not
efficiently solved. Recently, new architectures have been
proposed, that permit to cancel both in-domain and out-
of-domain crosstalk, at the expense of increased complexity
[31]. To limit complexity, the new architectures use partial
cancellation techniques to apply compensation only where it
yields the maximum benefit.

6. Effect of Quantization Errors

In a real implementation, the elements of the precoding
matrix are quantized. This yields a further nonideality, whose
effects can be limited, with reasonable complexity, through
the adoption of a suitable quantization rule.

6.1. Analytical Model for the Quantization Errors and Rate
Loss. Let us suppose that matrix Pk is represented by a finite
precision matrix P̂k such that

P̂k = Pk + Dk, (37)

where Dk expresses the quantization error. The latter, in turn,
can be related to a matrix Δk as follows:

Δk = P−1
k ·Dk. (38)

In ideal conditions, that is assuming arbitrary precision, we
have Δk = Dk = 0. Through simple algebra, the signal-to-
noise ratio for the nth receiver at the kth tone in the presence
of the quantization error is given by the following expression,
that was already derived in [20]
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, (39)

being Δ
nj
k the (n, j)th element of Δk. Equation (39) can

be used to replace the signal-to-noise ratio in (2), thus
reducing the achievable bit rate with respect to the ideal
conditions. By investigating the statistical properties of cnk ,
in the presence of quantization errors, it is possible to find
the number of quantization bits needed to have a penalty
smaller than a prefixed percentage. In this view, an in-
depth analytical work was done in [20], where a number of
bounds were determined, and their reliability tested through
simulations. In that paper, however, the elements of Dk were
modeled as random variables uniformly distributed in the
range [−2−v, 2−v], where v is the number of quantization bits
adopted. No specific quantization law was considered, but
it was shown that to obtain a small capacity loss, a 14 bits
representation of the precoder entries is necessary. In the
following, we will show that a smaller number of bits can be
adopted, by using a quantization law that exploits the RWDD
property of the channel matrix.

Noting by cnk the number of bits/symbol for the nth user
at the kth tone, in the presence of quantization error, and
using definitions (2) and (3), the effect of quantization errors
on the bit rate can be measured by the per cent rate loss,
defined as

〈Ln〉
〈Cn〉 · 100 =

∑Q
k=1

〈
Lnk
〉

〈Cn〉 · 100, (40)

where Lnk = cnk − cnk = log2{(1 + Γ−1SNRn
k)/(1 + Γ−1SNR

n
k)} is

the transmission rate loss for the nth receiver at the kth tone.
In this expression, SNRn

k is given by (4).
Taking into account that the modulus of the diagonal

elements of matrix Pk is close to 1, a first choice consists
of assuming a midtread quantization law between −1 and
1. However, because of the RWDD property of matrix Hk,
the off-diagonal elements are very small. So, following this
quantization law, most of the off-diagonal elements become
zeros after the quantization, particularly in the case of rather
small v and low frequencies. Explicitly, this means that the
vectoring procedure is made ineffective by the quantization
law, in such region. In spite of this, for small values of v, the
error due to the midtread quantization law is, on average,
smaller than that resulting from the assumption of a uniform
error. For achieving a small rate loss, however, a large number
of quantization bits may still be required. A typical value
v ≥ 14 bits, identified in [20], is confirmed by the numerical
example reported in Section 6.2.

Anyway, the value of v can be reduced by using a smarter
quantization law. To this purpose, the key point is the need to
distinguish between the dynamics of the diagonal elements of
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Table 4: Example of average bit rates in the presence of alien crosstalk, in comparison with the nonvectored system and the vectored system
without alien.

Line length Vectored with Nonvectored with Vectored
Tn

1 Tn
2

(km) alien (Mbps) alien (Mbps) without alien (Mbps)

0.3 86.65 78.14 141.25 38.65% 9.82%

0.6 69.50 65.06 94.19 26.22% 6.38%

0.9 49.60 47.32 58.46 15.16% 4.60%

1.2 34.81 33.38 37.67 7.60% 4.11%

Pk, that are close to 1, and that of the off-diagonal elements,
that are much smaller than 1 (because of the RWDD
property). So, we propose to adapt the midtread quantization
law to such dynamics, by assuming different quantization
thresholds for the two classes of data. In practice, the 2v

quantization levels are distributed between −Th1 and Th1 for
the diagonal elements, and between−Th2 and Th2 for the off-
diagonal elements.

The assumption of Th1 equal to 1 seems a natural choice.
On the contrary, the choice of Th2 should take into account
the dynamics of the off-diagonal elements. Figure 6 shows an

example of maximum and average values of |Pi j
k |, with i /= j,

for L = 8 and line lengths d = 0.3 km and d = 1.2 km,
respectively. Looking at the average value, the assumption
of Th2 = 0.05 is a reasonable choice, particularly for the
shortest line lengths that are more frequent in practice. So,
we propose to adopt two uniform quantization laws, but
with different clipping, namely: [−1, +1] for the diagonal
elements and [−0.05, +0.05] for the off-diagonal elements.

The proposed technique is indeed able to reduce the
number of quantization bits, as shown in the next section. It
should be noted that the implementation of this quantization
scheme does not require any additional processing, but only
a selective management of the elements of the precoding
matrix.

6.2. Numerical Results: Performance in the Presence of Quan-
tization Errors. Let us consider a scenario with L = 8 lines
having the same length. We simulate four different values
of the line length, namely, d = 0.3 km, d = 0.6 km, d =
0.9 km, d = 1.2 km. Tables 5 and 6 show the values of
〈Ln〉/〈Cn〉 · 100 as obtained by the model in [20] and by
the midtread quantization law. The difference between the
two groups of results is evident for small v, while it becomes
smaller and smaller for larger v. Both Tables 5 and 6 confirm
that, wishing to have a rate loss below 2% for line length
≥ 0.3 km, v ≥ 14 bits is required. Though this value could be
implemented on the basis of the current technology, it seems
exaggeratedly high.

Let us investigate if the “double-threshold” quantization
rule, proposed in the previous subsection, allows to reduce
the number of quantization bits. So, for the same scenario
above, let us assume a midtread quantization law with
Th1 = 1 and Th2 = 0.05. The corresponding normalized
losses are shown in Table 7, as functions of the number of
quantization bits. In comparison with Tables 5 and 6, there
is an improvement for any value of v. In particular, the target

Table 5: 〈Ln〉/〈Cn〉 · 100 with uniform generation of the quantiza-
tion errors.

Line length v = 6 v = 8 v = 10 v = 12 v = 14

(km)

0.3 80.87 53.37 28.06 9.86 1.91

0.6 60.91 34.14 14.90 4.25 0.60

0.9 56.38 30.00 12.20 3.23 0.39

1.2 57.59 29.26 11.44 2.90 0.37

Table 6: 〈Ln〉/〈Cn〉 · 100 with midtread quantization law.

Line length v = 6 v = 8 v = 10 v = 12 v = 14

(km)

0.3 54.32 43.98 25.86 9.59 1.91

0.6 31.88 24.19 12.82 4.08 0.63

0.9 22.61 18.10 9.71 2.99 0.40

1.2 18.28 15.19 8.51 2.65 0.38

Table 7: 〈Ln〉/〈Cn〉 · 100 with midtread quantization law adopting
different thresholds.

Line length v = 6 v = 8 v = 10 v = 12 v = 14

(km)

0.3 24.01 8.69 1.97 0.80 0.68

0.6 11.56 3.44 0.68 0.27 0.25

0.9 8.63 2.39 0.29 0.05 0.04

1.2 7.53 2.07 0.28 0.03 0.02

of capacity loss below 2% for d ≥ 0.3 km can be achieved by
using only v = 10 bits, with a significant saving with respect
to the case with equal thresholds.

7. Conclusions

With the development of accurate mathematical models of
the FEXT in VDSL systems, it becomes feasible to find
simple analytical formulas that describe the impact of some
key practical impairment parameters on the achievable
bit rate and the other performance figures. In this paper,
we have first focused on the impact of FEXT coefficient
estimation errors, by deriving formulas holding for absolute
errors induced by the estimating algorithms and relative
errors due to channel changes. The analysis also provides a
simple evaluation of the maximum length where estimation
errors reduce the coordinate system performance to that
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Figure 6: Simulated dynamics for the modulus of the off-diagonal elements of the precoding matrix: (a) d = 0.3 km, (b) d = 1.2 km.

of the noncoordinate one. Then, out-of-domain crosstalk
sources have been considered: numerical results obtained
from the presented formulas show that their impact can
be very relevant and may represent a strong drawback for
coordinate systems. Finally, the effect of quantization errors
in the precoding matrix representation has been analyzed, by
showing the advantage of a midtread quantization law using
different thresholds. Among the most relevant conclusions of
our study, we mention the limited dispersion of the bit rates
around the estimated mean value, which makes the latter
a reliable measure of the system performance. The simple
analytical treatment presented in this paper provides useful
preliminary information that can guide the system design
and point out its potentialities, before resorting to practical
measurements in the field.

Appendices

A. Proof of the Approximation diag(Ek ·Ĥ
−1

k ) ≈ 0

Let us consider the following singular value decomposition
(SVD) for the estimated channel matrix Ĥk

Ĥk = Uk ·Λk ·V∗T
k , (A.1)

where T and ∗ denote the transpose and conjugate oper-
ations, respectively. In (A.1), Uk and Vk are orthogonal
matrices containing the left-singular and right-singular
vectors, while Λk is a diagonal matrix containing the singular
values λik, i = 1 . . . L.

Similarly to the actual channel matrix Hk, the estimated
channel matrix Ĥk is RWDD; this permits to approximate
(A.1) as follows:

Ĥk ≈ Λk ·V∗T
k , (A.2)

that also implies

Ĥ∗T
k ≈ Vk ·Λ∗Tk = Vk ·Λk. (A.3)

Combining (A.2) and (A.3), we have

Ĥk · Ĥ∗T
k ≈ Λk ·V∗T

k ·Vk ·Λk = Λ2
k. (A.4)

Equation (A.4) implies

(
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where the assumption of null error for the channel matrix
diagonal elements has also been taken into account. More-
over, we have
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having used the RWDD character of the channel matrix.
Finally, multiplying (A.6) by (16), we obtain

Ek · Ĥ−1
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, (A.7)

which demonstrates that, in the order of approximation used
in this paper, diag(Ek · Ĥ−1

k ) ≈ 0.

B. Power of the Absolute Error in
Case of Vector Approach for the
in-Domain Crosstalk Estimation

Following [4], let us suppose that all the elements of the ith
row hi

k = [Hi1
k ,Hi2

k , . . . ,HiL
k ] of the channel matrix, when L

lines are active, are simultaneously estimated by using an LS
method. Let us define

Xk(s) =
[
X1
k (s),X2

k (s), . . . ,XL
k (s)

]T
,

Yi
k(s) =

L∑

j=1

H
ij
k X

j
k(s) + Ni

k(s),

Zi
k(S) =

S∑

s=1

Yi
k(s)[Xk(s)]∗T ,

Rk(S) =
S∑

s=1

Xk(s)[Xk(s)]∗T ,

(B.1)

where S is the number of training symbols used. The mean
square error of the estimation is minimized by assuming

ĥi
k = Zi

k(S)[Rk(S)]−1. (B.2)

It is well known [32] that the accuracy of the estimation is
increased by adopting training sequences on different lines
that are orthogonal across time and with equal power. A
rather common choice is to use training sequences that are
taken by the rows of a Walsh-Hadamard matrix. Let us
suppose, w.l.o.g., that L is a power of 2. When S = xL,
with x an integer ≥ 1, matrix Rk(S) is diagonal, and its
inversion is immediate. In the other cases, the recursive
formula presented in [4] can be adopted.

The error is computed over the whole vector hi
k, resulting

in an L-component row vector as follows:

εik(S) = ĥi
k − hi

k =
S∑

s=1

Ni
k(s)[Xk(s)]∗T[Rk(S)]−1. (B.3)

Through simple calculations, the average value of the square
modulus of εik(S) results in
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, (B.4)
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Figure 7: Normalized trace of [Rk(S)]−1 as a function of S.

where Tr(A) is the trace of matrix A. In the case of S = xL,
assuming that all lines transmit the same power Pk, we have
〈∣
∣
∣εik(S)

∣
∣
∣

2
�

=
〈(

Ĥi1
k −Hi1

k

)2
+ · · · +

(
ĤiL

k −HiL
k

)2
�

= σ2
N

L

S · Pk
.

(B.5)

Sharing uniformly this power between the L components of

vector εik(S), expression (18) is attained (with P
j
k = Pk).

If S /= xL, matrix [Rk(S)]−1 is no longer diagonal and the
value of Tr{[Rk(S)]−1} depends on S. However, the following
properties of [Rk(S)]−1 are general and can be easily checked:
(i) the elements along the main diagonal are equal; (ii)
the elements outside the main diagonal are greater than 1.
Property (ii), in particular, implies that the average square
error is now greater than (B.5). But, as shown in Figure 7,
that reports the normalized trace A = S·Pk ·Tr{[Rk(S)]−1}/L
for L = 8 and 8 ≤ S ≤ 200, the dependence on S is weak:
the normalized trace tends rapidly to 1, and this implies that
(B.5) can be applied, with very good approximation, for any
practical value of S.
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