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We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input
multiple-output (MIMO) detection and low-density parity-check (LDPC) channel decoding. In particular, the channel estimator
is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive
interference cancellation and soft minimum mean-square error (MMSE) equalization, and channel coding uses nonbinary LDPC
codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or
soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation
and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including
sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available
pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of
parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that
soft decision feedback slightly outperforms hard decision feedback.

1. Introduction

Multi-input multi-output (MIMO) techniques have been
recently applied in underwater acoustic (UWA) systems
to drastically improve the spectral efficiency. Experimental
results have been reported in [1–9] for single-carrier systems,
and in [6, 10–15] for multicarrier systems, in the form of
orthogonal frequency division multiplexing (OFDM).

As we consider MIMO-OFDM in UWA channels, we
specify related work: a block-by-block receiver has been
developed in [10], where Maximum A Posteriori (MAP) and
zero forcing (ZF) detectors are used for MIMO detection
following least-squares- (LS-) based channel estimation.
Receivers for both spatial multiplexing and differential space
time coding have been developed in [11]. Adaptive MIMO
detectors have been proposed in [13, 14], where channel
estimates based on the previous data block are used for
demodulation of the current block after being combined
with phase tracking. All the receivers in [10, 11, 13, 14] are
noniterative. In [12], an iterative receiver has been presented

for MIMO-OFDM that iterates between MIMO detection
and channel decoding.

In this paper, we propose an iterative receiver that couples
channel estimation, MIMO detection and channel decoding.
The differences from [12] are the following.

(1) Channel estimation is included in the iteration loop
so that refined channel estimates become available
along the iterations.

(2) The LS channel estimator is replaced by a more
advanced channel estimator recently tested in [16],
that exploits the sparse nature of UWA channels.

When channel estimation is included in the iteration
loop, data symbols estimated in the previous round can
be utilized as additional training symbols to improve
the channel estimation accuracy. We investigate different
feedback strategies, including hard decision feedback, soft
decision feedback, and their variants that discard unreli-
able feedback symbols through a thresholding mechanism.
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We compare the performance using numerical simulation
and experimental data collected from the RACE08 and
SPACE08 experiments. Iterative receiver processing leads
to impressive performance gains relative to a noniterative
receiver.

Note that iterative channel estimation and decoding
has been heavily investigated in the literature of wireless
radio communications. For example, references [17–19]
have considered different hard and soft decision feedback
strategies with pilot symbol assisted modulation (PSAM)
over time-selective flat-fading channels. References [20, 21]
have considered cross-entropy-based hard decision feedback.
Specifically to UWA communications, iterative channel
estimation and channel decoding has been studied and
tested with real data in [22], where only single transmitter
OFDM and hard decision feedback are considered. The main
contributions of this paper are the followings.

(1) Development of an iterative receiver for underwater
MIMO-OFDM, improving upon an existing receiver
[12].

(2) Extensive performance testings based on experimen-
tal data, showing impressive results for underwater
MIMO-OFDM with very high spectral efficiencies.

The rest of this paper is organized as follows. Section 2
introduces the system model. Section 3 presents the details
on the iterative receiver. Simulation results are reported in
Section 4. Experimental results are reported in Sections 5 and
6 with data collected in RACE08 and SPACE08 experiments,
respectively. We conclude in Section 7.

2. SystemModel

2.1. MIMO-OFDM Transmission. We use zero-padded (ZP)
OFDM, as in [12, 23]. Let T denote the OFDM symbol
duration and Tg the guard interval. The duration of the
overall OFDM block isT′ = T+Tg and the subcarrier spacing
is 1/T . The kth subcarrier is at frequency

fk = fc +
k

T
, k = −K

2
, . . . ,

K

2
− 1, (1)

where fc is the carrier frequency and K subcarriers are used
so that the bandwidth is B = K/T .

For an MIMO-OFDM system with Nt transmitters, we
use spatial multiplexing to transmit Nt parallel data streams.
Specifically, within each OFDM block, Nt independent bit
streams are separately encoded with a nonbinary low-density
parity-check (LDPC) code [24]. Let sμ[k] denote the encoded
information symbols, for example, quadratic phase-shift-
keying (QPSK) or quadratic amplitude modulation (QAM),
to be transmitted on the kth subcarrier by the μth transmit-
ter. The nonoverlapping sets of active subcarriers SA and null
subcarriers SN satisfy SA∪SN = {−K/2, . . . ,K/2−1}; the null
subcarriers are used to facilitate Doppler compensation at the

receiver [23]. The signal transmitted by the μth transmitter is
given by

x̃μ(t) = 2 Re

⎧

⎨

⎩

⎡

⎣

∑

k∈SA

sμ[k]e j2π(k/T)tq(t)

⎤

⎦e j2π fct

⎫

⎬

⎭

,

t ∈
[

0,T + Tg

]

,

(2)

where q(t) describes the zero-padding operation, that is,

q(t) =
{

1 t ∈ [0,T],

0 otherwise.
(3)

Accounting for all the overheads due to guard interval,
channel coding, pilot, and null subcarriers, the overall
spectral efficiency in terms of bits per second per Hz
(bits/s/Hz) is

α = Nt
T

T + Tg

|SD|
K

· rc log2 M, (4)

where rc is the code rate, M is the constellation size, and SD ⊂
SA is the set of data subcarriers (excluding pilot tones). With
bandwidth B, the data rate is R = αB bits per second.

2.2. Receiver Preprocessing. The same receiver preprocessing
as in [12] is applied. The received signal can be resampled
to compensate a dominant Doppler effect if necessary. After
resampling each receiver assumes one common Doppler shift
on all transmitted data streams, and uses the energy on the
null subcarriers as an objective function to search for the best
Doppler shift estimate [12]. Doppler shift compensation is
done at each receiver separately.

Let zν[k] denote the output on the kth subchannel at
the νth receiver, after the ZP-OFDM demodulation on the
received block after Doppler compensation. As in [12], we
use the following channel input-output model:

zν[k] =
Nt
∑

μ=1

˜Hν,μ[k]sμ[k] + nν[k], (5)

where ˜Hν,μ[k] is the frequency response between the μth
transmitter and the νth receiver at the kth subcarrier, and
nν[k] is the additive noise at the demodulator output, which
includes both the ambient noise and the residual intercarrier
interference (ICI).

3. Iterative Sparse Channel Estimation
and Decoding

The proposed iterative receiver processing with Nt trans-
mitters and Nr receivers is shown in Figure 1, where the
line represents feedback from the LDPC decoder. We next
specify the key modules in the iteration loop: sparse channel
estimation, MIMO detection, and channel decoding.

3.1. Sparse Channel Estimation. For each transmitter-
receiver pair, we assume a baseband channel with Np distinct
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Figure 1: Iterative channel estimation and decoding for MIMO-OFDM.

paths, with each path characterized by a complex amplitude
ζp and a delay τp, (c.f. [16]):

h(t) =
Np
∑

p=1

ζpδ
(

t − τp
)

, (6)

such that

˜H[k] =
Np
∑

p=1

ζpe
− j2πk(τp/T), (7)

where we omit the transmitter and receiver index for
compact notation.

Define ˜h and w(τp) as column vectors containing ˜H[k]
and e− j2πk(τp/T) across subcarriers, respectively. We have

˜h =
Np
∑

p=1

ζpw
(

τp
)

. (8)

3.1.1. Overcomplete Delay Dictionary. To formulate the com-
pressed sensing problem, we need to use a large, but finite,
dictionary. We discretize τp based on the assumption that
after synchronization all arriving paths fall into the guard
interval, and we choose the time resolution as a fraction,
1/β, of the baseband sampling stepsize T/K , where β is the
oversampling factor. In other words, we consider

τp ∈
{

0,
T

βK
,

2T
βK

, . . . ,
(Nτ − 1)T

βK

}

, (9)

where NτT/βK is less than Tg but larger than the channel
delay spread. With this we construct a matrix as

W =
[

w(0) w

(

T

βK

)

· · · w

(

(Nτ − 1)T
βK

)]

, (10)

and rewrite (8) as

˜h =Wζ , (11)

where ζ contains the Nτ possible delays corresponding to the
dictionary columns. Since commonly Np � Nτ , ζ is sparse,
that is, it has a limited number of nonzero entries.

Now, we include the transmitter and receiver subscripts,
and define zν, sμ, and nν as column vectors whose kth
elements are the zν[k], sμ[k], and nν[k], respectively. The
vector sμ contains known symbols (pilots and symbol
estimates from the LDPC decoder). We then have

zν =
Nt
∑

μ=1

[

DsμW
]

ζν,μ + nν, (12)

where Dsμ is a diagonal matrix with the elements of vector sμ
on its main diagonal, and ζν,μ contains the Nτ possible delays
corresponding to the dictionary columns for the channel
from the μth transmitter to the νth receiver.

For a more compact notation, define

Ψ =
[

Ds1W, Ds2W, · · · , DsNtW
]

,

ζν =
[

ζTν,1, ζTν,2, · · · , ζTν,Nt

]T
,

(13)

where (·)T stands for transpose. We then rewrite (12) as

zν = Ψζν + nν, (14)

which depends on the pilots and known symbol estimates
sμ[k] via the matrix Ψ.

3.1.2. Basis Pursuit Formulation. Sparse channel estimation
can be formulated as a convex optimization problem using
what is commonly referred to as l1-regularization. This
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approach is called Basis Pursuit (BP), see for example, [25,
26]. Specifically, BP seeks the solution of

min
ζ ν

∥

∥zν −Ψζν

∥

∥
2 + λ

∥

∥ζν

∥

∥

1, (15)

where the parameter λ controls the sparsity of the solution
ζν. Note that for a complex vector ζ , its l1-norm is defined as

‖ζ‖1 =
NtNτ
∑

n=1

√

Re (ζn)2 + Im (ζn)2. (16)

An efficient implementation for the complex valued version
of BP has been suggested in [26, Section VI.D]. Adopt-
ing BP-based sparse channel estimation in multicarrier
underwater acoustic communications has been presented in
[16], where impressive performance gains over a LS-based
channel estimator have been reported. The complexity of BP-
based sparse channel estimation, specifically for underwater
OFDM systems, is studied in [27].

3.2. MIMO Detection. After estimating the path weights and
delays, the frequency response at the data subcarriers can be
calculated using (7). At each subcarrier, we stack the received
data from Nr receiving-elements [c.f. (5)] as

z[k] =
[

z1[k] · · · zNr [k]
]T

. (17)

Let ˜H[k] denote the Nr × Nt channel matrix whose
(ν,μ)-element is ˜Hν,μ[k], and let s[k] contain Nt transmitted
symbols on the kth subcarrier. The matrix-vector channel
model for each subcarrier is

z[k] = ˜H[k]s[k] + n[k], (18)

where n[k] is the additive noise. We assume that the noise on
different receivers is uncorrelated and Gaussian distributed.

To demodulate s[k] from (18), we use the MIMO
detector of [12] which consists of a hybrid use of successive
interference cancellation and soft minimum mean-square
error (MMSE) demodulation; see [12] for details.

3.3. Nonbinary LDPC Decoding. With the outputs from the
MMSE equalizer, nonbinary LDPC decoding as in [24] is
performed separately for each data stream. The decoder
outputs the decoded information symbols and the updated
a posterior/extrinsic probabilities, which are used in the next
iteration of channel estimation and equalization. During
the decoding process, if all the parity check conditions of
one data stream are satisfied, the decoder declares successful
recovery of this data stream. In this case we assume that all
symbols of this data stream are known without uncertainty.

To use feedback in channel estimation or MIMO
detection, we need estimates of the unknown data and a
measure of the uncertainty left in these estimates. Based
on the previous round of decoding, the LDPC decoder
outputs a posterior probabilities for each symbol, as well as
probabilities based on extrinsic information only. While the
extrinsic information is used in the MIMO symbol detection
[12], the a posterior probabilities are used to improve channel
estimation. Next we investigate different feedback strategies
for channel estimation.

3.4. Feedback Strategies. We consider two categories of
feedback strategies, namely, hard decision feedback and
soft decision feedback. In each category we investigate
full feedback and threshold-controlled feedback where the
former uses all symbols for feedback and the latter uses only
reliable symbols for feedback.

Let Papp(sμ[k] = αm), m = 1, . . . ,M denote the a posterior
probability where αm are the constellation symbols. There
are three main feedback strategies in the literature [17–19],
varying by the definition of s̃μ[k]—the estimate of sμ[k] for
channel estimation.

Full Hard Decision Feedback

s̃(h)
μ [k] = αm∗ , m∗ = arg max

m
Papp

(

sμ[k] = αm
)

. (19)

Controlled Hard Decision Feedback

s̃(th)
μ [k] =

⎧

⎨

⎩

s̃(h)
μ [k], H

(

sμ[k]
)

< (1− Γh)log2M,

0, otherwise,
(20)

where H(sμ[k]) stands for the entropy calculated from
Papp(sμ[k] = αm) which is the counterpart of the log-
likelihood-ratio (LLR) of binary codes and Γh is the threshold
which lies in [0, 1]. In other words, only when the symbol
estimate is considered reliable enough, a hard decision is
made for feedback.

Full Soft Decision Feedback. One has

s̃(s)
μ [k] =

M
∑

m=1

Papp

(

sμ[k] = αm
)

αm. (21)

In this paper, we further consider a new feedback strategy
by applying a threshold on the soft information, where only
symbols with the absolute value of their soft estimates larger
than a threshold are used.

Controlled Soft Decision Feedback

s̃(ts)
μ [k] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s̃(s)
μ [k],

Nt
∑

μ=1

∣

∣

∣s̃(s)
μ [k]

∣

∣

∣ > NtΓs|α|max,

0, otherwise,

(22)

where |α|max is the maximum absolute value of all constella-
tion symbols and Γs is the threshold which lies in [0, 1]. Here
the threshold is applied to the symbols from Nt transmitters
jointly. We have also investigated the strategy when a
threshold is applied on the symbols from each transmitter
individually. The individually controlled feedback strategy
has comparable (or worse) performance than the jointly
controlled version.
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Figure 2: BLER peformance (a) and number of feedback symbols (b) for hard and soft feedback with varying threshold Γh or Γs; SNR of
2.75 dB.

4. Simulation Results

Consider an OFDM system with the following specifications:
carrier frequency fc = 13 kHz, K = 1024 subcarriers, symbol
duration T = 104.86 ms, and guard time Tg = 24.6 ms. The
bandwidth is then B = 9.7656 kHz. It has |SP| = K/4 =
256 pilot tones and |SN | = 96 null subcarriers for edge
protection and Doppler estimation, leaving |SD| = 672 data
subcarriers. The data within each OFDM symbol is encoded
using a rate 1/2 nonbinary LDPC code from [24], and
modulated using either QPSK or 16-QAM. These parameters
are used in the signal design for the SPACE08 experiment
[16, 28].

We consider MIMO systems with Nt = 2 or Nt = 3
transmitters. With Nt = 2, the data rates are 10.4 kb/s and
20.8 kb/s for QPSK and 16-QAM modulations, respectively.
With Nt = 3, the data rates are 15.6 kb/s and 31.2 kb/s
for QPSK and 16-QAM modulations, respectively. The
256 pilots are divided into nonoverlapping sets among all
transmitters so that each transmitter has roughly the same
number of pilots. The pilot patterns are randomly drawn,
rendering irregular positioning [12]. This is usually seen
as advantageous in compressed sensing theory, as it can
guarantee identifiability of active channel taps with high
probability [25].

For the simulation scenario we generate Np = 15 discrete
fading paths, where the interarrival times are exponentially
distributed with a mean of 1 ms. The amplitude of each
path is Rayleigh distributed, with decreasing variance as
the delay increases. As each OFDM symbol is encoded
separately, we use block-error-rate (BLER) as the figure of

merit. In the simulation, each OFDM symbol experiences
an independently generated channel. The pilot symbols
are drawn from the QPSK constellation whereas the data
symbols are drawn from QPSK or 16-QAM constellations.
The pilots are scaled to ensure that about one third of the
total transmission power is dedicated to channel estimation
regardless of the number of transmitters. We simulate the
BLER performance at different SNR levels, where SNR is the
signal to noise power ratio on the data subcarriers.

In Figure 2 we compare hard decision and soft decision
feedback strategies with operating SNR fixed as 2.75 dB for
Nt = 2, Nr = 4, and 16-QAM modulation. Note that
Γh = 0 corresponds to full hard decision feedback and
Γs = 0 corresponds to full soft decision feedback. As Γh (or
Γs) increases from 0 to 1, the number of feedback symbols
drops all the way from the maximum down to zero. We
observe from Figure 2 that a decent number of feedback
symbols is necessary to achieve good performance, which
means that we need to choose a small value of Γh or Γs
(less than 0.4 in Figure 2). In general, controlled soft decision
feedback performs better than hard decision feedback when
the threshold Γh or Γs is small. We also observe that both soft
and hard decision feedback strategies are not sensitive to the
threshold when it is below a certain value (e.g., 0.4 in the
setting of Figure 2).

In Figures 3, 4, 5, and 6 we compare different receivers
for two MIMO-OFDM systems where Nt = 2 and Nr = 4
in Figures 3 and 4, Nt = 3 and Nr = 6 in Figures 5 and 6.
The maximum number of iterations for performing iterative
updating between sparse channel estimation, MIMO detec-
tion and nonbinary LDPC decoding is 10, where we update
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Figure 3: Simulation results, Nt = 2, Nr = 4, QPSK.

10−3

10−2

10−1

100

B
L

E
R

1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

Full CSI
Non-iterative
Turbo-equalization
Hard feedback, Γh = 0

Soft feedback, Γs = 0
Soft feedback, Γs = 0.2
Soft feedback, Γs = 0.4

Figure 4: Simulation results, Nt = 2, Nr = 4, 16-QAM.

both the channel estimation and the MIMO detection in each
iteration.

The receivers considered are as follows.

(i) “Non-iterative” receiver as in [10], but with the LS
channel estimator replaced by the BP estimator.

(ii) “Turbo-equalization” receiver as in [12], but with the
LS channel estimator replaced by the BP estimator.
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Figure 5: Simulation results, Nt = 3, Nr = 6, QPSK.
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Figure 6: Simulation results, Nt = 3, Nr = 6, 16-QAM.

(iii) The proposed iterative receiver with “controlled soft
decision feedback” with different thresholds.

(iv) The proposed iterative receiver with “full hard deci-
sion feedback” (in all subsequent figures, “Non-
iterative,” “Turbo-equalization,” “Soft feedback,” and
“Hard feedback” are used as legends for different
receivers).
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Figure 7: Experimental results from the RACE08 experiment on MIMO-OFDM with Nt = 2 and 16-QAM.
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Figure 8: Experimental results from the RACE08 experiment on MIMO-OFDM with Nt = 3 and 16-QAM.

Also we include a case with full channel state information
(CSI) which still iterates between MIMO detection and
LDPC decoding, but has a perfect channel estimate.

Figures 3–6 show that employing a turbo equalization
receiver gains about 0.5–1 dB over a noniterative receiver,
Including channel estimation in the iteration loop leads to
gains of about 1 dB for Nt = 2 and 1.5 dB for Nt = 3. This
seems intuitive, as with an increasing number of transmitters
there are less pilots available per data stream, making the
“additional pilots” from feedback more valuable. The gap
between the proposed receivers and the full CSI case is
approximately between 0.5 dB and 1 dB.

In Figure 4 the iterative receiver with full hard decision
feedback performs slightly worse than the iterative receivers
with soft decision feedback. This gap gets more pronounced

when the number of transmitters increases as shown in
Figures 5 and 6.

5. Experimental Results: RACE08

The RACE08 experiment was held in the Narragansett Bay,
Rhode Island, in March 2008. The water depth in the
area is between 9 and 14 meters. The system parameters
are the same as in the numerical simulation, except for a
different bandwidth of B = 4.88 kHz. The corresponding
symbol duration and subcarrier spacing are T = K/B =
209.7 ms and 1/T = 4.8 Hz, respectively. More detailed
description of the RACE08 experiment can be found in
[12, 29].
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Table 1: Performance results with high data rates from RACE08; twelve receivers used.

Spectral efficiency Data streams Average BER Average BLER

3IMO, 64-QAM 5.28 bits/s/Hz

Stream 1 2.8× 10−1 9.9× 10−1

Stream 2 6.0× 10−2 1.8× 10−1

Stream 3 9.1× 10−2 2.7× 10−1

4IMO, 16-QAM 4.69 bits/s/Hz

Stream 1 9.4× 10−2 4.5× 10−1

Stream 2 2.8× 10−2 9.0× 10−2

Stream 3 2.7× 10−2 8.3× 10−2

Stream 4 1.6× 10−2 5.6× 10−2
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Figure 9: Experimental results from the SPACE08 experiment with Nt = 2, QPSK, for S3 (200 m) and S5 (1000 m).

During the experiment, each transmission file was trans-
mitted twice every four hours, leading to 12 transmissions
each day. A total of 124 data sets were successfully recorded
on each array within 13 days from the Julian date 073 to the
Julian date 085. We focus on three days of the experiment,
Julian dates 81–83, and receiver S3, which was located 400 m
away from the transmitter. We consider 16-QAM and two
MIMO setups: one with two transmitters and one with three
transmitters. These setups have also been studied in [12] with
the turbo-equalization receiver.

The performance results with two transmitters are
plotted in Figure 7 and the performance results with three
transmitters are plotted in Figure 8. We combine an increas-
ing number of hydrophones to vary effective SNR and
to illustrate performance differences. The spacing between
consecutive hydrophones is 12 cm. The maximum number of
iterations for performing iterative updating between sparse
channel estimation, MIMO detection, and nonbinary LDPC
decoding is 6. We report the results with the proposed
iterative processing with full hard decision feedback and soft
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Figure 10: Experimental results from the SPACE08 experiment with Nt = 3, QPSK, for S3 (200 m) and S5 (1000 m).

decision feedback with Γs = 0 or Γs = 0.4. Generally an
iterative receiver can gain significantly over a noniterative
receiver. Besides, all feedback strategies, including full hard
decision and soft decision feedback have similar perfor-
mance on this data set, showing a sizable gain over turbo-
equalization.

In Table I, we also include results for two setups not
available in [12]: (i) Nt = 3, 64-QAM and (ii) Nt = 4, 16-
QAM, having spectral efficiencies of 5.28 and 4.69 bits/s/Hz,
respectively. The results are based on Julian date 83 only, and
Nr = 12 receive-elements are used. Although data stream one
performs poorly due to a transducer issue (see discussion in
[12]), the other data streams can be decoded at reasonable
levels.

Remark 1. This paper does not include performance results
with the LS channel estimator. It has been shown in [16]
that the BP-based channel estimator outperforms the LS
counterpart considerably. Also, comparing with the turbo
equalizer based on the LS channel estimator [12], the turbo
equalizer based on the BP channel estimator has considerably
better performance. Specifically, in Table III of [12], the

turbo-equalization receiver achieves BLER of 1 × 10−2 using
twelve phones, for MIMO-OFDM with two transmitters
and 16-QAM. Figure 7 in this paper shows that zero BLER
is achieved using even less than twelve phones for turbo
equalization using the BP channel estimator. Finally, we note
that the MIMO-OFDM settings in Table 1 cannot be decoded
by the turbo-equalization receiver if coupled with the LS
channel estimator as in [12].

6. Experimental Results: SPACE08

The SPACE08 experiment was held off the coast of Martha’s
Vineyard, MA, from Oct. 14 to Nov. 1, 2008. The water
depth is about 15 meters. The spacing between consecutive
hydrophones is 12 cm. The detailed description of the
SPACE08 experiment can be found in [28, 29].

We focus on receivers S3 and S5 that were located 200
m and We consider recorded data from three consecutive
days, Julian date 297 to Julian date 299. For each day,
there are twelve recorded files consisting of twenty OFDM
symbols each. On the Julian date 298, the five files recorded
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during the afternoon were severely distorted and therefore
unusable; we focus on the remaining seven files recorded
during the morning and evening. Due to the more chal-
lenging environment, we only consider the small-size QPSK
constellation. The transmission signal model for SPACE08
has the same setup as the simulation setup in Section 4. The
data rates for the MIMO system using QPSK modulation
are 10.4 kb/s and 15.6 kb/s, when Nt = 2 and Nt = 3,
respectively.

Performance results are plotted in Figure 9 for Nt = 2
and in Figure 10 for Nt = 3. The maximum number of
iterations for performing iterative updating between sparse
channel estimation, MIMO detection, and nonbinary LDPC
decoding is 6 and we use full soft decision and hard decision
feedback. For Nt = 2, we observe a sizable gain using
updated channel estimates, while all iterative receivers gain
significantly over the noniterative receiver. For the Nt =
3 setup, the gain of updated channel estimates is more
pronounced, matching previous observations in numerical
simulation.

Remark 2. For the simulation results in Section 4, we plot
the BLER performance as a function of SNR. For the
experimental results in Sections 5 and 6, we plot the BLER
performance as a function of the number of phones used at
the receiver. One common practice to show the performance
dependance on SNR based on experimental data is to add
recorded ambient noise to the received signals. In this paper,
we have not pursued such an approach, which could be
explored in the near future.

7. Conclusion

In this paper, we have developed an iterative receiver
for underwater MIMO-OFDM that couples sparse channel
estimation, MIMO detection, and channel decoding. Various
types of feedback information have been considered to
improve the sparse channel estimator using the Basis Pursuit
algorithm. We tested the proposed receiver extensively using
numerical simulation and experimental data for MIMO-
OFDM with very large spectral efficiencies. We find that
including channel estimation in the iterative loop leads
to significant gains in performance. These gains are more
pronounced if less pilots are available for channel estimation,
for example, when a fixed number of pilots is split between
parallel data streams. For the various feedback strategies for
iterative channel estimation, we observe that soft decision
feedback slightly outperforms hard decision feedback in
most cases.
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