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Activated reconnaissance systems based on target illumination are of high importance for surveillance tasks where targets are
nonemitting. Multistatic configurations, where multiple illuminators andmultiple receivers are located separately, are of particular
interest. The fusion of measurements is a prerequisite for extracting and maintaining target tracks. The inherent ambiguity of the
data makes the use of adequate algorithms, such as multiple hypothesis tracking, inevitable. For their design, the understanding
of the residual clutter, the sensor resolution and the characteristic impact of the propagation medium is important. This leads
to precise sensor models, which are able to determine the performance of the surveillance team. Incorporating these models
in multihypothesis tracking leads to a situationally aware data fusion and tracking algorithm. Various implementations of this
algorithm are evaluated with the help of simulated and measured data sets. Incorporating model knowledge leads to increased
performance, but only if the model is in line with the physical reality: we need to find a compromise between refined and robust
tracking models. Furthermore, to implement the model, which is inherently nonlinear for multistatic sonar, approximations
have to be made. When engineering the multistatic tracking system, sensitivity studies help to tune model assumptions and
approximations.

1. Introduction

Submarines operate covertly, hidden under the surface of
the sea. Maneuvering silently is their greatest threat. To
detect a submarine, active sound is transmitted, which
is then reflected by the submarine and recorded by a
sensor. This is called active sonar. In active sonar, different
types of signals are used: in particular, in this paper, we
study frequency-modulated sweeps (FM), which provide a
good-range resolution, and continuous wave signals (CW),
which provide Doppler information. However, submarine
designers build submarine hulls in shapes that give them
stealth even for active sonar: in cases when just a single
source and a single receiver are used, the submarine can
minimize by clever navigation the presented target strength
to disappear in the background. The background consists of
noise and, which is even worse from a tracking point of view,
of aspect-dependent reverberation. As a result, false alarms
with geometry-dependent statistics occur. Consequently, an
antistealth setup consists of multiple sources and receivers.

This makes it almost impossible for the submarine to hide its
strong echo returns. This concept is called multistatic active
sonar. Covert receivers exploit the operational benefit that
the submarine cannot determine whether it is detected or
not. Exploiting the full multistatic setup will therefore result
in additional detection probabilities.

The aim of target tracking is to determine the condi-
tional probability of the target state given the measurement
history of all data generated by the available multistatic
source receiver pairs and, therein, from the available “signal
channels” (FM or CW). A theoretically optimal approach for
this tracking and fusion exists in the Bayesian framework
[1]. For practical considerations, and to result in a real-time-
capable algorithm, we applied specific techniques (adopted
from ground moving target indication [2]) and evaluated
their performance with the help of data sets from real
measurements at sea and with simulated data sets.

By sequentially combining (via target tracking) all data,
the multistatic setup provides the estimation of target loca-
tion. However, to fuse data from different source and receiver
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(S/R) pairs, a correct association between the receivers’
data and all sound-reflecting objects is necessary. In the
noisy and reverberant ocean environment, finding the true
data associations is impeded by false alarms and missed
detections. Even harder, the ocean only provides a fading
channel for sound transmissions. Furthermore, the accuracy
of measured contact and environmental data is limited by
the given variability of the underwater sound channel and by
budget or feasibility constraints on the quality and number
of measurements.

Sonar performance modelling is able to describe the
stochastic effects in the multistatic measurement. Together
with a precise modelling of geometrical and kinematical
features [3], a sensor model is constructed that becomes part
of a sequential tracking algorithm, in this paper, it is the
multihypothesis tracking (MHT) algorithm. Only the correct
modelling allows a successful multisensor data fusion and by
this the full exploitation of the multistatic sonar setup.

The MHT algorithm has a Kalman filter kernel. Because
the sensor model is nonlinear, approximations are necessary
and can be implemented in four different ways: linear
transformation of each measurement in Cartesian coordi-
nates with tracking in the Cartesian system (Cartesian L),
unscented transformation (UT) [4] of each measurement in
Cartesian coordinates with tracking in the Cartesian system
(Cartesian UT), extended Kalman filtering (EKF) [5], and
unscented Kalman filtering (UKF) [4].

The novel contribution of the paper is a precise and “situ-
ationally aware” fusion strategy for multistatic measurements
inside the MHT framework.

Key prerequisites to achieve this are

(i) a precise modelling of the deterministic features in
a multistatic measurement and incorporation of this
measurement modelling in the framework of the
Unscented Kalman Filter (Section 3) and

(ii) an optimal data fusion which can be found by weight-
ing the fusion input by its quality. Quality is evaluated
by solving the sonar equation for each source-receiver
geometry, each ping, and each hypothetic target. The
performance of the adaptive scheme is compared
to static fusion schemes. Details are provided in
Section 7.

Furthermore, we are applying

(i) for bistatic measurements an extension to the lin-
earization methods in [6] a strategy to incorpo-
rate probabilistic features based on the Unscented
Transformation. Additionally strategies based on the
idea of UKF and EKF are developed in Section 6.
The performance of the resulting four tracking
architectures (Cartesian L, Cartesian UT, EKF, and
UKF) is evaluated with the help of Monte Carlo
simulations in Section 8.2

(ii) an algorithm for ground moving target indication to
fuse contacts with additional Doppler information
(Section 7.4).

The remainder of this paper is organized as follows. In
Section 2, we describe the multistatic sonar system. In

Sections 3 and 4, we model deterministic and probabilistic
features of the multistatic sonar measurements. We specify
the structure of a sequential tracking algorithm in Section 5,
in particular themultihypothesis tracking algorithm (MHT),
and adapt it for its application to multistatic sonar data in
Section 6. In Section 7, we address the problem of finding an
adequate fusion architecture. Results with experimental and
simulated data are provided in Section 8. We summarize our
findings in Section 9.

2. Multistatic Sonar

Multistatic active sonar involves multiple entities transmit-
ting signals and receiving echoes. Receivers can be kept covert
if they are spatially separated from the transmitter. Of interest
for this paper is a system setup that consists of fixed arrays
(Figure 1). This is used to create a barrier against submarine
entry. Themajor advantage ofmultistatic sonar system is that
there are more “ears” in the water to improve the detection,
localization and identification of undersea objects, which
results in a reduced false alarm rate.

Today’s submarines are designed to be stealthy. By clever
navigation, they can avoid detection from a monostatic
active sonar. But amultistatic system has additional detection
opportunities in comparison to a monostatic system. To
exploit this benefit, the data gathered at different transmitter-
receiver pairs must be associated. In other words, data fusion
has to find the best combination out of all possible detections
from all source-receiver pairs in a series of measurements.
Sonar performance prediction modelling shows that only
rarely two distributed sensors have a similar quality on
a specific ping of the target track. Therefore, data fusion
algorithms must be based on realistic modelling of sensor
performance for each sensor, each ping, and each target.
Data are weighted so that data, which are considered more
accurate or valid, are given more weight in the algorithms.
This is implementing a “situationally aware” tracking, which
has an improved performance compared to architectures of
tracking algorithms with fixed sensor performance setting.

In practice, the software system for multistatic active
sonar involves three steps.

(1) The collation of contact files from the networked
receiving buoys: there is a contact file for each ping
(i.e., transmission of an acoustic signal and each
receiver). Each contact file contains for each detected
echo the measurement vector (depending on the
associated CW/FM channel)

zCW = (ϕ, τ, ṙ)T , zFM = (ϕ, τ)T , (1)

where τ is the time of arrival, which is the bistatic
range r divided by the speed of sound, ṙ is the bistatic
range-rate, which is proportional to the Doppler, and
ϕ is the azimuth measurement. For each contact the
associated SNR-value is also stored.
Please note that we assume a constant speed of sound
over range r. The formula can be extended to other
functional relationships in case that this relationship
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Figure 1: Illustration of a stationary multistatic sonar system (a). A prototype of a stationary receiving system is shown in (b). As an acoustic
source, the stationary system shown in (c) has been used. The system with three receivers and the source is called DEMUS. See [7, 8] for
further information.

is a priori known and that there is evidence that this
will improve the localization accuracy.

(2) The use of data fusion and tracking algorithms to
combine the information in the contact files. This is
the topic of this paper.

(3) The output of the algorithm into a human computer
interface that can facilitate interpretation of the data.
The output consists of a set of tracks that is updated
in real-time as a new contact file is received. Each
track must include the position, speed, and course
of the target. This information is stored in the state
vector x.

3. Modelling Deterministic Features of
Multistatic Sonar

Let q = (x, y)T be the target position and s = (sx, sy)
T and

o = (ox, oy)
T the position of the source, and the receiver,

respectively. The receiver orientation (heading) is given by ϑ,
c.f. Figure 2. Then, the measurements can be expressed as

ϕ = arctan

(
x − ox
y − oy

)

− ϑ,

τ =
(∣∣q− s

∣
∣ +

∣
∣q− o

∣
∣)

cS
,

ṙ = ∂τ

∂t
cS,

(2)

where | · · · | denotes the Euclidian norm and cS is the
propagation speed of sound in water.

3.1. Timing. Assuming the target velocity to be constant
between two consecutive pings, the standard bistatic range
measurement equation (2) (where r = τ · cS) is replaced by

r = ∣∣q + t0q̇− s
∣
∣ +

∣
∣q + t0q̇− o

∣
∣, (3)

where t0 is the travelling time of the sound from the source to
the target. Let cS denote the propagation speed of the signal,
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Figure 2: Bistatic setup; sound from source at s is reflected by the
target at q and received at o. ϑ is the heading of the receiver relative
to North.

then we need to solve
√
(x + t0ẋ − sx)

2 + (y − t0 ẏ − sy)
2 =

t0cS. Calculations yield

t0 =
(
q− s

)T q̇
(
c2S − v2T

) +

√
√
√√
√

((
q− s

)T q̇
)2

(
c2S − v2T

)2 +

∣
∣q− s

∣
∣2

c2S − v2T
, (4)

with vT = |q̇|.

3.2. Range-Doppler Ambiguity. Relative movement between
source, target, and receiver leads to frequency shifts Δ f in
the received target echo. For FM signals, the matched filter
converts these frequency shifts into shifts of detection time.
Assuming perfect knowledge of the relative movement, these
shifts can be corrected. The frequency characteristics fmin +
t( fmax − fmin)/ΔS = fmin + Δ f delivers the time shift t =
Δ f ΔS/( fmax − fmin), where ΔS is the duration of the signal.
The modified measurement equation for range is therefore
given by

r = ∣∣q− s
∣
∣ +

∣
∣q− r

∣
∣ +

ṙ

2
fmax + fmin

fmax − fmin
ΔS, (5)

where the bistatic range-rate ṙ is given by

ṙ =
(
q− s

)T(q̇− ṡ
)

∣
∣q− s

∣
∣ +

(
q− o

)T(q̇− ȯ
)

∣
∣q− o

∣
∣ . (6)

Thus, the measurement equation is corrected by the esti-
mated Doppler value (calculated from the estimated target
position and velocity).

Remarks. The speed of sound waves is slow compared to
electromagnetic waves. Therefore, a precise modelling of
geometric features andDoppler effects is important.Without
this precise modelling geometry-dependent errors estimat-
ing, the target state hampers the correct contact association
and finally the optimal exploitation of the multistatic data
fusion.

Of course, correction for both features (timing and
range-Doppler ambiguity) can be done simultaneously. The
combined range equation is

r = ∣∣q + t0q̇− s
∣
∣ +

∣
∣q + t0q̇− o

∣
∣ +

ṙ

2
fmax + fmin

fmax − fmin
ΔS, (7)

For further reference in this paper, an algorithm implement-
ing equation (4) is called “TiCor”, (5) is “DoCor”, and (6)

Table 1: Probabilistic features in the underwater sound channel.

Probabilistic features in the underwater sound channel are

(1) floating, drifting, or rotating sensor platforms;

(2) rapidly changing (spatially and temporally) environmental
conditions;

(3) multipath arrivals with very variable structure;

(4) high noise levels at sensors; (e.g., on towed array due to flow
noise or on stationary systems due to passing vessels);

(5) strong fading;

(6) for active sonar a highly cluttered and aspect-dependent
reverberation background.

is “DoTiCor”. Note that in (4), (5), and (6), the range is a
function of the target velocity.

4. Modelling Probabilistic Features of
Multistatic Sonar

Probabilistic features in the underwater sound channel must
be reflected in the tracking algorithm. Table 1 lists the
probabilistic features influencing the sonar measurement.

4.1. Mapping of Uncertainties in the Measurements to Carte-
sian Coordinates. The effect of items (1) to (2) in Table 1 is
that only estimates for sound speed cS, receiver o, and source
s positions as well as receiver orientation (heading) ϑ are
available.

Hence, we model the uncertainty following [9] by o ∼
N (o;o,Po), s ∼ N (s; s,Ps), cS ∼ N (cS; cS, σCS) and ϑ ∼
N (ϑ; ϑ, σϑ).

The effect of items (3) and (4) in Table 1 is that the
receiving time τ and receiving bearing ϕ are only estimates
of the true values τ and ϕ, respectively

τ ∼ N (τ; τ, στ), ϕ ∼ N
(
ϕ;ϕ, σϕ

)
. (8)

We assume ϕ to be Gaussian distributed because this is
an appropriate model for our measurement equipment.
An error in the receiver heading can be incorporated by
enlarging the error in azimuth information; that is, σϕ̂ =
√
σ2ϕ + σ2ϑ . Without loss of generality, we set the expected

receiver heading to 0◦ in this paper.
This results in a new definition of an artificial measure-

ment vector

z(a) =
(
ϕ, τ, cS, sT ,oT

)
=
((

zFM
)T

, cS, sT ,oT
)
. (9)

From this, the 2D-target position q = (x, y)T can be
estimated according to

q = g(z(a)), (10)

where the functional relationship in g is given by the
formulas (for derivation, see e.g. [10]):

x = sin
(
ϕ
) · γ + ox, y = cos

(
ϕ
) · γ + oy , (11)
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where α = arctan(sx − ox/sy − oy) − ϕ, δ =√
(sx − ox)

2 + (sy − oy)
2, and γ = ((r · cS)2 − δ2)/2(r · cS −

δ cos(α)).
To approximate the probability density function (pdf)

of q we can utilize the known pdf of za and the functional
relationship described by g. In [6], a linearization approach
has been presented to derive the Cartesian covariance
matrix: g is approximated by linearizing. In Section 6.2,
we derive an alternative approach based on the unscented
transform (UT) [4] that uses an approximation of the
probability density function (pdf) instead of an approxima-
tion of the nonlinear transformation from measurements
and environmental parameters to Cartesian coordinates. We
compare the performance of the different approaches in
Section 8.2.1.

Uncertainties related with Doppler measurements will be
addressed in Section 7.4.

4.2. Association. Following the discussion in Section 4.1 , for
each source/receiver pair alone there remains uncertainty
about the target’s location after the measurement of τ and
ϕ. The strength of multistatic data fusion is to exploit the
inputs from (at least two) source receiver geometries to
estimate the targets true position with a higher accuracy,
using a kind of triangulation technique by overlaying the
uncertain position measurements available. A prerequisite
for this triangulation is an unbiased estimation and correctly
modelled uncertainties. The difficulty is sketched in Figure 3.
Measurements of the same target (star), but corresponding
with different illuminator and receiver configurations, are
illustrated by their mean (circles) and covariances (ellipses).
If the estimate is biased or has an undersized covariance,
Figure 3(a), this may prevent the algorithm from correctly
associating measurements of different source-receiver pairs
to the same target. For correct measurement modelling,
Figure 3(b), the target can precisely be located in the
intersection area of the ellipses.

Additionally, due to item (4) in Table 1 and (even worse
because of aspect dependency) due to item (6), not only
are target echoes fed into the data fusion, but also false
alarms. This results in multiple hypotheses for triangulation
crossing points, and the correct association between target
and received echoes has to be made. This is why estimation
errors should not be modelled too pessimistically, since this
would lead to too many crossing possibilities.

Again due to items (4) and (6) (Table 1), the detector
(i.e., the software that generates contact data) cannot analyze
all parts of the signal: A kind of decision threshold has to be
defined to set the performance of a specific sensor following
its receivers operating characteristics (ROC). This defines
the probability of detection (PD) and probability of false
alarms (ρF) that has to be expected from this sensor. Since
echoes from the target can be missed, the probability for this
hypothesis has to be taken into account within all following
data fusion and processing steps. Item (5) is increasing this
difficulty: due to fading channels, even for a high false alarm
setting it is not guaranteed that the target echo has generated
a contact.

(a) inaccurate measurement de-
scription: multisensor association
fails

(b) correct measurement de-
scription: the target can be lo-
cated in the intersection area of
the ellipses

Figure 3: Visualisation of multisensor fusion. The measurement
information of three S/R pairs is visualized by ellipses. The true
target location is shown as a star.

Correct modelling of these probabilistic effects for each
single bistatic source and receiver combination is the pre-
requisite of multisensor fusion. In the next section, we will
show, how it can be handled within the scheme of automatic
sequential tracking techniques.

5. Automatic Sequential Tracking Techniques

Bayesian target tracking is iterative updating of conditional
probability densities of the target state xk (containing the
target components that are to be estimated, for example, the
target position and velocity) at time tk given all accumulated

sensor data Zk = {Z1, . . . ,Zk}, where Zk = {z(1)k , . . . , z(nk)k }
denotes the set of nk measurements collected at time tk.
It exploits all available a priori information on the target
dynamics and the sensor performance in terms of statistical
models. Each update consists of a prediction, which is
determined by the target dynamics model. The prediction is
followed by a filtering step, which exploits the current sensor
data and the sensor model. The sensor data at each scan
k, as well as the sensor model, are the constituents of the
likelihood function. According to Bayes’ rule, the conditional
density at time tk, given all sensor data up to and including
time tk can be sequentially calculated, that is

p
(
xk | Zk

)
= p

(
xk | Zk,Zk−1

)
∝ p(Zk | xk)p

(
xk | Zk−1

)
,

(12)

can be derived from the densities optimal estimators accord-
ing to particular cost functions. The likelihood function
p(Zk | xk) can be understood as a weighting function,
scoring possible target states by the new incoming data.
The likelihood reflects the match of measurement and target
state, additionally it depends on the sensor performance.
Thus, let ek denote the event of target detection by one of
the measurements in Zk and ek be the event that the target
was missed, then the single target likelihood function can be
separated in two summands

p(Zk | xk) = p(Zk, ek | xk) + p(Zk, ek | xk), (13)
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with

p(Zk, ek | xk) = p(ek | xk)p(Zk | xk , ek)

= p(ek | xk)pFA(nk−1)ρnk−1F

nk∑

i=1
p
(
z(i) | xk, eik

)
,

(14)

where eik represents the interpretation that the target was

detected by measurement z(i)k and all measurements z
( j)
k with

j /= i are false alarms. Due to the assumption that the target is
detected by one measurement at most, pFA(nk−1) represents
the probability of obtaining nk−1 false measurements and ρF
is the false alarm density, that is, the probability of obtaining
a false alarm at a specific position of the observation area.
The second summand is

p(Zk, ek | xk) =
(
1− p(ek | xk)

)
pFA(nk)ρ

nk
F , (15)

that is, all measurements are false.

5.1. Modelling Assumptions of Sequential Target Tracking. In
the application of sequential target tracking, the likelihood
function needs to be modelled appropriately: in this paper
we assume uniformly distributed false alarms; that is, we
choose a fixed value of ρF. Thus, the probability pFA(nk)
required for (14) and (15) is calculated according to a
Poisson distribution with parameter ρF, that is, pFA(nk) =
e−ρF (ρnkF /nk!). The probability of detection p(ek | xk) is
further replaced by some fixed value PD. According to these
assumptions, the likelihood function can be calculated. But,
obviously, the choice of the parameters PD and ρF will
have a significant influence on the tracking process. These
assumptions on the probability of detection and false alarms
are typical for many tracking applications, see for example
[1, 11]. We will use this by default in our tracking algorithm.
In Section 7, we discuss the consequences of the assumption
of a fixed PD in the multistatic scenario in more detail and
present an approach to mitigate this constraint.

The target motion model is describing the evolution
of the target state over time and needs to be defined in
the tracking algorithm. We use the nearly constant velocity
model that describes evolution by a linear transformation
Fk+1|k plus a noise term Gk+1|kvk+1 which is modelling the
uncertainty about the targets next movement, that is,

xk =
(
qk, q̇k

)T , with qk =
(
x, y

)T and q̇k =
(
ẋ, ẏ

)T (16)

xk+1 = Fk+1|kxk +Gk+1|kvk+1, (17)

where Fk+1|k and Gk+1|k are matrices and vk+1 is a Gaussian
process noise, see [12, 13].

5.2. Data Association and Tracking with Multihypothesis
Tracking (MHT). In this section, an implementation of
automatic sequential tracking is described. The implemented
technique is called multihypothesis tracking (MHT). We
follow the MHT architecture as described in [13], which will
allow us to leverage on it successful application for ground

o

z(1)1

z(2)1

o

z(1)2

z(2)2

Figure 4: Hypothesis generation: In every time scan, the number of
hypotheses increases by the factormk+1 (number of measurements
plus event of missed detection). A missed detection is illustrated by
a circle.

moving target tracking. This section contains only an outline
of the implemented MHT, for more details we refer to [13]:

The key idea of MHT is to describe the conditional
probability density given in (12) by a Gaussian mixture.
Therefore, a hypothesis tree is generated starting from an
appropriate initialisation. Every new incoming measurement
induces a new hypothesis. As a simple example, we consider
a scenario with two measurements at time t1, and also at
time t2. After time t1 the MHT consists of three hypotheses,

either z(1)1 belongs to the target, or z(2)1 , or the target has
not been detected. After time t2, the number of hypotheses
has increased to 9, as in every time scan the number of
hypotheses increases by the factormk + 1.

A hypothesis within the MHT tree reflects a specific
association possibility and can be represented by an expec-

tation, x(i)k+1|k+1, and a covariance matrix, P(i)
k+1|k+1 (describing

a Gaussian density). Additionally, a hypothesis corresponds
with a respective weight p(i) that is sequentially updated
(Figure 5) and initialized by p(0) = 1. For linear dependency
of measurement and state vector, that is, zk = Hxk, the
Kalman filter formulas can be applied for state estimation.
The respective measurement update of each hypothesis is
also given in Figure 5. Thus, the MHT consists of several
Kalman filters running in parallel, such that its performance
depends to a great extent on the performance of the Kalman
Filter. For a nonlinear measurement equation (as in multi-
static applications), appropriate approximation techniques
must be applied. We address this topic in more detail in
Section 6.2.

The MHT suffers from exponential growth of hypothe-
ses, which raises the claim for appropriate hypotheses
reduction techniques. We use hypotheses pruning (deleting
hypotheses with low weights), hypotheses merging (com-
bining similar hypotheses), and gating (considering reliable
measurement to track combinations only) techniques to
make it real-time capable. The more exact the modelling of
the target dynamics and the measurement process the better
these techniques work! The MHT algorithm as described
above is a single target tracker, but it can easily be extended to
handle multiple well-separated targets. This is implemented
by a track management overarching the MHT structure: For
each selected contact we start a tentative track and build up a
hypothesis tree by exploiting the measurement information
of following time scans. The track will be tested for belonging
to a true target by calculating a likelihood ratio (LR) that
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{H(i)
k = (x(i)k+1|K ,P

(i)
k+1|K , p

(i))} i

Predicted hypotheses

Calculation of the
innovation and
the Kalman gain

Measurements

Hypotheses
update

{z(s)k+1}
mk+1
s=1

θ(i,s) = z(s)k −Hx(i)k+1|k
S(i) = R +HP(i)k+1|kH

W(i) = P(i)k+1|kHS(i)−1

x(i,s)k+1|k+1 = x(i)k+1|k +W(i)θ(i,s)

P(i,s)k+1|k+1 = P(i)k+1|k −W(i)S(i)W(i)T

p(i,s) = p(i)
PD
ρF

N (θ(i,s),O, S(i))

Figure 5: Measurement update step of the MHT: for each
hypothesis H(i)

k at time tk and each measurement z(s)k+1 a new

hypothesisH(i)
k+1 = (x(i)k+1|k ,P

(i)
k+1|k , p

(i)) is generated.

is equal to the sum of hypotheses weights, [13]. Thus, by
choosing appropriate thresholds A and B a track is extracted
if the LR exceeds the threshold A and is terminated if it falls
below B. Gating methods ensure individual processing of
well separated targets.

Figure 6 illustrates one cycle of the MHT for a single
track, it consists of the following steps:

(i) prediction of the current hypothesis tree according to
the assumptions on target motion,

(ii) generation of new hypotheses according to the latest
measurement information (measurement update, see
Figure 5) and including the possibility of missing
detections,

(iii) hypotheses tree reduction techniques,

(iv) evaluation of tracks (confirmation or deletion).

Further instances of trackmanagement are trackmerging
and track splitting [13].

6. Approximation Techniques to
Apply Sequential Tracking Techniques
toMultistatic Sonar

By applying the sequential tracking technique, themultistatic
measurement is split into bistatic measurements which are
fed one by one into the tracking algorithms.

6.1. Handling Large Number of Contacts. For active sonar, as
described in Section 2, the target strength of a submarine
is designed to be small. As also described in Section 2, the
application of active sonar in shallow water produces a large
number of false alarms. Using all these contacts would stress
the MHT structure and would cause an intractable size of
the hypothesis tree. On the other hand, due to the multiple
aspects of the target in multistatics, there is a high probability
for a strong echo of at least one of the receivers. We are
making use of this implicitly by defining an initial threshold

(IT) with contacts whose SNR-value has to cross in order to
initiate a new track. The detection threshold (DT) is used
for updating existing hypotheses, allowing high accuracy
maintenance of the track. The detection threshold (DT) is
used for updating existing hypotheses. DT is lower than IT
allowing for as many cross-fixing opportunities with contacts
from different S/R as possible in order to maintain high
accuracy of the target state estimation inside the track.

6.2. Handling Nonlinearities in Target Tracking for Bistatic
Sonar. In the application of monostatic and bistatic sonar,
the measurements are nonlinear functions of the target
state xk and the environmental parameters a = (cS,oT , sT).
Ignoring noise effects, the measurement vector zk (either zFMk
or zCWk ) can be described by a nonlinear function

zk = h(xk, a). (18)

The functional relationship in h is directly related to the
function g(zFMk , a) = q (defined in Section 3). Note that h is
not invertible since the dimension of xk and a is larger than
the dimension of zk. Thus, h as well as g presume knowledge
of a.

Several approximation techniques like the EKF [5] and
UKF [4] exist and fit perfectly in the framework of the MHT:
only the measurement update component (see Figure 5) of
the MHT is affected.

To concentrate on themeasurement update and to ignore
influences of the MHT approximations, we look in this
section at a simplified scenario of one target, one source
receiver pair and no missed detections and false alarms.
Thus, the MHT structure reduces to a simple Kalman filter
that consists of two steps: Prediction of the track state
(usually in Cartesian coordinates) and track update using
the measurement information. Two different ways to handle
the nonlinear measurement equation in these schemes are
investigated:

(i) the measurement is transformed into Cartesian coor-
dinates and the Kalman Filter updates the target state
in Cartesian coordinates (resulting in two algorithms:
Cartesian L and Cartesian UT, resp.);

(ii) the predicted state is transformed into the measure-
ment space to perform the filter update (which is the
method used in UKF and EKF algorithms).

Figure 7 illustrates these two approaches.
The application of the Cartesian Kalman Filter works

in a straightforward way by exploiting the transformation
described in Section 4.1. Instead, the standard UKF and EKF
need to be adapted to account for the uncertainties in the
environmental parameters. As in Section 4.1, we assume the
heading vector to be zero and pick up the uncertainty in the
azimuth uncertainty.

6.3. Handling A Priori Information. The aim of target track-
ing (c.f. Section 5) is to determine the conditional probability
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Figure 6: One cycle of the MHT: prediction of hypotheses; update of hypotheses; hypotheses reduction (by gating, pruning, and merging);
track confirmation or deletion.

of the target state xk at time tk given themeasurement history,
Zk = {z1, . . . , zk}, and all available a priori information, here

a ∼ N (a; a,Ca), where a describes the assumed values and a
the unknown, but true parameters:

p
(
xk | Zk, a

)
=
∫

p
(
xk, a | Zk−1, zk, a

)
da

=
∫ p

(
zk | xk, a,Zk−1, a

)
p
(
xk, a | Zk−1, a

)

∫
p(zk | xk, a)p(xk, a | Zk−1, a)d(xk, a)

da

=
∫ N

(
zk;h

(
x(a)k

)
,R
)
N
(
x(a)k ; x(a)k|k−1,P

(a)
k|k−1

)

∫
N
(
zk;h

(
x(a)k

)
,R
)
N
(
x(a)k ; x(a)k|k−1,P

(a)
k|k−1

)
dx(a)k

da

≈
∫ N

(
zk;Hx(a)k ,R

)
N
(
x(a)k ; x(a)k|k−1,P

(a)
k|k−1

)

∫
N
(
zk;Hx(a)k ,R

)
N
(
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(a)
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)
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da

=
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(
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(
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)
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)

∫
N
(
zk;Hx(a)k|k−1, S

)
N
(
x(a)k ; xk|k−1 +W

(
zk −Hx(a)k|k−1

)
,P(a)
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)
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=
∫

N
(
x(a)k ; xk|k−1 +W

(
zk;Hx(a)k|k−1

)
,P(a)

k|k−1 −WSW
)
da

(19)

Line 2 of (19) yields due to the Bayes rule. In line 3 we

define the extended state vectors by x(a)k = (xk, a)
T , x(a)k|k−1 =

(xk|k−1, a)
T and state covariance P(a)

k|k−1 =
( Pk|k−1 O

O Ca

)
.

Linearization of h(xak) ≈ Hxak + b = H1xk +H2a + b delivers

the approximation in line 4. Line 5 follows from the Gaussian
refractorization lemma

N (z;Hx,R)N
(
x; y,P

)

= N
(
z;Hy, S

)
N
(
x; y +W

(
z−Hy

)
,P−WSW

)
,
(20)
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where S = HPHT+R,W = PHTS−1 with appropriate vectors
and matrices x, y, z H,P,R.

By extending the target state vector, we can apply the

standard EKF or UKF formulas to derive x(a)k|k. Since we
are not interested in an update of a (it is assumed to
be independent for different pings), calculation can be
simplified for the EKF:

xk|k = xk|k−1 +W1(zk − h(a, xk))

Pk|k = Pk|k−1 −W1SWT
1 ,

(21)

where S = H1Pk|k−1HT
1 + H2CaHT

2 + R, and W1 =
Pk|k−1HT

1 S−1. Alternatively, we can use the UKF equivalents
of S andW1.

Consequences on the Architecture of the MHT. Due to the
nonlinearity in the measurement model, approximation
techniques are necessary to apply sequential target tracking
to multistatic sonar. Comparing the approximation tech-
niques linearization and UT, we find that linearization
tends to underestimate the actual errors whilst the UT
tends to overestimate, simulation results are presented in
Section 8.2.1. Referring to multistatic tracking performance,
the two methods based on UT (Cartesian UT and UKF)
seem to be preferable and deliver robust tracking results. The
analysis with simulated data leads the choice to the UKF as
component of the MHT. We prefer the UKF to the Cartesian
UT for two reasons.

(1) The UKF method can easily be extended to process
additional Doppler information.

(2) Incorporation of the deterministic features
(Section 3) is straightforward in the framework
of the UKF.

7. Multisensor Fusion

To exploit information from several source/receiver (S/R)
pairs an appropriate strategy for multisensor fusion must be
developed.

The next two subsections give details of the implementa-
tions of the “AND” and “OR” fusion strategy. Then, in a third
subsection we develop a new “adaptive” scheme.

7.1. Implementing “AND” Data Fusion in the Framework of
MHT. The “AND” fusion strategy fits perfectly in the idea
of the MHT. In Figure 6, a cycle of the standard MHT (used
in this work) is illustrated. If measurements of k S/R pairs
and the same time scan are available we can process the
information by sequential updating track hypotheses, this is
illustrated in Figure 8(a).

It can be shown that (if measurements of different
receivers are uncorrelated) sequentially updating of contact
information according to the Kalman filter equation is
equal to updating the information together. However, as
described in Section 5.2, the MHT is based on suboptimal
implementation techniques (each measurement update is
followed by hypotheses reduction techniques). Thus, in fact,
the order of updating may influence the result.

The “AND” rule does not presume that contact informa-
tion of every S/R pair is available, rather a track must follow
the assumptions about PD and ρF of each single S/R pair.

7.2. Implementing “OR” Data Fusion in the Framework of
MHT. The idea to implement the “OR”-rule is to run a
single-sensor MHT tracker first at the data sets generated
by each S/R pairs. It has to be pointed out that the overall
probability of detection for a single bistatic receiver MHT is
lower than for the complete multistatic system as described
in Section 6.1. Furthermore, the single bistatic receiver
MHT cannot exploit triangulation features as described in
Section 4.2. The measurements associated with the n-best
hypotheses are considered for a second MHT chain that
runs on the preprocessed data of all S/R pairs. This second
MHT follows the same architecture as described in the above
subsection, but the two strategies differ with respect to
the calculation of the hypotheses weights and therefore in
track evaluation. Here, a hypothesis is not penalized for a
missing detection as long as the hypothesis coincides with the
detection of at least one S/R pair, see Figure 8(b). The “OR”
rule differs from the “AND” rule with respect to the following
aspects.

(i) Only measurements associated with an bistatic track
are considered in the fusion step.

(ii) A track can be extracted if it follows the assumptions
about PD and ρF of a single S/R pair.

7.3. Situational Adaptive Scheme. Both the “OR” and the
“AND” fusion strategies are not perfect. Because in the “OR”
fusion strategy the MHTs do not have a direct access to all
multistatic contact data, the “OR” results do not fully exploit
the multistatic measurement setup. The “AND” fusion is
very sensitive with respect to an inadequate measurement
modelling that could result in an inadequate description
of the measurement error or a bias (see also Section 4.2).
Especially, “AND” fusion is sensitive with respect to the
assumption of a fixed PD. Let us assume a simple scenario,
where there are two receivers, but only one receiver delivers
contacts of the target. If the assumed PD is high for both
receivers the “AND” fusion strategy will not be able to track
the target (since waiting for measurements of the second
receiver).

Combining the positive features of both strategies
(robustness of the “OR” strategy and precision of the “AND”
strategy) leads to an optimal fusion strategy. This requires
more precise information about the actual detection of each
S/R pair in the multistatic setup (to provide optimal target
tracking performance in combination of a low false track
rate). Generally such exact knowledge is not available, but
indeed some a priori knowledge about the environmental
conditions and about the shape of the target exists. We
pick up this idea and derive an approach that exploits a
priori information for a more realistic description of the PD
(and with this of the likelihood function). Therein the sonar
equation provides an interface between a priori knowledge
and the target state. The key task with respect to practicability
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Figure 8: Visualisation of the “AND” (a) and “OR” (b) fusion strategy. A processing chain in the MHT framework contains updating of
hypotheses by available contact information and hypotheses reduction techniques.

in the application to sequential target tracking is to estimate
correctly the accuracy of the additional information used.

7.3.1. Sonar Equation. The sonar equation combines in
logarithmic units (i.e., units of decibels relative to the
standard reference of energy flux density of rms pressure of
1μPa integrated over a period of one second) the following
terms:

SNRout = (S− TL1− TL2)− (NL− AG) + TS (22)

which define signal excess where: S: source energy flux
density at a range of 1m from the source; TL: propagation
loss for the range separating the source and the target (TL1)
and the target and the receiver (TL2); NL: noise energy flux
density at the receiving array; AG: array gain that provides a
quantitative measure of the coherence of the signal of interest
with respect to the coherence of the noise across the receiving
array; TS: target strength whose value strongly depends on

the aspect of the target to the source receiver pair, if the target
is a long thin cylinder.

For the description of active sonar, the sonar equation
has to be applied for the sound path from the source to the
target where the received level plus the target strength (TS)
is reflected to the receiver. Especially interesting with respect
to target tracking are the parts of the sonar equation, which
depend on the target position (TL, TS, and NL) and on target
position and velocity (TS).

In this paper, we only refer to the sonar equation in the
noise limited case, because this is the version used in the
algorithms described below. A similar treatment could be
proposed for the reverberation limited case.

7.3.2. Implementation of Adaptive Scheme in MHT. The
sonar equation describes the functional relationship between
the SNR of a measurement and the corresponding target
state xk. In the following, we use the function hSNR with
SNR = hSNR(xk) to express this relationship. We assume the
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target-SNR to be Gaussian distributed with a deviation σdB.
This is also assumed to be the deviation of the noise level
[14]. Then, the probability of detection is a function of the
target state and the detection threshold λ and can be obtained
by integration

PD(xk, λ) = p(hSNR(xk) > λ) =
∫∞

t=λ
N
(
t;hSNR(xk), σ2dB

)
dt,

(23)

assuming Gaussian distribution. Because PD depends on
the target’s location and aspect, which is exactly what a
target tracking algorithm provides as prediction, we use
the tracking knowledge when calculating the PD value.
Therefore, let Bk denote the interpretation of the track
history up to time tk; that is, Bk consists of the events esi ,
s = 1, . . . , k:

esi =
⎧
⎨

⎩

measurement zis belongs to target if i /= 0

target was not detected at time s if i = 0.
(24)

For each hypothesis branch of the MHT, we compute the
expected probability of target detection ek at time tk given
its respective measurement history Bk−1 and the hypothesis
of target existence H1. Thus, the weighting of a hypothesis
branch is influenced by the modelling of the detection
performance

p(ek | Bk−1,H1) =
∫

p(ek, xk | Bk−1,H1)dxk

=
∫

p(ek | xk,Bk−1,H1)p(xk | Bk−1,H1)dxk

=
∫ ∫∞

t=λ
N
(
t,hSNR(xk), σ2dB

)
dtN

(
xk; x̂k|k−1, P̂k|k−1

)
dxk

≈
∫ ∫∞

t=λ
N
(
t − b,Hxk, σ2dB

)
dtN

(
xk; x̂k|k−1, P̂k|k−1

)
dxk

=
∫∞

t=λ
N
(
t − b,H x̂k|k−1, σ2dB +HP̂k|k−1HT

)
dt,

(25)

where x̂k|k−1 and P̂k|k−1 denote the estimated target state
and covariance respective to the interpretation history Bk−1.
Row 4 results from row 3 by linearization of hSNR by
hSNR(xk) ≈ b + Hxk . The last equality holds due to the
Gaussian refactorization lemma (20). The first term at row
4 becomes independent of the target state xk whilst the
second term is a probability density of xk, thus the integral
is 1.

The pdf is a function of the predicted target state
and of the accuracy in this estimate. Thus, the considered
Gaussian density becomes flatter with decreasing knowledge
about the target state. In the limiting case, the probability
is .5.

Usually, the functional relationship in hSNR cannot be
described by a simple function. Noise measurements in
each bearing and for each receiver and the output of
target strength and propagation loss modelling software
are used to calculate the actual value of hSNR(xk). Since
the derivation, presented above, utilizes the linearization
of hSNR, we would need to calculate the derivatives of
hSNR with respect to the target state components. How-
ever, hSNR is generally a strongly nonlinear function, thus
the linearization may be problematic. Replacing the lin-
earization by UT to derive HP̂k|k−1HT makes it possi-
ble to apply the approach without looking deeper into
the function hSNR; thus, we can even process tabular
entries.

7.4. Fusion of FM and CW Contacts. During the experiments
with the deployable multistatic sonar systems, FM and CW
signals were transmitted simultaneously. In this case, when
regarding to the same target, source and receiver geometry,
the values for TL, TS, and NL are quite comparable for
both signals. Thus, fusion of FM and CW contacts according
to the “AND” rule seems to be straightforward. We can
exploit these geometrical similarities but need to consider
some differences resulting from the types of signals. Whilst
with FM a good range resolution is obtained, the CW
delivers additional Doppler information, but with lower
range resolution. As a consequence of the poor resolution
in range, we decided that CW contacts will not be used for
track initialisation. Furthermore, the probability of detection
(PD) of a CW measurement is not only dependent on the
SNR of the target (Section 7.3), but is additionally dependent
on the measured Doppler value [2]. If the Doppler of
the target is close to the Doppler of the background, the
target is in the so-called clutter notch and the probability
of detection is low. The eventuality that a target is in the
Clutter notch does not only concern nonmoving targets, but
may also appear due to geometrical reasons. In particular,
in bistatic applications, these geometrical clutter notches
take shape [15] and make demands on regarding to the
phenomena of the clutter notch. Let ṙT be the range rate
of the target and ṙC the range rate of the corresponding
background. Using the modelling assumption in [2], we
express the PD depending on the distance nC(xk) = |ṙT −
ṙC|, on a characteristic sensor information, the minimum
detectable velocity (MDV), and a part pD(xk), that can
either be chosen to be fixed or SNR adaptive (see [2] for
details)

PD(xk) = pD

[

1− exp

(

− ln(2)
( |ṙT − ṙC|

MDV

)2)]

= pD

(

1− MDV
√
ln(2)/π

N

(

0;nC(xk),
MDV2

2 ln(2)

))

.

(26)

In analogy to (25), we can calculate the probability of target
detection, as is needed for the likelihood function
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p(ek | Bk,H1) =
∫

p(ek, xk | Bk−1,H1)dxk

=
∫

p(ek | xk,Bk−1,H1)p(xk | Bk−1,H1)dxk

=
∫

pD

(

1− MDV
√
ln(2)/π

N

(

0;nC(xk),
MDV2

2 ln(2)

))

N
(
xk; x̂k|k−1, P̂k,k−1

)
dxk

≈ pD

(

1− MDV
√
ln(2)/π

N

(

−b;NCx̂k|k−1,
MDV2

2 ln(2)
+NCP̂k|k−1NT

C

))

.

(27)

From row three to four, we exploit the Gaussian refac-
torization lemma and a approximation by linearization of
nC(xk) = b + NCxk. The derivation shows that only the
predicted state estimate and state covariance influences the
considered probability of detection.

For the fusion step the CW contacts are similarly
processed to FM contacts. But the modelling assumption
of the PD (26) will have influence on hypothesis weighting
and even on the track update process. The update formulas
are derived according to the Bayes formalism in [2]. As
it can be seen in (26) the fictitious “measurement” that
the target is in the clutter notch, is Gaussian distributed
due to the modelling assumptions and can therefore be
processed as an additional “measurement” information. The
EKF approximation (utilized in [2]) is again replaced by an
UKF approach, see [15]. The fusion of CW and FM contacts
is an example for a situational adaptive fusion scheme as
motivated in Section 7.3. A priori knowledge about the
clutter notch is imbedded in the tracking algorithm. But, the
fusion of FM and CW goes even one step further by defining
the fictitious “measurement”. For the situational adaptive
scheme presented in Section 7.3, only hypothesis weighting
but not state estimation is influenced.

The “AND”, “OR”, and situational adaptive fusion of
measurements of different S/R pairs can easily be adapted to
account for additional CW contacts.

For the “AND” fusion strategy, the consideration of CW
contacts is straightforward; all available contact files (FM
and CW contacts) are exploited for sequentially updating the
hypothesis tree (regarding to the characteristics of the CW
signal); we later refer to this as “AND” fusion strategy of FM
and CW contacts.

Similarly, the “situational adaptive fusion of FM and CW
contacts” is straightforward. The fixed PD settings for the FM
and the fixed part of the PD for the CW will be estimated
from the sonar equation.

The “OR” fusion strategy is adapted to combine FM and
CW contacts in the following way (later to be referred to as
“OR” fusion strategy of FM and CW contacts):

(i) tracking of FM and CW contacts of each S/R pairs
(“AND” fusion of FM and CW contacts);

(ii) taking the FM contacts associated to tracks and
running a second instance of the MHT.

Interesting with respect to the phenomena of the clutter
notch in multistatic sonar are nonmoving targets such as a
wreck. Wrecks produce continuous FM contacts, whilst they
are not detected by the CW signal. This is different in typical
scenarios of groundmoving target tracking and allows a look
at the phenomena of the Clutter notch from a different point
of view. We will discuss results in Section 8.1.4.

8. Data Analysis

In the previous sections, many adaptations of the MHT
structure have been developed. In this section, we demon-
strate the necessity for making these amendments. There are
several data sets from measurements at sea available. We
apply them to the derived algorithms, stepwise increasing
the level of precision of the sensor modelling. We show
that the tracking performance increases when correctly
modelled details of the sensor model are added. In its
final state, the algorithm is able to deliver high precision
target state information and a very low false alarm rate.
However, measurement at sea is cost and time intensive.
Not all statistical aspects of the algorithm’s design can be
significantly answered by the limited data set. Therefore, we
augment the experimental data by numerical simulations
in order to evaluate the different possibilities for necessary
numerical approximations inside the tracking process. We
will also see an example for the necessity to improve the
motion model: since our motion model does not include
possible turns and since inside the tracking algorithm only
small uncertainties due to precise modelling exists, strong
manoeuvres of the target seem to decrease the quality of the
performance of the tracker with the better sensor model, see
Section 8.1.4(a). We propose to rather improve the motion
model, see for example [16], instead of arguing for a more
robust, but imprecise sensor model.

8.1. Data Analysis with Experimental Multistatic Sonar Data.
In this section, we test the different adaptations of the MHT
algorithm. Table 2 provides an overview of the different
modes and specifies the section of more detailed informa-
tion.

Following the ordering in the tabular, we will refer
to different versions of the MHT in the following by:
(1) TiCor, (2) DoCor (The abbreviation DoTiCor is used,
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Table 2: Overview of different versions of the multistatic MHT.

Deterministic features Multisensor Fusion Fusion of CW and FM

Timing
Range-Doppler PD fixed

PD adaptive
PD fixed

PD adaptive
Ambiguity “AND” “OR” “AND” “OR”

Section 3.1 Section 3.2 Section 7.1 Section 7.2 Section 7.3 Section 7.4 Section 7.4 Section 7.4

when correction for timing and Range/Doppler ambiguity is
applied simultaneously), (3) “AND” fusion of FM, (4) “OR”
fusion of FM, (5) adaptive fusion of FM, (6) “AND” fusion
of FM and CW, (7) “OR” fusion of FM and CW, and (8)
adaptive fusion of FM and CW. The measurement update
step is always realised by the UKF asmotivated in Section 6.2.
Unless specified otherwise the different fusion strategies are
applied in combination with the DoTiCor approach.

8.1.1. Description of the Data Sets. In the course of NURC’s
project on deployable multistatic active sonar, two major
sea trials were conducted: PreDEMUS’06 and SEABAR 07.
Measurements at sea have been executed within the Scientific
Program of Work at the NATO Undersea Research Centre
(NURC). Since the data have been distributed among several
research institutions in NATO, we use the original names
given to the data sets for potential further reference.

Note. Experiments at sea generate only a limited set of
data and are conducted under specific equipment and
safety constraints. For further sensitivity studies and specific
statistical performance analysis we added simulated data sets;
Section 8.2.

Common to all data sets is the usage of the deployable
buoy system (Figure 1, called DEMUS).

(i) DEMUS Receivers. The systems are built on a frame
of 9 arms; each arm is made up of 7 acoustic
outputs or staves. Each of these acoustic outputs is
produced by summing three vertical hydrophones.
The lateral spacing of hydrophones is variable and
can be set remotely. The system is designed to
operate in the range 2–5 kHz. The level of the
“Input Referred Noise” across the band of interest
is lower than the noise level at calm seas, making
the receiver a high-quality measurement system. The
system is bottom tethered, typically at 100m depth.
Nonacoustic output of the system contains of depth,
compass, and tilt.

(ii) DEMUS Transmitter. The transmitter is tethered
in the same way as the receiver. The operating
frequency range is 2–4.2 kHz. It is constructed from
8 FFRs, where weightings can be applied to outputs
for vertical steering and beam shaping. The typical
battery life is 500 ping seconds.

Also, common to all data sets is that an artificial target was
used, called echo-repeater (or E/R). The E/R was towed by
a surface vessel at a depth of 80m. It retransmits received
source signals with a specified amplification (TSER) and a
certain delay. For the delay, the contact data have been

already corrected. Details of this correction process are
omitted here, but it is obvious that a high TSER level is needed
to identify uniquely the corresponding contacts. Resulting
received signal-to-noise ratios (SNR) are unrealistically high,
but can be decreased by simply inserting lower values in
the corresponding data structure of a contact [17]. However,
with this procedure it is possible to generate contacts for the
target that in a real scenario would not occur because their
SNR would correspond to a threshold setting for contact
generation that is too low.

For data analysis, we consider five data sets based on
PreDEMUS’06 B01, SEABAR 07 A01, and A56:

(a) PreDEMUS’06 B01. The setup of PreDEMSUS’06 is
shown in Figure 9(a), a single source and three receivers were
installed. E/R signals are detected within a moderate noise
background generated by distant shipping. DT and IT are set
to 10 dB for FM contacts. CW contacts are all taken without
a threshold. The corresponding input files for each source
receiver pair contain about 60 contacts per ping for FM and
about 90 contacts per ping for CW.

(b) SEABAR 07 A01 50. The setup is shown in Figure 9(b),
detections of two receivers and one source are given.
E/R signals are detected within a high reverberation level
plus time-varying directional high noise levels from close
shipping. The data set contains the best 50 contacts of the
FM processing and all (about 100) contacts from the CW
processing. IT is set to 10 dB.

(c) SEABAR 07 A01 TS. As in SEABAR 07 A01 50 and
A01 10dB, but now the SNR values of the target contacts
have been reduced [17]. The tracker has to process about 500
contacts per ping and each S/R pair for the FM and again
about 100 contacts for the CW. A threshold of 2 dB is set
to the reduced E/R contacts causing a reasonable number of
missed detections. The IT was again 10 dB.

(d) SEABAR 07 A56 50. The setup is shown in Figure 9(c),
detections of two receivers and one source are given. During
Run A56, the measurement was made in bad weather
conditions. We use the time synchronized data set, but
with the original target SNRs [17]. It contains the best 50
contacts of the FM processing and all contacts from the CW
processing (about 100). IT is set to 10 dB.

(e) SEABAR 07 A56 all. Same as SEABAR 07 A56 50, but
the data set contains all FM contacts (about 500) and all CW
contacts. IT is set to 10 dB.
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8.1.2. Performance Metrics. In the following, we will assess
the performance of the proposed extensions by applying the
different modes of the algorithms to these data sets. Changes
in performance should be made visible when calculating
measures like track duration, track fragmentation, latency,
false track rate, and estimation performance. We will corre-
spond to track duration, latency, and track fragmentation by
indicating the time of track extraction (TE) and termination
(TT). Thus, the track latency corresponds to the TE time;
the track duration can be calculated by (TT-TE), and track
fragmentation is demonstrated by indication of several times
of TT and TE. This is different from the track duration
metric defined in [18], which counts for the measurement
associations since initialization of a tentative track.

The total track rate (mean number of tracks per ping)
that is utilized in this paper counts for all extracted tracks
(including the true target track), it is directly related to the
false track rate.

Estimation performance is either specified by calculating
the estimation errors or illustrated by direct comparison of
target and track trajectory.

8.1.3. Results for PreDEMUS’06 B01. The data set B01 was
analysed by detailed postprocessing to determine the exact
position of the E/R sound source, thus quite accurate truth
information is available.

(a) Impact of Deterministic Features—SEABAR 07 A01 50
and SEABAR 07 A01 10 dB. The algorithms DoCor, TiCor,
and DoTiCor, as defined in Section 3 are applied and their
performance is compared to the versions without correction
(NoCor). All results correspond to fusion of FM contacts of
RX1, RX2 and RX3 according to the “AND” fusion strategy
(CWmeasurements are not considered). In Figure 10(a), the
estimation error of the algorithms is plotted, demonstrating
that the corrections are necessary. Figure 10(b) demonstrates
this by plotting the results of the DoTiCor and NoCor
approach in the 2D plane. Results for the correction of
the Doppler ambiguity are shifted. The bias in the range
measurement due to the frequency shift is compensated.

Remark. The effect of the corrections depends on the given
geometry.

(b) Results of Different Fusion Strategies—PreDEMUS’06 B01.
Within the noise background and the chosen false alarm rate,
detections from receiver RX1 and RX3 are not possible due
to the large distance to the target for the first 50 pings, see
Figure 11. Clearly, the “AND” strategy suffers from missing
detections in at least a second receiver. Close to ping 30,
detection was missed for all three receivers for about 10–20
pings. After that the target is quite frequently detected by all
three receivers.

Following the description of the fusion strategies in
Section 7 we apply the different fusion approaches to the
data set of PreDEMUS’06 B01 (all utilizing the DoTiCor
approach). Results are shown in Table 3.

The missed detections of RX1 and RX3 in the beginning
affect the tracking results. Thus, when pursuing the “AND”
fusion strategy (1st row), the target track is not extracted
in an initial phase of about 50 pings. As expected, the
“OR” fusion strategy (2nd row) gives better results in this
region, since contact information of RX2 is sufficient for
track extraction.

For the situational adaptive scheme (3rd row), the values
for TL were calculated according to the distance between
source, receiver, and estimated target state. The NL level was
fixed (assuming a stationary noise background) and since
an E/R does not have aspect-dependent target strength, the
TS value was also kept constant. In the considered scenario
the situational adaptive scheme proves to be an adequate
compromise between “AND” and “OR” fusion strategy, it
provides good track duration and low false track rate. For
both approaches, “OR” fusion and situational adaptive, track
fragmentation occurs at ping 28; this is when all three S/R
pairs miss detections.

The combination of FM and CW contacts (4th row)
results in a significant reduction of false tracks. Additionally,
comparison of only FM (1st row) and FM and CW (4th row)
shows improvements with respect to track latency, when
processing the CW contacts.

Estimation performance was quite comparable for all
approaches.

8.1.4. Results for SEABAR A01 50. For the data from A01
only positional information about the E/R towing vessel were
available. Thus the E/R (the target) is located behind the
position of the vessel depended on the length of the cable. To
prevent incorrect estimation of the E/R position we compare
our results with the position of the towing vessel.

(a) Impact of Deterministic Features—SEABAR 07 A01 50.
Comparing the results of the DoTiCor approach and the
uncorrected version of the MHT (NoCor), we observe an
offset in Cartesian estimates, as also noted for PreDEMUS’06
B01. Unfortunately, improvements in localization error can
not be verified due to inaccuracies of the truth information.
This has be discussed in more detail in [19], it was shown
that the application of the DoTiCor approach additional
causes degrading tracking performance (from which the
MHT can recover) during the first target manoeuvre. The
approach seems to be less robust against deviations from the
motionmodel. This is a consequence of the influence that the
estimated Doppler has on the range measurement.

(b) Results of Fusion Strategies—SEABAR A01 50. In
Figure 12, the target detection performance of RX2 and RX3
is shown. For SEABAR A01 50 (Figure 12(a)), both receivers
show overall good detection performance, which was due
to the setting of the E/R. RX3 miss the target for the last
10 pings. We start our analysis with tracking FM contacts
of each S/R pair only. Results for fusing information of
both receivers either according to the “AND” (Figure 13(a))
or “OR” (Figure 13(b)) fusion strategy delivers improved
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(a) Plan of Run B01
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(b) Plan of Run A01

0 2 4 6 8 10 12

0

2

4

6

8

10

12

x-range (km)

y-
ra
n
ge

(k
m
)

BTX

RX2 RX3

2−
2−

(c) Plan of Run A56

Figure 9: Plan of B01 and the two runs from SEABAR07 transformed in 2D Cartesian; two receivers (RX2 and RX3) and single target (green)
and one source (BTX).

Table 3: Tracking results for B01.

Results for B01 Start of track (ping) End of track (ping) Mean number of tracks per ping

“AND” fusion of FM (RX1, RX2 and RX3) 53 146 8.16

“OR” fusion of FM (RX1, RX2 and RX3)
23 28 9.17

46 146

Situational adaptive fusion of FM (RX1, RX2 and RX3)
20 28 7.06

48 146

“AND” fusion of FM and CW (RX1, RX2 and RX3) 50 146 2.54

localisation results compared to the tracking of single
S/R pairs. As is observed here, the “AND” fusion rule
outperforms the “OR” rule with respect to estimation
performance. If considering additional CW contacts, see
Section 7.4, we observe improved estimation performance
for “OR” fusion (Figure 13(c)). For “AND” fusion (not
displayed), estimation performance does not change.
However, it still show superior performance.

Table 4 gives summarized details about the tracking
performances of the different fusion methods.

For all approaches, we choose the same parameter
settings and applied the DoTiCor approach. The “AND”
fusion strategy outperforms the “OR” fusion strategy with
respect to tracking performance and false track rate. For all
approaches we note a significant reduction of the false track
rate when considering additional CW contacts.



16 EURASIP Journal on Advances in Signal Processing

50 60 70 80 90 100 110 120 130 140 150
0

50

100

150

200

250

TiCor
DoCoR

DoTiCor
NoCor

Ping

E
rr
or

in
po

si
ti
on

(m
)

(a) Estimation error for tracking results of B01 using approaches TiCor
and DoCor

−5.2 −5 −4.8 −4.6 −4.4 −4.2 −4 −3.8

−8

−7.5

−7

−6.5

−6

x-range (km)

y-
ra
n
ge

(k
m
)

(b) Tracking results of B01 for NoCor and DoTiCor in 2D-Cartesian.
The position of the E/R is shown in green

Figure 10: Illustration of improvements in estimation performance when accounting for deterministic features. Results correspond to
“AND” fusion of FM contacts of RX1, RX2, and RX3. The latency of the target tracks is about 50 pings.
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Figure 11: Target PD for RX1 (blue), RX2 (green), and RX3 (red),
respectively; The PD is averaged over 5 pings and over FM and CW.
Detection performance of receivers RX1 and RX3 is poor for the
first 50 pings due to the large distance to the target.

(c) Tracking of Bottom Targets—SEABAR 07 A01 50. In
addition to the target contacts, generated by the E/R the data
set contains some bottom targets (e.g., wrecks). These targets
produce continuous FM echoes and can thus be located
precisely. Figure 14(a) shows the 2D tracking output of the
“AND” fusion approach of FM and CW contacts of RX2 and
RX3. Known target positions are numbered and shown by a
blue plus sign. Bottom targets 1, 2, and 6 are found by the
MHT. Obviously, the algorithm is able to track fixed targets
even when exploiting the CW contacts. Since the Doppler of
a bottom target is equal to the Doppler of the background
(i.e., zero Doppler for nonmoving sources and receivers),
fixed targets will not generate CW contacts. Our algorithm
accounts for this effect, since the probability of detection
is adaptive to the target movement, see Section 7.4. If no
CW contacts are available the hypothesis that the target is
nonmoving is strengthened. Furthermore, hypotheses with
high velocities are penalized. Figures 14(b) and 14(c) show
results for the Clutter targets 1 and 2. The red and the

blue dots represent contact information of the receivers RX2
and RX3 that are transformed into Cartesian coordinates.
Due to the proximity to the target, contacts formed by RX2
are especially suited for localising target 1, see Figure 14(b).
Contacts of RX3 show a larger diffusion. Thus, we cannot
see much advantage from the fusion of contacts of the both
receivers. The achieved localisation accuracy can be traced
back to the measurements of RX2. Another effect can be
studied on the basis of the bottom target 2, Figure 14(c).
This target shows a convenient geometry to exploit the
fusion of contacts of the two receivers. Contact information
of a single receiver diffuses at a line (according to the
angular uncertainty) whereas the tracking result lies in the
intersection of those two lines and is therefore very accurate.

8.1.5. Results for SEABAR 07 A01 TS. For the data set
SEABAR 07 A01 TS the SNRs of the target contacts are about
10 dB lower than the original ones, whilst the SNR of the
non-target contacts was retained. To preserve a reasonable
detection probability of our target, we need to consider
a larger amount of contacts in the tracking algorithm.
The detection performance is illustrated in Figure 12(b).
Both receivers show overall good detection performance,
beside of some missed detections of RX3 near to ping
40. We apply the “AND” fusion strategy of FM and CW
contacts of RX2 and RX3 to this data set, since it has
shown the best performance in application to SEABAR
A01 50. The increasing false alarm rate has an effect on
track extraction and track maintenance (compare Section 5)
and leads to a track loss in our application: Here, the
reason for the track loss is an increased noise level at RX2
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Figure 12: Target PD for RX2(blue) and RX3(green). (a) shows the detections performance for the original SNRs of target contacts in the
data set SEABAR A01 50, in (b) the SNRs are about 10 dB reduced (SEABAR A01 TS). The PD was averaged over 5 pings and over FM and
CW.
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(a) “AND” fusion of FM contacts of RX2 and RX3
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(b) “OR” fusion of FM contacts of RX2 and RX3
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(c) “OR” fusion of FM and CW contacts of RX2 and RX3

Figure 13: Tracking results using only FM contacts (a)-(b) and FM and CW contacts (c); target area is shown in detail; tracks are illustrated
by plus signs versus the position of the towing ship (green circles).

that occurs temporarily (after the first target manoeuvre)
due to a passing merchant vessel. Exploiting this additional
environmental information inside the tracking algorithm
leads to improved (i.e., continuous) tracking performance.
In order to apply the situational adaptive approach, the
SNR was estimated by exploiting information about the

noise level and the transmission loss. The TS value was kept
constant.

To make results comparable, the fixed parameter (PD),
which is needed as an input parameter in the “AND” fusion
approach, were set to themean values, chosen by the adaptive
scheme. We run the MHT for different assumed values of the
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(c) Clutter target 2, FM and CW

Figure 14: Tracking of bottom targets.

Table 4: Tracking results for A01.

Results for A01 Start of track (ping) End of track (ping) Mean number of tracks per ping Figure

FM (RX2) 12 88 10.84

FM (RX3) 17 80 8.12

“AND” fusion of FM (RX2 and RX3) 7 88 9.2 Figure 13(a)

“OR” fusion of FM (RX2 and RX3) 16 88 10.7 Figure 13(b)

FM and CW (RX2) 11 88 7.43

FM and CW (RX3) 7 80 5.28

“AND” fusion of FM and CW (RX2 and RX3) 6 88 5.15

“OR” fusion of FM and CW (RX2 and RX3) 11 88 8.3 Figure 13(c)
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Figure 15: Comparison of tracking performance for two different algorithms: “situationally adaptive fusion of FM and CW contacts (PD

adaptive)” and ““AND” fusion of FM and CW contacts (PD fixed)”. Calculations of performance metrics in (a) and (b) are made for the
following values of the false alarm density (in #/1000): 0.4, 0.6, 0.8, 1.0, 1.2, 1.4.

false alarm density ρF to compare the tracking performance
of the two different approaches; the values for the other
tracking parameters are identical. In Figure 15, the results
are shown. Figure 15(a) shows the mean number of tracks
per ping (this is comparable to the false track rate) and
Figure 15(b) refers to the track output PD; that is, percentage
of pings for that the target could be tracked. It can be noticed
that choosing larger values of ρF result in fewer false tracks
and worse tracking performance. This is because the algo-
rithm tends to interpret a contact as a false alarm. But whilst
for the fixed PD approach we observe track fragmentation
already for small values of the false alarm density (i.e., track
was fragmented for ρF > 1/1000), the PD adaptive scheme
delivers better track quality; we note a higher track output
PD and track-fragmentation occurs for the first time at
ρF = 1.4/1000.

8.1.6. Results for SEABAR A56 50. In similarity to the data of
A01, we start with the best 50 contacts for FM as input file of
our tracker.

(a) Impact of Deterministic Features—SEABAR 07 A56 50.
Figures 16(a) and 16(b) displays the tracking performance
of the DoTiCor approach (blue circle) and the uncorrected
(NoCor) version of the MHT (black plus sign). FM contacts
of the two S/R pairs are fused according to the “AND” fusion
strategy. As for A01, tracking results are compared to the
position of the towing ship (green circle). Again, we note
shifted results of the DoTiCor versus the standard approach.

(b) Results of Fusion Strategies—SEABAR 07 A56 50. In
analogy to SEABAR 07 A01 50, we compare the different
fusion approaches (again only for DoTiCor). As for A01,
the “AND” fusion strategy (Figures 16(a) and 16(b) only
FM) and (Figure 17(b) FM and CW) outperforms the
“OR” fusion strategy (Figures 16(c) and 17(a)) in terms of
estimation performance. The track is also extracted earlier,
but we note some small deviation of track and position of
the ship during the first manoeuvre which is caused by an
inflexibility due to the movement model, see for example

Table 5: Run A56: comparison of false track rate.

Mean number of tracks per ping FM FM & CW

RX2 22.19 14.42

RX3 15.7 9.85

“AND” fusion of RX2 and RX3 24.35 12.09

“OR” fusion of RX2 and RX3 23.36 16.95

Figure 16(b). A comparison of the false track rates is given
in Table 5. For the combination of FM and CW the “AND”
rule produces again the least false tracks. For FM only, it
produces slightly more. This may be due to the fact that
the instationary background produces false contacts for both
bistatic setups. Since the “OR” strategy passes through the
process of track extraction twice, first for a single S/R pair
and second in the fusion step, it is less sensitive to false
tracks with a short span of life. Here, it is demonstrated that
tracking performance is not only influenced by the fusion
strategy, but also by the particular implementation.

8.1.7. Results for SEABAR 07 A56 all. Again, the signal
strength of the E/R is very high, such that nearly all target
contacts are included in the best 50 contacts. However,
considering more measurements in the tracking algorithm
(decrease DT) would be more realistic. Results of the
“AND” strategy for FM and CW contacts of RX2 and RX3
(approach (7)) are shown in Figure 17(c). As expected,
tracking performance is degraded compared to the case of
the “best” 50 contacts. This confirms that a large quantity of
false alarms influence the parameter settings of theMHT and
with this the tracking performance. Also, the false track rate
increases to 23.13.

Since track fragmentation does not occur for the run
A56, we do not expect improvements by the situational
adaptive scheme for this scenario.

8.2. Simulated Data. In this subsection, we try to give more
statistics to limited real data sets, but keep important features
of real data. Section 8.2.1 addresses the problem arising
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(a) “AND” fusion of FM contacts of RX2 and RX3 (A56 50)
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(b) “AND” fusion of FM contacts of RX2 and RX3 (A56 50) (loop in
detail)
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(c) “OR” fusion of FM contacts of RX2 and RX3 (A56 50)

Figure 16: Tracking results for “AND” (a), (b) and “OR” fusion of FM contacts of RX2 and RX3 (c). In (a,b) the approaches NoCor (black
plus sign) and DoTiCor (blue circle) are compared. For better visualization false tracks are not displayed: track estimates of the NoCor and
DoTiCor approach are shifted. Both approaches show up to be slightly inflexible to derivations from the movement model.

from the nonlinearity of the measurement equation and
discusses the different types of KF developed in Section 4.
In Section 8.2.2, we test the robustness of the MHT by
varying the number of false alarms and in dependency on
the measurement accuracy.

8.2.1. Handling the Nonlinearity (Numerical Results). In
Section 6.2, we discussed four ways to handle the nonlinear
sensor model: the Cartesian approaches based on lineariza-
tion (Cartesian L) and unscented transform (Cartesian UT),
the modified UKF and EKF.

For numerical evaluation, we consider a scenario where
the receiver is located at (−1 km, 0 km)T and the source is
at (1 km, 0 km)T . Measurement errors are chosen to be σϕ =
2◦, σϑ = 2◦, στ = 0.001s and σcS = 2m/s. Additionally, we
assume equal and uncorrelated errors for the components of

source and receiver position with σL = 20m; that is, PO =
PS = diag(σ2L , σ

2
L).

In order to compare the different approaches if imple-
menting the Kalman filter scheme (see Section 6.2), the
simulation setup described above is extended in the following
way: for each Monte Carlo run a target is inserted at
(2 km, 2 km)T . Its constant velocity is sampled from a
Gaussian distribution with zero mean and deviation of 5m/s
in ẋ and ẏ (targets that cross the line between source and
receiver are ignored).

The target position estimate discussed in Section 4.1
is used to destine the track initialization point (the UT
approximation is used for the UKF and the linearized
approximation for the EKF). We initialize target velocities
with zeromean and deviation of 5m/s in each component. In
the appendix, we describe how we evaluate the performance
of the various algorithmic approaches.
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(a) “OR” fusion of FM and CW contacts of RX2 and RX3 (A56 50)
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(b) “AND” fusion of FM and CW contacts of RX2 and RX3 (A56 50)
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(c) “AND” fusion of FM and CW contacts of RX2 and RX3 (A56 TS)

Figure 17: Tracking results for Run A56 50 and A56 TS (target area in detail).

(a) Comparing Implementations of the Kalman Filter Scheme.
To analyze the performance of the different types of Kalman
filter we run 104 Monte Carlo runs. Results of the RMSPOS
for the four different tracking approaches are illustrated
in Figure 18 and are compared to the CRLB. Figure 18(a)
corresponds to the standard settings in the parameter
uncertainties and a measurement update rate of 60 seconds,
that is time between two consecutive pings is 60 seconds.
The two approaches based on the UT show comparable good
results. The poor performance of the EKF is remarkable.
In Figure 18(b), the influence of the accuracy in source
and receiver position (σL = 5m) is considered. When
improving the accuracy, we note worse performance of
all four approaches. Figure 18(c) corresponds to the same
scenario as (b), except for small azimuth and heading errors
(σϕ = σϑ = 1◦). Again, we note that the EKF shows
worse performance than the other approaches. We also note
that, in the initial phase of the tracking scenario, the UKF

performance is slightly worse than the performances of
Cartesian UT and Cartesian L.

In summary, tracking performance is affected by the
measurement and system parameters uncertainty: if the total
error is strongly bearing-dependent, that is, large bearing
errors or high precision in range, the methods based on
UT show superior performance than the methods based on
linearization. Additionally, we note that the UKF and the
EKF show worse performance than the Cartesian Kalman
Filters (Cartesian L and Cartesian UT) during the first pings
of the scenario.

These effects are further examined in the next two
subsections.

(b) Dependency on the Measurement and System Uncer-
tainties. We consider again a single target at position
(2 km, 2 km)T . The Cartesian L/UT and EKF/UKF use
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(b) σL = 5m, σϕ = σϑ = 2◦
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(c) σL = 5m, σϕ = σϑ = 1◦

Figure 18: Comparison of different types of Kalman filters: In (a) the standard setting was used; (b) and (c) illustrate results formodifications
in bearing and sensor precision. The EKF shows the worst tracking performance.

approximations of the transformation of measurements into
Cartesian coordinates and reverse. In Figure 19(a), the grey
dots denote Cartesian representatives when sampling from
the (extended) artificial measurement vector z(a). The solid
and dashed line ellipses show the 3σ-gate of the approxi-
mated Gaussians generated by linearization or UT, respec-
tively. In contrast, on the right-hand side (Figure 19(b))
the grey dots denote measurement representatives that is

sampled from the extended state vector x(a)k , whereas the
uncertainty in the Cartesian is given by the CRLB. Again,

solid and dashed line ellipses denote the approximation
resulting from the linearization or UT method. For the
standard scenario (not displayed here), both methods (UT
and Linearization) deliver quite good approximations of
the actual densities. The covariances given by the UT are
slightly higher than of the linearization method. If we
consider more accurate information of source and receiver
position, the impact of the bearing uncertainty on the total
localization error increases, see Figure 19(a). The shape of
the samples (grey dots) diverges from an elliptic shape, thus
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Figure 19: Nonlinear transformations: (a) shows approximations of the transformation of measurements into Cartesian coordinates; (b)
show results for the transformation of Cartesian estimates into measurement coordinates. Solid line ellipses correspond to linearization,
dashed lines to UT, grey dots represent samples from the true density: for strong bearing dependencies both approximation techniques fail.

the approximation by a Gaussian fails. The approximation
schemes (both UT and linearization) give unsatisfying
results. However, the UT delivers larger covariances which
seem to fit better and be more robust.

(c)Dependency on the Time Interval. In the prediction step of
the KF, the state covariance matrix increases in dependency
on the accuracy of the previous state estimate, the time
between two consecutive pings and the maneuver modelling
(not considered here). Thus, a low measurement update rate
results in relatively large state covariance matrices, especially
in the beginning when there is only poor knowledge about
the target velocity. Thus, the information gained from
the previous time scans is only poor. In comparison to
that, the measurement provides a good localisation of the
target for the current ping. During the EKF measurement
update, the Jacobian is evaluated at the predicted target state
(which is only a poor estimate of the current target state).
Thus, linearization according to the Jacobian gives a poor
approximation in the region, which is of actual interest.

In contrast, the covariance of the UKF is very large and
compensates for approximation errors. Neither the approach
UKF nor EKF will show optimal performance in such
situations. The EKF may diverge or be biased, whereas the
results of the UKF are degraded by large covariances. As
shown in the tracking results, the UKF is more robust and
recovers when the accuracy in the state estimate is improved
after some pings.

(d) Multistatic Fusion. Referring to bistatic tracking per-
formance, the two methods based on UT (Cartesian UT
and UKF) are preferable and deliver robust tracking results.
Generally, the results state approximation works best if the
accuracy in the probability density that is to be transformed
is high. This is so, if the accuracy in the estimated target

state is poor compared to the accuracy in the measurement
information (e.g., in the beginning due to the unknown
target velocity), the Cartesian versions of the KF work best,
since it uses transformation of the measurement informa-
tion. Otherwise, if accuracy in track state is good (e.g., after
maintaining the track for some pings) the UKF and EKF
outperform the Cartesian L and Cartesian UT. This holds
especially for multistatic tracking, which is demonstrated
by numerical analysis of a multistatic scenario with two
sources (placed at (−2 km, 0 km)T and (2 km, 0 km)T) and
one receiver (at (0 km, 0 km)T). The track state is sequen-
tially updated according to the contact information of the
different S/R pairs. Since data association is not a issue for
these considerations the “AND” and “OR” fusion are to
produce identical results. Figure 20 provides results for this
scenario and the standard parameter settings. Figure 20(a)
corresponds to a synchronous measurement update, that is,
contact information of different S/R pairs are generated at
the same time and the update rate is every T = 60 seconds.
In Figure 20(b), we consider a asynchronous measurement
update, the time between two consecutive pings of the same
S/R pair is again T = 60 seconds, but with an offset of
30 s between different S/R pairs. All four methods deliver
improved results compared to the case of a single S/R pair.
The UKF proves again as robust and is also efficient (achieves
the CRLB asymptotically) for the synchronous measurement
update.

8.2.2. Sensitivity Studies of the MHT. The performance
of the MHT depends on various parameters: it depends
on the accuracy in measurement information, as well as
on measurement false alarm rate and target manoeuvres.
Generally, the MHT is known to be a powerful tool when
faced with many false alarms inherent in multistatic sonar
data. This issue is investigated in the next subsection. We will
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Figure 20: Comparison of different types of Kalman filters: multistatic scenario with two sources and one receiver.

discuss the adaptive scan size of the MHT in the subsection
after that.

(a)Description of the Data Set. For simulation, we follow the
multistatic setup of SEABAR07 (one source, two receivers
and one target) and simulate the target according to the
specifications of the Run A01, see Figure 9(b). This provides
the opportunity to statistically evaluate a realistic S/R receiver
geometry combined with a manoeuvring target. For each S/R
pair, we generate measurements according to στ = 0.01 and
run 100 Monte Carlo runs for different values of σϕ and false
alarm rate (uncertainties in the environmental parameters
are currently ignored). We limit this study to the simulation
of FM contacts and no missing detections are considered.
False alarms are generated uniformly in a 4 km× 7 km region
around the target. We choose the values of DT and IT such
that all simulated contacts (true contacts as well as false
alarms) are considered for measurement update as well as
track initiation. As measures of performance, we consider
in this section the true data association probability and
track continuation. For the true data association probability
we count for true target contacts that are associated to
the track in the strongest hypothesis of the MHT. Only
measurements associated with extracted tracks are counted
such that a long track extraction phase will display in
worse performance. The track continuity is measured by
counting for the pings in which a track is displayed by the
MHT.

(b) Results: MHT Performance for Different Rates of False
Alarms and Measurement Accuracies. Figure 21(a) shows
results in terms of the true data association probability (in
dependency on the azimuth accuracy and the false alarm

rate) when processing measurements of the receiver RX2
only.

The performance of the MHT decreases with decreasing
measurement accuracy and increasing number of false
alarms. This is consistent with the expectations: Less accu-
racy in the track state results in an increasing size of the
association gate. Thus, the probability to decide for a wrong
data association increases. The same holds for an increasing
false alarm rate. Processing measurements of both S/R pairs
simultaneously (following the “AND” fusion strategy of FM
contacts of RX2 and RX3) does result in good precision
of the target state (exploiting triangulation gain) and does
therefore improve the overall MHT performance. In the
example considered before (when considering additional
measurements of RX3), the probability of true association is
87%, 82%, and 69% for the high false alarm rate (i.e., 20 false
alarms) and a measurement error in azimuth of σϕ = 1.5◦,
σϕ = 2◦ and σϕ = 2.5◦, respectively. Thus, the MHT can
handle a higher false alarm rate, if measurements of both
receivers are considered. Track continuity is generally better
than the probability of true association, since due to the
nature of the MHT the algorithm is able to regenerate from
wrong or missed associations. Figure 21(b) shows (for the
single S/R pair case) both measures of tracking performance
plotted versus the ping number for σϕ = 2.5◦ and 20
false alarms per ping. When considering measurements of
both S/R pairs, the corresponding results are visualized in
Figure 21 for small (c) and large (d) azimuth errors. For small
azimuth uncertainty, the track is continuously maintained
after track extraction (track continuity is 100%). We observe
some failure in measurement association (especially during
the target manoeuvres) from that the algorithm can recover.
Performance is worse for large measurement inaccuracies,
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(c) σφ = 1.5◦, 20 false alarms, two S/R pairs
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(d) σφ = 2.5◦, 20 false alarms, two S/R pairs

Figure 21: Impact of the number of false alarms and azimuth accuracy on tracking performance. In (a) and (b) only one S/R pair in (c) and
(d) two S/R pairs are considered.

but we still observe a probability of 90% to track the target.
After the second manoeuvre the probability decreases for
a short period, some tracks seem to get lost during the
manoeuvre. Comparing Figures 21(b) and 21(d), we note a
significant improvement due to the consideration of a second
receiver.

For all results, we observe a comparable and very low false
track rate that is no further specified here.

9. Summary

When designing an algorithm for tracking of multistatic
sonar data, three major questions have to be answered:

(1) handling the nonlinear measurement information,

(2) choice of fusion architecture,



26 EURASIP Journal on Advances in Signal Processing

(3) fusing information of CW and FM (accounting for
the specific characteristics of the two different wave
forms).

The paper discusses several solutions fitting into a MHT
structure. Extending the MHT strategy to incorporate deter-
ministic and probabilistic a priori knowledge seems to be a
viable way towards a robust, precise, and real-time capable
multistatic tracking algorithm.

(at 1.) Due to the nonlinearity in the measurement
model, approximation techniques are necessary to apply
sequential target tracking to data from a bistatic sonar sys-
tem. In this paper, we have implemented two approximation
techniques, (based on linearization and unscented trans-
form (UT)), and studied their performance when mapping
bistatic data to the Cartesian system. Tracking is possible
for both techniques in the Cartesian system (Cartesian L
and Cartesian UT). We compared their performance based
on simulated data, relative to the CRLB. Comparing the
approximation techniques, we found that linearization tends
to underestimate the actual errors whilst the UT tends
to overestimate. Referring to tracking performance, the
Cartesian UT seems to be preferable. Also, the extended
Kalman filter (EKF) [5] and unscented Kalman Filer (UKF)
[4] can be adapted to account for the probabilistic features
of the bistatic sonar measurement. In total, there are four
different tracking methods. Due to our analysis, the EKF
seems to be not recommended in most of the scenarios
considered here. In literature, the iterated EKF [20] is
proposed to improve robustness of the EKF; alternatively, we
propose a combination of Cartesian L (during the first pings)
and EKF. Tested by detailed simulation, the UKF method
was chosen to be incorporated into the structure of a MHT
tracking algorithm and was evaluated by applying them to
real data sets. We found the MHT to be capable of extracting
and maintaining the target in three experimental data sets
and showed that by correct modelling of the deterministic
features of the underwater sound channel a bias in the
tracking result can be reduced.

(at 2.) To exploit the advantages of a multistatic setup
an appropriate fusion strategy must be developed to process
measurements of different source and receiver pairs. We
found (and therefore confirm the findings in [21]) that
the “AND” fusion strategy outperforms the “OR” fusion
strategy in regions of overlapping sensor coverage. But,
the “AND” fusion strategy is sensitive to an appropriate
description of the likelihood function. Sonar performance
modelling [22] shows that correct modelling of the proba-
bility of detection of each source/receiver pair and for each
hypothetic track is therefore of particular importance. We
developed an approach to incorporate sonar performance
modelling in the framework of automatic sequential tracking
techniques and showed with experimental sonar data that
they are able to improve robustness of the “AND” fusion
strategy.

(at 3.) Based on an algorithm from groundmoving target
tracking, we implemented a strategy to fuse contact informa-
tion of the FM and CW signal. We found the algorithm to be
capable of the application tomultistatic sonar data and noted

a significant reduction of the false track rate due to the fusion
of FM and CW contacts. Moreover, the algorithm is able to
process larger number of false alarms when measurements
of the FM and CW signal are fused. The fusion strategies
have been evaluated by applying them to experimental sonar
data.

10. Conclusion

It is possible to implement in an MHT framework an
automatic data fusion algorithm that exploits all advantages
of themultistatic setup. As themultistatic setup is mandatory
in difficult measurement scenarios, our implementation
allows to provide the operator with accurate and simplified
true target extraction by a drastic decrease in the number of
false alarms.

The analysis of simulated and real data sets showed that
the advantages of multistatic sonar can only be exploited
if the measurement model is correct. That is, we need to
interpret correctly the measurement information and the
events of false alarms and missed detections. However, the
precision of modelling knowledge for underwater sound is
limited by the stochastic fluctuations/uncertainties. There-
fore, in order to provide a robust algorithm it is important
not to overestimate the accuracy of themodelling: “Be honest
with your tracker!”.

Appendix

In this subsection, we describe used measures of perfor-
mance: Average Estimation Error, Cramér Rao Lower Bound
and Consistency.

(a) Average Estimation Error. The root-mean-square error
of the position estimate (RMSPOS), is an absolute error
measure and direct performance criterion. It is averaged over
all simulation runs. The RMSPOS error fromN Monte Carlo
runs is

RMSPOS(xk) =

√√
√
√
√

1
N

N∑

i=1

∣
∣x̃k,i − xk

∣
∣2, (A.1)

where x̃k,i is the position estimate at run i and xk the position
of the truth.

(b) Cramér Rao Lower Bound. Since we consider nonlinear
measurements and additive white Gaussian noise w, the
Cramér Rao lower bound (CRLB) with respect to the
likelihood function Λ(x(a)) = p(z | x(a)) can be derived
in a standard way. The general calculation of the Fisher
information matrix can be replaced by a more specialized
formula

J0 = E
{[
∇x(a) logΛ

(
x(a)
)][

∇x(a) logΛ
(
x(a)
)]T}

= ∂h

∂x(a)
Cov(w)−1

(
∂h

∂x(a)

)T
.

(A.2)
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In our application, we consider the 9-dimensional state
vector x(a) = (x; a) (see Section 6.2) versus the 2-dimensional
measurement vector z, so the matrix J0 will not be invertible.
This shows that we cannot estimate the full state vector
x(a) without additional assumptions. As information is
additive, these additional assumptions in the form of a prior
distribution in a, can be added to the Fisher information
matrix [23]

J = J0 + JP , (A.3)

where JP is the Fisher information of the prior

JP =
[
0 0
0 C−1a

]

. (A.4)

The CRLB results from the Fischer information by inversion.
To compare the CRLB with the corresponding RMSPOS
we use the rooted trace of the 2D position matrix, that is,√
CRLB(1, 1) + CRLB(2, 2).

(c) Consistency. Filter consistency is usually measured using
the normalized (state) estimation error squared (NEES),
defined as

ε = (x̂ − x)T P̂−1(x̂ − x), (A.5)

where x̂ and P̂ are expectation and covariance of the
estimate that are compared to the truth x. ε should be chi-
square distributed with ηx degrees of freedom, if the filter
is consistent. In Monte Carlo simulations that provide N
independent samples εi, i = 1, . . . ,N , the average NEES is

ε = 1
N

N∑

i=1
εi. (A.6)

It has to be tested whether Nε is chi-square distributed with
Nηx degrees of freedom. This hypothesis is accepted, if Nε is
in the appropriate acceptance region.
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