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We present in this paper a modified independent component analysis (mICA) based on the conditional entropy to discriminate
unsorted independent components. We make use of the conditional entropy to select an appropriate subset of the ICA features
with superior capability in classification and apply support vector machine (SVM) to recognizing patterns of human and
nonhuman. Moreover, we use the models of background images based on Gaussian mixture model (GMM) to handle images with
complicated backgrounds. Also, the color-based shadow elimination and head models in ellipse shapes are combined to improve
the performance of moving objects extraction and recognition in our system. Our proposed tracking mechanism monitors the
movement of humans, animals, or vehicles within a surveillance area and keeps tracking the moving pedestrians by using the
color information in HSV domain. Our tracking mechanism uses the Kalman filter to predict locations of moving objects for the
conditions in lack of color information of detected objects. Finally, our experimental results show that our proposed approach can
perform well for real-time applications in both indoor and outdoor environments.

1. Introduction

Video-based human detection and tracking has been a pop-
ular research area and widely applied in various applications
such as homecare, security, and patient monitoring. With
the increasing criminal rate, the development of automatic
visual surveillance with computer visions has attracted more
and more researchers’ attentions. Therefore, the ability
to distinguish people from other moving objects such as
animals or vehicles has become an important issue for
tracking targets and analyzing their behaviors.

Human detection system could be divided into two parts,
segmentation of the moving objects from backgrounds and
discrimination of humans from nonhuman objects. There
have been several methods for segmenting moving objects
from backgrounds such as the optical flow, stereo-based
vision, and temporal difference method. The optical flow
method could succeed in detecting independent moving
objects, but would be more computational and sensitive
to the change of intensity. Zhao and Thorpe [1] exploited
the stereo based segmentation algorithm to extract objects

from backgrounds and identified the extracted objects by
neural networks. Although the stereo-based vision technique
has been proved to be more robust, it required at least
two cameras and could be used only for the short distance
detection. Orrite Uruñuela et al. [2] used multiple cameras
to analyze 3D skeletal structure in gait sequences and 3D
skeletons to extract human body shapes completely and
constructed the point distribution model (PDM) by using
Principal Component Analysis (PCA). Jiang et al. [3] used
the background subtraction method to segment an isolate
human and took advantage of the homogeneous properties
of shadows and background objects to reduce the shadowing
effects. An area threshold was also used to avoid a sudden
change of light and interfering the results of moving object
extraction by illumines. Tian and Hampapur [4] combined
the background subtraction and optical flow methods to
locate the motion area and to remove the false foreground
pixels. They modeled the background image as Gaussian
distributions to adapt to the gradual change of light by
recursively updating the arguments of models with an
adaptive filter. However, this basic model would sometimes
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Figure 1: System architecture.

fail to handle complicated backgrounds such as water wave
and tree shaking. Stauffer and Grimson [5] constructed a
mixture of Gaussian model by modeling each pixel as a
mixture of Gaussians and using an online approximation to
update the extracted backgrounds. Our proposed real-time
system firstly used a simpler way to segment moving objects
to reduce the time complexity, and applied Gaussian mixture
model (GMM) to constructing a dynamic background model
as to handle dynamic backgrounds or unstable illumination
in images.

After moving objects have been segmented, the next pro-
cess would be human recognition. There have been several
kinds of methods for human recognition like shape-based,
motion-based, and multicue-based ones. Zhou and Hoang
[6] used the shape information of human bodies to construct
a codebook and to tell human beings from other objects.
This method obviously would work well if the extracted
human shape was obvious. However, this shape-based would
usually fail for the cases of partially occluded humans or
the detected humans carrying something. Histograms of
Oriented Gradients (HOG) [7, 8], the algorithms based on
Fast Fourier Transform, extracted features from the shape
information. Curio et al. [9] carried out the detection process
based on the geometrical features of human at the first
step, and then used motion patterns of limb movements
to determine the initial hypotheses of objects. Yoon and
Kim [10] made use of the robust skin color, background
subtraction, and human upper body appearance information
to classify human or other objects with similar skin color
regions. For the approaches based on neural networks for
human identification [11], used the back-propagation model
to recognize the pedestrians, to analyze the shape of object,
and to classify human beings from other objects. Mostly,
researchers have focused on the issue of feature extraction
but paid much less attention to the field of feature selection.
In this paper, we presented a modified ICA approach based
on conditional entropy. In the recent years, ICA has been
applied to human feature extraction for constructing a
sufficient set of features describing human beings. ICA is
a high-order statistical analysis method, and can be usually
regarded as an extension of PCA, which addresses only the
second-order statistical arguments. Unlike PCA features, the
ICA features are not sorted, thus the conditional entropy is
applied to feature selection, the sorting process, and choosing

an appropriate subset of ICA features. Sorting variables
may be an important step to enhance the high-dimensional
dataset, which gave us the idea to place correlated or
similar dimensions close to each other in high-dimensional
visual space to help human users perceive relationships
among those variables easier [11]. The remainder of this
paper could be organized as follows. Section 2 described
the moving object extraction, including shadow elimination
and occlusion handling. Section 3 introduced the modified
ICA. Section 4 described the color-based tracking method.
Section 5 showed the experimental results. We finally sum-
marized discussions and conclusions in Section 6.

2. Moving Object Extraction

The architecture of our moving object extraction was indi-
cated in the dotted-line block of Figure 1 and the remained
blocks represented our processes in human feature extraction
and classification. For the moving object extraction, we
used the background subtraction method in order to meet
the real-time acquirements. Besides, we built up a dynamic
background model based on GMM algorithm to deal with
more complicated backgrounds. Our background model was
constructed by using three different Gaussian distributions.
We in this paper took the difference of luminance in images
since human eyes would be more sensitive to luminance than
chrominance. The difference DI for each pixel (x, y) could be
calculated by

DI
(
x, y

) = ∣∣Ic
(
x, y

)− Ib
(
x, y

)∣∣, (1)

where Ic and Ib denote the luminance of the current
and background image, respectively. Practically, the moving
objects would have larger variances than the background, so
the determined threshold was set by the variance of each
Gaussian background model and the possible foreground
image PFI could be described in the following equation

PFI
(
x, y

) =
⎧
⎨

⎩

1 if DI
(
x, y

) ≥ 3σ
(
x, y

)
,

0 if DI
(
x, y

)
< 3σ

(
x, y

)
.

(2)

Each Gaussian distribution N ∼ (μ, σ) could adapt to
the gradual change of light by recursively updating each
pixel over time. In the practical conditions, the captured
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background might be in gray scale or in an edge map. Both
of the background types had their individual advantages and
disadvantages. The background image in gray scale might
take longer in the updating process than that in the edge map,
but could model the background in more details. Relatively,
the edge-type background was less sensitive than the gray-
type one, and would be more suitable for noisy images
or environments with unstable intensities. For the strategic
design in modeling a background in this paper, the Gaussian
low-pass filter would be carried out in the consecutive input
frames before processed at the GMM stage so as to reduce the
influences of noises and disturbances.

2.1. Color-Based Shadow Elimination. Our color based
shadow elimination are based on RGB-color channels. It
can be easily observed that the luminance of shadow pixels
is lower than that of the corresponding pixels in the
background image. Thus, if we denote ICF and IB the intensity
of current frame and the background image, respectively, the
pixel (x, y) satisfying (3) may be in the shadowed region

ICF
(
x, y

)
< IB

(
x, y

)
. (3)

Some other observed characteristics of shadows can be
arranged as follows. First, the texture of shadows like
edge would have a smaller fluctuation than that of the
corresponding pixels in the background image. Similarly, the
chromaticity value of shadows would have a slighter change
than that of the corresponding pixels in the background
image. These observations are described in

Between-pixel invariant −→ ICF
(
x, y

)

ICF
(
x + 1, y

) = IB
(
x, y

)

IB
(
x + 1, y

) ,

dh
(
x, y

) = ln
I
(
x, y

)

I
(
x + 1, y

) , dv
(
x, y

) = ln
I
(
x, y

)

I
(
x, y + 1

) ,

(4)

where I(x, y)/I(x + 1, y) is the ratio between pixel (x, y)
and its neighboring pixel (x + 1, y), dh(x, y), and dv(x, y)
denote the ratio maps which can keep the texture- and
edge-information without the interferences of shadows. We
will consider the pixel (x, y) in the shadow region if its
ratio map is similar to that of the background pixel. The
error in discriminating the pixel (x, y) from shadows can be
calculated by

Ψ
(
x, y

) =
∑

(i, j)∈W

∣∣dCF,h
(
i, j
)− dB,h

(
i, j
)∣∣

+
∣∣dCF,v

(
i, j
)− dB,v

(
i, j
)∣∣,

(5)

where Ψ(x, y) denotes the sum of difference of the ratio map
in a small neighborhood window W with the center at (x, y)

Within-pixel invariant −→rCF
(
x, y

)= rB
(
x, y

)= ln
R
(
x, y

)

B
(
x, y

) ,

gCF
(
x, y

) = gB
(
x, y

) = ln
G
(
x, y

)

B
(
x, y

) ,

(6)
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Figure 2: The distribution of POI pixels.

r and g denote the spectral ratios of R-B and G-B, respec-
tively. As what we have observed, the shadow on the back-
ground pixel may result in a bigger change of brightness than
color. Assume that the color of illumination may not change
with the effect of shadows, thus the spectral ratio r(x, y) is
invariant to the magnitude of illumination. Similarly, the
spectral ratio g(x, y) is invariant under shadows or different
conditions of illumination. Thus, pixel (x, y) is in the shadow
region if both the current and background spectral ratios are
the same. The error of spectral ratios can be computed by
Θ(x, y) defined in

Θ
(
x, y

) = ∣∣rCF
(
x, y

)− rB
(
x, y

)∣∣ +
∣
∣gCF

(
x, y

)− gB
(
x, y

)∣∣.
(7)

The total error in discriminating (x, y) from shadows is
described in

Ω
(
x, y

) = α ·Ψ(x, y
)

+ (1− α) ·Θ(x, y
)
, (8)

where α denotes the weighting parameter. Finally, a thresh-
olding operation will be applied on Ω(x, y) to determine
whether the pixel (x, y) belongs to the shadow or foreground
object.

The distribution of pixels of the possible object image
(POI) which contains both of the moving object and
shadowed pixels is shown in Figure 2. Figure 2 illustrates
a smaller distribution for the shadowed region than the
extracted region of moving objects. We hence take advantage
of this Ω(x, y) observation to determine a threshold for
discriminating the shadowed regions. The threshold value
decides if a pixel (x, y) is in a shadowed region, and can be
denoted in

Ths = μPO − β · σPO, (9)

where β is a weighting value, μPO and σPO are the mean and
standard deviation of POI, respectively. And the region of
shadow image SI would be described in (10). To enhance
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(a)

(b)

(c)

Figure 3: The results in shadow elimination, (a) the original image,
(b) the extracted object before shadow elimination, (c) the extracted
object after shadow elimination.

the results by shadow removal, we have the results during the
process of shadow elimination in Figure 3

SI
(
x, y

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if IPO
(
x, y

)
> IB

(
x, y

)
,

Ω
(
x, y

)
< μPO − β · σPO,

0, otherwise.

(10)

2.2. Occlusion Handling. The moving objects could be
detected as a group of people who may move together or may
be partially occluded by each other. In this case, the moving
object extraction system will label the group of people as
one object by connected components. Without separating
the group of people into each individual, the classification
process may usually fail to identify the human beings. In
most conditions, however, the heads are usually separate
when the human bodies have been occluded. Besides, the
shape of human heads is almost invariant even though a
person rotates his head in different phases. Therefore, as long

∗ ∗ ∗ ∗ ∗ ∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗ ∗ ∗ ∗ ∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗ ∗ ∗ ∗ ∗∗∗∗∗
∗ ∗ ∗ ∗ ∗∗∗∗
∗ ∗ ∗ ∗∗∗
∗ ∗ ∗∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗ ∗ ∗∗∗

(0,0)

(a)

(b)

Figure 4: (a) The ellipse head model. (b) The pyramid down
sampling process.

as only the human bodies are occluded we can use the head
information to overcome the occluded problem. If heads are
partially or fully occluded with each other, then our ellipse
head model will find the head with the best match.

The proposed head model is shown in Figure 4(a) where
the dot “•” represents the pixels of a head, the star “∗”
represents the pixels of background, and the point (0, 0) is the
center of the ellipse. The process in down sampling is applied
to fit the ellipse model in different sizes of a moving object.
By setting a threshold of the similarity value, we can decide
which point is a possible center of the head. Consequently,
there may be more than one center detected in the real head
region, which would be illustrated in the group of green
points in Figure 5. Thus, we have to project the original head
region into x-axis and y-axis, and to group these points to
determine the final representative center as shown in blue
points of Figure 5. We also show some results in our human
detection mechanism for individual humans in Figure 6.

3. Modified ICA Based on Conditional Entropy

The independent component analysis (ICA) is a statistical
method for transforming an observed multidimensional
random vector into components that are statistically inde-
pendent. ICA can be considered as a generalization of
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Figure 5: Projection of head region.

principal component analysis (PCA) with appended inde-
pendent properties in the second order equations. In the
field of signal processing, ICA can separate the waveform of
the original source from the sensor array without uses of
the characteristics of the source signal. The main purpose
in this work is to separate the patterns of humans and
nonhumans. As Figure 7 shows, ICA is a statistic approach
in the higher order and can transform each input image to
the combination of bases. For the two major problems we are
confronting, one is how to choose the bases with the higher
capability in classification. The other is how to enhance the
discriminability of independent components between classes

which might not be sorted by the creating sort and might not
depend on the binary classification.

Let us have m-training images including both humans
and nonhumans with the size (nr×nc). Figure 8 displays the
bases of our image set. Reshape all the training data into
an N-length vector, and the mixture data X is an m × N
matrix. Also, the mixture data x1, x2, . . . , xm are the linear
combination of n independent and zero-mean of the source
signal s1, s2, . . . , sn (typically m ≥ n) as described in

xj = hj1s1 + hj2s2 + · · · + hjnsn. (11)
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Figure 6: The results of separate humans.

= u1× +u2× + · · · + un×

Figure 7: ICA-image decomposition.

The matrix H is expressed in terms of the elements hi j , and
it is an unknown full rank (m× N) mixture matrix. Since all
vectors are column vectors and the transpose of X is a row
vector, we can rewrite (11) to (12) by using vector-matrix
notations

X = HS. (12)

Without loss of generality, we assume that both the mixture
variables and independent components have zero mean
and non-Gaussian distributions. For the nonzero mean
distributions, the observable variables x j can always be
centered by subtracting the sample mean to become the zero
mean distributions. If W denotes the inverse of the basis
matrix S, the coefficients matrix U for training matrix XT

will be expressed in

U =WXT. (13)

The n-component base vectors which have the best distin-
guishability for detecting humans and nonhumans should be
chosen from many candidate components. It can be achieved
by calculating the ratios of between-class and within-class
variability r for each coefficient, and the largest ratio r implies
the best distinguishability. Or the base vectors can be selected
by using perceptions in neural network. These two methods

depend on the capability of binary classifiers. In Figure 9, the
solid line and dashed line indicate the positive and negative
values of ICA coefficients, respectively. If the distribution is
like Figure 9(a), we can separate humans from nonhumans
by the dotted threshold line in an easier way. Unfortunately,
the information provided by the binary classifier is too
insufficient to select ICA features. Like what is shown in
Figure 9(b), we cannot easily separate the distributions into
two classes by using a threshold line. That is also the
major reason for us to modify the original ICA by using
the information of conditional entropies for selecting the
optimal ICA bases in this paper.

If the entropy is the amount of information provided
by a random variable, then our conditional entropy can be
defined as the amount of information about one random
variable provided by another random variable. The entropy
of a random variable reflects the more truthful information
of the observed variable. If the variable is more random, it
means unpredictable and unstructured, which may result in
the large entropy value. Figure 10 illustrates how the entropy
values are relevant to the distributions of variables. In such a
case, the higher entropy value in Figure 10(a) reveals that the
variable Z1 is more random than Z2.

The 2-D data space obtained from ICA feature extraction
needs to be discretized into a matrix of grid cells by
separating each dimension into a set of intervals or bins.
The discretization process begins with calculating the mean
value of data in one dimension and dividing the data into two
halves with that mean value. Recursively, each half is divided
into halves with its own mean value. The recursion will stop
when we obtain the required number of intervals or meet the
constraint of total bins. Let a discrete random variable Z be



EURASIP Journal on Advances in Signal Processing 7

Figure 8: The bases of image set.
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Table 1: Results for feature selection and classification.

Feature-classifier Method Number of SV Accuracy (%)

20 IC-SVM

Entropy 895 92.58

Fisher’s criterion 1197 91.24

Neural Network 1198 90.57

Non 2166 84.07

30 IC-SVM

Entropy 825 93.88

Fisher’s criterion 1154 93.21

Neural Network 1137 92.20

Non 1800 89.58
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Figure 11: Analysis of feature selection. (a) Accuracy rate. (b) Number of SV.

with possible values {z1, z2, . . . , zn}. The information entropy
of Z with the probability density p(z) is defined in

H(Z) = −
n∑

i=1

p(zi) log p(zi). (14)

The conditional entropy quantifies the uncertainty of a
random variable Y if given that the value of a second random
variable Z is known. Each coefficient has to be normalized
to [−1, 1] and quantized to n bins. Let Y = {−1, 1} be the
desired class, then the conditional entropy can be described
in

H(Y | Z) = −
∑

z

∑

y

p
(
y, z
)

log p
(
y | z) = H(Y ,Z)−H(Z).

(15)

The conditional entropy (Y |Z) is a weighted sum of the
entropy values in all columns, where the joint entropy is
defined by

H(Z,Y) = −
∑

z

∑

y

p
(
z, y
)

log p
(
z, y
)
. (16)

We sort the conditional entropy (Y | Z) and use the sorted
results to select corresponding independent components.
The coefficients or independent components with the better
classification ability are associated with the small conditional
entropy. The selected ICA features will be used in the

SVM classifier to indentify humans or nonhumans. Table 1
and Figure 11 showed the comparisons of results by our
conditional entropy based feature selection approach with
those by others for feature selection and classification. All the
comparisons in this paper used the same training and testing
database. The training database consisted of 1843 human
and 840 nonhuman images. Meanwhile, 3178 human and
2847 nonhuman images were used in the testing database.
The same ICA algorithm was used for feature extraction
and SVM in classification, and the only difference for
obtaining reasonable compared results lied in the feature
selection method. Our feature selection approach was based
on the conditional entropy, and was compared with Fisher’s
criterion, neural networks, and without feature selection.
Our used parameters in the comparison process were the
number of support vectors (SV) and the accuracy rate which
was obtained from each method with respect to the number
of independent components. Figure 11 showed the accuracy
rate and the number of SV for all number of ICA features
and indicated the maximum number of ICA to be 76. We
chose two subsets of independent components as 20 and
30 and displayed the accuracy rate and number of SV in
more details in Table 1. Table 1 exhibited that the conditional
entropy based approach had the accuracy rate in more than
90% but needed the smallest number of support vectors
(SV). For all approaches, the accuracy rate will increase and
the corresponding number of SVs will decrease when the
number of ICA features increases from zero to the specific
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value. When the number of ICA features increases from the
specific value to the maximum number, we can use more SVs
as to maintain the accuracy rate.

4. Tracking

Our tracking module is depicted in Figure 12. The proposed
tracking system is based on the color appearance model
because the color distribution will be typically stable under
rotations, scaling, or partial occluded conditions. At the same
time, Kalman filter is applied to calculate and predict new
locations of each moving object, and to solve the occlusion
problems which the color models may be invalid with. Let
hist(i) represent the ith bin of total N bins of the color
histogram, and the PDF of target models can be computed
by

pi = hist(i)
∑N

i=1 hist(i)
. (17)

Most of the color features is unstable under the change
of lightness. The HSV color channel extracts the lightness
information from the RGB color channel, therefore the
sensitivity to illumination can be reduced. But the problem

Distribution of HSV color space
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Figure 13: The PDF of color histograms.

of HSV color channel occurs when the saturation value S is
close to 0. In this condition, the hue H will become quite
noisy. Therefore, in practical applications, the HS-histogram
will be used only when S is larger than a threshold value
0.1. Otherwise, only intensity V-histogram is used, and the
total number of histogram’s bin becomes NHNS + NV . In
order to reduce the computational time and increasing the
accuracy of object tracking, we use three of fourth of the
original moving object region with the same centers as shown
in Figure 13. Moreover, Bhattacharya similarity measure is
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Figure 14: The positive database.

Figure 15: The negative database.

applied to compute the similarity value between two PDF,
the target model pi and target candidate qi as shown in

BC
(
p, q
) =

N∑

i=1

√
pi · qi. (18)

When the target candidate qi and target model pi are similar,
the PDF of target models of moving objects can be updated
by the weighting factor γ in the tracking process, which is
expressed in

pi =
(
1− γ

) · pi + γ · qi, (19)

where γ = BC/4.

5. Experimental Results

Our training database captured from 16 different videos
included 1843 positive and 2066 negative data, and the
database in the testing phase were captured from 18 videos in
3178 positive and 2847 negative data. The images used in our

database were acquired by considering various conditions
and activities such as the detected images contained part of
lateral or frontal human shapes, the detected humans were
walking or running, the detected moving object did not have
a complete human shape, and so forth. We also took the cases
under both indoor and outdoor environments into account
and meanwhile some nonhuman targets in complicated
conditions such like trees, animals, and vehicles were used
in the testing database in this paper. All the image data were
normalized to the 40 × 40 block size. The normalization
algorithm used in our work was carried out by comparing
the width and height of moving-object regions. If the width
of moving-object region was larger than the height, the
moving object would be centralized by shifting horizontally,
otherwise by shifting vertically. We showed several positive
and negative images in our database after normalization in
Figures 14 and 15.

We also listed the compared results in the number
of required features, the accuracy rate, and the detection
time by our proposed conditional entropy-based feature
selection approach with those by others in Table 2 and
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Figure 16: Analysis of different methods of feature selection in (a) Accuracy rate, and (b) Number of SVs.

Table 2: Comparisons in the computational time.

IC selection method Number of IC Number of SV Accuracy (%) Detection (ms/object)

Entropy 30 825 93.88 1.13

Fisher 30 1157 93.21 1.33

Entropy 40 958 94.51 1.41

Fisher 40 1194 94.40 1.65

NN 40 1028 94.58 1.51

Table 3: Accuracy of human detection system (%).

Method
Training Data Testing Data

Human Nonhuman Human Nonhuman

mICA+SVM 97.72 95.84 94.15 93.57

ICA+cosine 90.87 85.73 90.34 85.49

ICA+SVM 97.55 93.90 93.17 91.13

Codebook 87.95 92.83 90.88 93.68

PCA+BP 99.18 99.46 89.65 94.09

Figure 16. We had 5 videos with a total number of frames,
14056, and the computational time indicated in our entropy
based method would be 1.13–1.41 miniseconds depending
on the number of independent components (IC). With
the increasing number of IC in human feature extraction,
the number of support vectors (SV) would also increase,
which made the system take longer to detect a human.
Moreover, in Table 3, we compared the accuracy of our
mICA+SVM approach with that of some others both in the
training and testing data. The codebook matching approach
in Table 3 used the human shape as the features, and matched
the moving object by the code vectors in the codebook.
The PCA+BP method used PCA for feature extraction

and the back-propagation model in neural networks for
classification. In the other two approaches, ICA + Cosine and
ICA + SVM, the IC-features were determined by calculating
the ratios of between-class and within-class variables r for
each coefficient and choosing a larger r as the features with
the better distinguishability. After the features have been
determined, they used the cosine similarity measurement
and SVM for classification, respectively. Table 3 showed the
higher accuracy of our mICA+SVM approach in the training
part than all the others except PCA+BP. However, in the
testing part, our mICA+SVM approach demonstrated the
highest accuracy to identify humans among all the compared
methods.
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Figure 17: The detection results for humans and nonhumans.

Figure 18: The processed results for some occlusion cases.

Figures 17–20 showed the human detection results in
different conditions, where the white color blocks described
the nonhuman moving objects and the blocks in other colors
indicated the moving humans. Figure 17 revealed that the
proposed human detection system could work well in many

kinds of conditions, and our approach would accurately
detect humans for cases that the humans were running,
walking in different positions and directions, and could
correctly recognize the vehicles, moving tree leaves, or animal
as nonhuman objects. Figure 18 showed our experimental
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Figure 19: The results in human tracking—Environment 1.

Figure 20: The results in human tracking—Environment 2.

results in the occluded cases where people were occluded by
each other or by other objects. Figures 19 and 20 displayed
the results of human tracking in consecutive frames where
we indicated the number of frames and the label of identified
humans in the lower left and the upper left in each image,
respectively.

6. Conclusions and Discussions

The modified ICA approach using conditional entropy has
been proposed for human detection in this paper. The

experimental results have proved the conditional entropy to
be effective in sorting features with the better classification
ability. The SVM classifier is applied to classify the features
into two classes, humans and nonhumans. The Kalman filter
and Bhattacharya color similarity measurement are both
used to predict and track the humans in the consecutive
frames. Our experiments also indicate the higher perfor-
mance in human detection and tracking. Besides, we use
the GMM method which is used to model and update
a background image for moving object segmentation to
handle the dynamic backgrounds. The color-based shadow
elimination algorithm is also implemented in our work to
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Figure 21: The negative examples in human detection.

reduce the influences of grouping shadows by connected
components effectively. In order to make our approach
much more practical and perfect, in the near future we
may consider more conditions such as the clothing colors
of detected humans are close to those of the backgrounds
(Figure 21(a)), the shadowed regions of detected humans are
much larger than the truthful moving objects (Figure 21(b)),
and the heads of detected humans in the sampled images
are too small to be detected more accurately (Figure 21(c)).
To sum up, the conditional entropy-based mICA approach
has solved most problems in human detection and provides
the better discriminability in classes for ICA which may not
depend on the binary classification in an efficient computa-
tional time, 1.13–1.41 ms/object, and in the accuracy of more
than 93% for real-time applications.

Acknowledgments

This work was supported in part by the Aiming for the
Top University Plan of National Chiao Tung University, the
Ministry of Education, Taiwan, under Contract 99W962, and

supported in part by the National Science Council, Taiwan,
under Contracts NSC 99-3114-E-009 -167 and NSC 98-
2221-E-009-167.

References

[1] L. Zhao and C. E. Thorpe, “Stereo and neural network-
based pedestrian detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 3, pp. 148–154, 2000.
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