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We consider a bidirectional time division duplex (TDD) multiple-input multiple-output (MIMO) communication system with
time-varying channel and additive white Gaussian noise (AWGN). A blind bidirectional channel tracking algorithm, based on
the projection approximation subspace tracking (PAST) algorithm, is applied in both terminals. The resulting singular value
decomposition (SVD) of the channel matrix is then used to approximately diagonalize the channel. The proposed method is
applied to an orthogonal frequency-division multiplexing-(OFDM-)MIMO setting with a typical indoor time-domain reflection
model. The computational cost of the proposed algorithm, compared with other state-of-the-art algorithms, is relatively small.
The Kalman filter is utilized for establishing a benchmark for the obtained performance of the proposed tracking algorithm.
The performance degradation relative to a full channel state information (CSI) due to the application of the tracking algorithm
is evaluated in terms of average effective rate and the outage probability and compared with alternative tracking algorithms.
The obtained results are also compared with a benchmark obtained by the Kalman filter with known input signal and channel
characteristics. It is shown that the expected degradation in performance of frequency-domain algorithms (which do not exploit
the smooth frequency response of the channel) is only minor compared with time-domain algorithms in a range of reasonable
signal-to-noise ratio (SNR) levels. The proposed bidirectional frequency-domain tracking algorithm, proposed in this paper, is
shown to attain communication rates close to the benchmark and to outperform a competing algorithm. The paper is concluded
by evaluating the proposed blind tracking method in terms of the outage probability and the symbol error rate (SER) versus. SNR
for binary phase shift keying (BPSK) and 4-Quadrature amplitude modulation (QAM) constellations.

1. Introduction

In recent years, MIMO-OFDM schemes have gained
increased interest in both theoretical and practical aspects.
Paulraj et al. [1] provides a comprehensive overview of the
MIMO wireless technology including channel models and
performance limits. The IEEE802.11 standard [2] is an exam-
ple for a TDD communication standard that uses an MIMO-
OFDM scheme. TDD systems use the same carrier frequency
for both the uplink and downlink directions. The channel
reciprocity assumption is therefore assumed to be valid;
that is, the propagation channel from the ith transmitting
antenna to the jth receiving antenna is assumed to be equal

to the respective channel in the opposite direction. Channel
diagonalization is a common practice in MIMO-OFDM
communications since it enables better use of the channel
degrees of freedom with reduced computational burden. The
diagonalization is usually obtained by virtue of SVD of the
estimated communication channel. The performance of the
system is sensitive to the accuracy of the estimation of the
CSI at both the transmitter and the receiver. Due to the time-
varying nature of the communication channel and the delay
imposed by the TDD regime, channel tracking procedures
are called upon [3].

Recently, several channel tracking methods were pro-
posed. A pilot-based estimation procedure (and hence
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nonblind) is proposed by Lebrun et al. [3]. An additional
correction stage is incorporated into the SVD of the commu-
nication channel to compensate for outdated estimates of the
CSI. The proposed architecture is capable of maintaining the
channel capacity without using additional pilots. However,
no attempt to directly track the computationally intensive
SVD was made.

A family of tracking solutions based on the celebrated
Kalman filter is next introduced. Komninakis et al. [4] use
the Kalman filter in the time domain to track the channel
coefficients. The unknown input signals are replaced by the
output of a decision feedback equalizer (DFE).

Roman et al. [5] also use the time-domain Kalman
tracking, but the DFE operates in the frequency domain.
Bulumulla et al. [6] replace the time-domain formula-
tion by its frequency-domain counterpart, exploiting the
channel smooth frequency response. Cheng and Dahlhaus
[7] compare a time-domain scheme, similar to [4], and a
frequency-domain scheme, similar to [6], and show their
equivalence. Hou et al. [8] showed that the obtainable mean
square error (MSE) of time- and frequency-domain channel
estimation procedures is equivalent. Their analysis (based
on pilot submission) is only applicable if an appropriate
frequency-domain smoothing is performed. The length of
the channel in time domain is exploited to perform the
smoothing. Haeb-Umbach and Bevermeier [9] use time-
domain Kalman filtering (during the preamble) for the
initialization of frequency-domain Wiener filter, used for
blindly tracking the channel impulse response. Grolleau et al.
[10] improved the traditional pilot-based frequency-domain
channel estimation, by applying a Kalman filter to the noisy
estimates.

All the above tracking algorithms are applied to the
channel coefficients (either in time domain or in frequency
domain or in both) and are not applicable to direct tracking
of the SVD of the channel. Moreover, the Kalman filter is
known to impose high computational burden, mainly due
to the matrix inversion involved in the procedure.

Dahl et al. [11–13] use an elegant solution for tracking
the SVD of the channel. Their blind iterative MIMO algo-
rithm (BIMA) method uses the well-known algebraic power
method. It is shown that by exploiting the bidirectional
communications, it is possible to iteratively converge to the
desired singular vectors of the channel (which correspond
to the largest singular values) in both terminals. However,
convergence to orthonormal basis vectors is not guaranteed
by the BIMA method, and hence another step, involving an
application of Orthogonal Triangular Decomposition (QRD)
to the obtained singular vectors, is mandatory. The QRD
is a computationally demanding procedure. Furthermore,
a crucial component of the algorithm is a detecting stage
performed by a slicer, which is prone to error propagation
problems.

Estimating performance bounds for time-varying chan-
nels is a cumbersome task. Time-varying single-input single-
output (SISO) channel is addressed by Barbarossa and
Scaglione [14]. They claim that physical parameters govern-
ing the time variation of the channel impulse response, for
example, reflection coefficients, delays, and Doppler shifts,

vary slowly in time. Based on this claim, they derive a
Cramér-Rao lower bound for the parameters as a function of
the frame length. Their derivation cannot be directly applied
to the more complicated MIMO scenario.

Our aim in the current contribution is threefold. We
first derive a bidirectional channel tracking procedure based
on the projection approximation subspace tracking defla-
tion (PASTd) algorithm [15]. The procedure is capable of
estimating communication channels under TDD regime.
A preliminary study of this algorithm was presented in
[16]. Later, Liu et al. [17] performed a comprehensive
experimental study of the same algorithm. Second, we
establish benchmarks, based on the Kalman filter, for
the tracking algorithm. The Kalman filter is used in the
paper solely as a performance benchmark for our proposed
method. Specifically, we compare time- and frequency-
domain schemes assuming that the transmitted data is
known. We then extend a preliminary study of the Kalman
filter as a performance benchmark [18] to deal with bidi-
rectional communications. We show that frequency-domain
tracking algorithms, which do not exploit the smooth
channel frequency response, are inferior to the compu-
tationally more expensive, time-domain tracking schemes.
The derived Kalman-based bidirectional frequency-domain
benchmark is compared with the proposed method. It
is shown that the performance degradation due to the
application of the frequency-domain PASTd algorithm is
only minor in comparison with the derived benchmark.
This study therefore justifies the use of our novel and
efficient tracking algorithm. Third, performance measures
based on information theoretic notions such as effective
communication rate and outage probability are derived
and presented for both Gaussian and BPSK data streams.
Simulations using an autoregressive (AR) channel model
(that comply with Saleh and Valenzuela model [19]) are
performed, and the expected performance degradation due
to the estimation errors is evaluated.

The structure of this paper is as follows. In Section 2,
we state the problem both in the time- and frequency-
domains. In Section 3, we derive a state-space represen-
tation of the problem at hand and motivate the use of
the Kalman filter as a performance benchmark for the
channel tracking algorithm. Appendix A is dedicated to
the description of the Kalman filter-based benchmark. The
proposed bidirectional frequency-domain channel tracking
algorithm, which applies the PASTd procedure, is derived in
Section 4. Performance measures of the estimated channel
matrix, based on channel capacity notions, are discussed
in Section 5. Finally, a comprehensive experimental study
is performed in Section 6. It is first shown that time-
domain schemes are superior to frequency-domain schemes,
although comparable performance measures are exhibited
in a wide range of SNR levels. Then, the tracking ability
and the obtainable communication rate are evaluated and
compared with the BIMA method proposed in [12]. Finally,
the proposed blind tracking method is evaluated by testing
the outage probability and the SER versus SNR for BPSK
and 4-QAM constellations. We draw final conclusions in
Section 7.
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2. Problem Statement

In this section, the MIMO channel in the OFDM framework
is presented. We address a bidirectional MIMO channel.
We define the communication system from the base station
point of view. Thus, the link from the base station to the
subscriber will be denoted downlink, and the reverse side will
be denoted uplink. We start by formulating the problem in
the time-domain and proceed to formulating the frequency
domain and the bidirectional frequency domain. This section
is concluded by modeling the stochastic process governing
the channel time evolution. This model will be used both
in the derivation of the Kalman filter benchmark and in the
simulations described in the experimental study section.

2.1. Time Domain. Let N denote the OFDM symbol length.
Assume that the number of transmitting antennas is Nt, and
the number of the receiving antennas is Nr . Each of the
Nt×Nr MIMO channels is assumed to be fading channel with
L coefficients hi j(�,n), where 1 ≤ i ≤ Nt are the transmit
antenna indexes, 1 ≤ j ≤ Nr are the receiving antenna
indexes, and � = 0, . . . ,L− 1 are the coefficients indexes. We
assume the filters to be time varying, and hence, their values
depend on n, the symbol index. However, the channels are
assumed to be time invariant within the OFDM symbol.

The ith antenna in the base station transmits a sequence
of OFDM symbols xi(m,n), where −∞ < n < ∞ is the
symbol index, and m = 0, . . . ,N − 1 denotes the time index
within the OFDM symbol. For the OFDM assumption to
hold, each symbol of the transmitted signal consists of data
samples preceded by a cyclic prefix (CP). The length of the
CP should be greater than or equal to the channel spread L,
to guarantee proper operation of the OFDM system.

The received signal at the jth antenna of the subscriber is
thus a linear combination of transmitted sequences:

y j(m,n) =
Nt∑

i=1

L−1∑

�=0

hi j(�,n)xi(m− �,n) + z j(m,n), (1)

where the additive term z j(m,n) is assumed to be temporar-
ily white complex Gaussian noise. Due to the CP, xi(m −
�,n) = xi(mod(m − �,N),n). The received signals can be
compactly described in a matrix notation:

yn =
(

INr

�
Xn

)
hn + zn, (2)

where
⊗

is the Kronecker product and

h
i j
n �

[
hi j(0,n), hi j(1,n), . . . ,hi j(L− 1,n)

]T
, (3)

hn �
[(

h11
n

)T
. . .

(
hNt1
n

)T
. . .

(
h1Nr
n

)T
. . .

(
hNtNr
n

)T]T

, (4)

yn �
[
y1(0,n) . . . y1(N − 1,n) . . . yNr (0,n) . . . yNr (N − 1,n)

]T
,

(5)

zn �
[
z1(0,n) . . . z1(N − 1,n) . . . zNr (0,n) . . . zNr (N − 1,n)

]T
,

(6)

Xi
n �

⎡
⎢⎢⎢⎢⎣

xi(0,n) . . . xi(−L + 1,n)
xi(1,n) . . . xi(−L + 2,n)

...
xi(N − 1,n) . . . xi(N − L,n)

⎤
⎥⎥⎥⎥⎦

N×L

,

Xn �
[
X1
n X2

n . . . XNt
n

]
N×(LNt)

.

(7)

zn, consisting of concatenated noise samples, is a zero-
mean, temporarily white, circularly symmetric complex,
Gaussian-distributed random vector, zn ∼ CN(0, Rn),
where Rn∈ C(NrN)×(NrN) is the time-domain noise covariance
matrix. If the measurement noise is also spatially white; that
is, the noise signals received by the antennas are uncorrelated,
the covariance matrix Rn becomes diagonal.

2.2. Frequency Domain. If the CP is larger than or equal
to the channel length L, the channel effect is converted
into a circular convolution, and hence can be conveniently
expressed as a multiplication in the frequency domain. Let

y j(ω ,n) =
N−1∑

m=0

y j(m,n)e− jωm, (8)

and

hi j(ω,n) �
L−1∑

l=0

hi j(�,n)e− jω� , (9)

where ω is the frequency bin. Then

yn(ω) = Hn(ω)xn(ω) + zn(ω), (10)

where

yn(ω) �
[
y1(ω,n) . . . yNr (ω,n)

]T
,

xn(ω) �
[
x1(ω,n) . . . xNt (ω,n)

]T
,

zn(ω) �
[
z1(ω,n) . . . zNr (ω,n)

]T
,

(11)

and the channel matrix Hn(ω) is given by

Hn(ω) �

⎡
⎢⎢⎣

h11(ω,n) · · · hNt1(ω,n)
...

...
h1Nr (ω,n) · · · hNtNr (ω,n)

⎤
⎥⎥⎦. (12)
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zn(ω) is a circular symmetric complex AWGN zn(ω) ∼
CN(0, Rn(ω)). Rn ∈ CNr×Nr is the frequency-domain noise
covariance matrix. In the frequency-domain formulation,
the frequency bins are decoupled, hence yielding instanta-
neous rather than convolutive mixing.

2.3. Bidirectional MIMO System. We consider a bidirectional
link, and assume that the gains of the radio frequency (RF)
chains on both terminals are fully compensated for so that
the channel matrices in both directions reflect only the effect
of the physical link itself. Under this reciprocity assumption,
the uplink channel model is given by

ỹn(ω) = HT
n (ω)x̃n(ω) + z̃n(ω), (13)

where x̃n(ω), z̃n(ω), and ỹn(ω) are the respective subscriber
transmitted signals, noise signals, and base station received
signals, defined in accordance with the downlink definitions.

For the sake of brevity, we will omit the frequency bin
index ω whenever no confusion can occur. The time-varying
downlink channel matrix Hn can be factored using the SVD
as follows:

Hn = UnSnVH
n , (14)

where UNr×Nr
n and VNt×Nt

n are unitary matrices of the
left and right singular vectors of Hn, respectively, and H

denotes the Hermitian (conjugate-transposed) operation.

SNr×Nt
n is a diagonal matrix with nonnegative {skn}min(Nr ,Nt)

k=1
singular values on its main diagonal. Consequently, the SVD
factorization of HT

n is given by

HT
n = V∗

n ST
n UT

n . (15)

Using (10) and (13), the downlink and uplink channels can
be rewritten as

yn = UnSnVH
n xn + zn,

ỹn = V∗
n ST

n UT
n x̃n + z̃n.

(16)

As a consequence, using Vn as a precoder at the transmission
side of the base station and UH

n at the receiving side of the
subscriber, and U∗

n and VT
n at the respective uplink channel,

results in a diagonal channel in both directions.

xn = Vnxn, yn = UnSnVH
n xn + zn,

ζn = UH
n yn =⇒ ζn = Snxn + UH

n zn

x̃n = U∗
n x̃n, ỹn = V∗

n ST
n UT

n x̃n + z̃n,

ζ̃n = VT
n ỹn =⇒ ζ̃n = ST

n x̃n + VT
n z̃n.

(17)

Note that it is sufficient to know Vn at the base station site,
and Un at the subscriber site, for conducting the communi-
cation. Note also that since Un,Vn are unitary matrices, the
power constraint is not violated. Now, if the singular values
are known, communications in both directions simplify
to parallel independent AWGN channels. The bidirectional
MIMO system with precoding and postcoding is depicted in
Figure 1. The tracking algorithm blocks depicted in Figure 1
are discussed in detail in Section 4.
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Tracking
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Figure 1: Bidirectional MIMO System.

2.4. Channel Model. In many cases the channel coefficients
trajectory can be approximately modeled as an auto-
regressive (AR) process of order P. Hence, the �th tap of the
i jth time-varying channel is given by

hi j(�,n) =
P∑

p=1

α
i j
�

(
p
)
hi j

(
�,n− p

)
+ wij(�,n). (18)

We assume that the frame-dependent filter coefficients can
be modeled as a wide-sense stationary (WSS) AR(P) process.
Hence, the driving noise signals wij(�,n) are independently
identically distributed (i.i.d.). We further assume that all Nt×
Nr × L processes wij(�,n) are uncorrelated.

The time propagation of outdoor fading channels is often

modeled as AR processes [6]. The AR coefficients α
i j
� (p)

and the variance of the innovation process wij(�,n) can be
determined in advance by solving the Yule-Walker equations
using the channel correlation matrix. Following Komninakis
[4], we assume that the mean of all channel coefficients is
zero, and that their autocorrelation sequences are governed
by the Doppler shift fD

E
{
hi j(�,n)

(
hi j(�,n−m)

)∗}
∼ J0

(
2Π fDmT

)
, (19)

where T is the duration of a transmitted symbol, T = 1/Δ f .
Δ f is the frequency spacing between the OFDM subcarriers.
It was empirically shown that AR modeling fits the trajectory
of measured indoor channels as well [16]. Each reflection
undergoes a different geographic route. However, we assume
that the underlying statistics governing all reflections is
identical. It is therefore assumed that the forgetting factor

is independent of the coefficient index, that is, α
i j
� (p) =

αi j(p), for all p = 1, . . . ,P. For the clarity of the exposition,
we will assume that the order of all AR processes is P = 1.

3. State-Space Modeling and
Algorithm Benchmark

In Section 2, the bidirectional MIMO channel model was
presented. In Section 4, a tracking scheme, based on the
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channel matrix eigenanalysis, will be derived. The aim of the
current section is to motivate the derivation of a benchmark
for evaluating the proposed algorithm. Calculating the ability
of algorithms to track the time-varying channel coefficients
might be a cumbersome task. To simplify the derivation,
we propose to use the Bayesian framework. We adopt the
celebrated Kalman filter [20], with known channel statistics
and input signal, as a method for evaluating the obtainable
performance of tracking algorithms, regardless of the partic-
ular algorithm used. Obviously, this information is unavail-
able, restricting the application of the described Kalman
filter procedure to merely a performance benchmark. Three
instances of the Kalman filter are used in the paper. The
time-domain and frequency-domain instances are used for
roughly estimating the expected performance loss due to
the application of the PASTd-based tracking algorithm in
the frequency domain. The bidirectional frequency-domain
instance of the Kalman filter is used for evaluating the
proposed communication scheme (based on either PASTd or
BIMA channel tracking algorithms). The actual application
of the Kalman filter as a benchmark for the tracking
algorithm is given in Appendix A. The reader is referred to
(A.1)–(A.2) for the definition of the state-space model and
to Algorithm 2 for the Kalman filter propagation and update
stages. In the current section, the state-space formulation
of the problem, required for the application of the Kalman
filter, is described. This compact formulation is a widely used
presentation of dynamic systems. Eventually, in Section 6,
the proposed algorithm is evaluated, and its performance
is compared with another blind channel tracking algorithm
[12] and with the Kalman filter benchmark.

3.1. State-Space Formulation in the Time Domain. In the
time-domain formulation, we can identify the desired state-
vector dn as the channel vector hn∈ C(LNtNr )×1. Hence, (2)
can be immediately identified as a proper measurement
equation

yn =
(

INr

�
Xn

)
dn + zn. (20)

That is INr

⊗
Xn in (2) can be identified as Gn in (A.2), the

measurement matrix (for the time-domain presentation).
Define wn∈ C(LNtNr )×1, the innovation vector

w
i j
n �

[
wij(0,n) wij(1,n) . . . wi j(L− 1,n)

]T
,

wn �
[
(

w11
n

)T
. . .

(
wNt1
n

)T
. . .

(
w1Nr
n

)T
. . .

(
wNtNr
n

)T]T

.

(21)

The driving noise wn is a zero-mean, i.i.d. process with
dimensions L×Nt ×Nr . Hence, its covariance matrix fulfills
E{wnwH

m}� Qnδm,n. Due to the assumption that all driving
noise processes are uncorrelated, Qn is a diagonal matrix. We
further assume that the coefficients obey a decaying power
profile. zn is an N × Nr sensor noise vector defined in (6)
with E{znzHn } = Rnδmn. The transition matrix of the AR(1)
process, defined in (A.1) Φn ∈ C(LNtNr )×(LNtNr ) is given by

Φn � diag
([(

α11
)T

. . .
(
αNt1

)T
. . .

(
αNtNr

)T])
, (22)

where the L× 1 vector αi j is defined as

αi j �
[
αi j . . . αi j

]T
. (23)

The state-space formulation in the time domain is summa-
rized in Algorithm 2.

3.2. State-Space Formulation in the Frequency Domain. We
derive now the state-space formulation in the frequency
domain for either the channel matrix Hn(ω) or the singular
vectors matrices Un(ω) and Vn(ω) for the bidirectional
system. As tracking is performed independently for each
tone, the spectral smoothness of the channels cannot be
exploited.

3.2.1. Tracking the Channel Matrix Hn(ω). An AR(1) model
for the matrix Hn(ω) in the frequency domain can be derived
from the time-domain model described in (18).

hi j(ω,n) =
L−1∑

l=0

hi j(�,n)e− jω�

=
L−1∑

l=0

(
αi jhi j(�,n− 1) + wij(�,n)

)
e− jω�

= αi jhi j(ω,n− 1) +
L−1∑

l=0

wij(�,n)e− jω�.

(24)

Collecting terms, we have

hi j(ω,n) = αi jhi j(ω,n− 1) + wij(ω,n). (25)

Hence, hi j(ω,n) is an AR(1) model as well, with the same
coefficients {αi j} (The same result also applies for AR(P)
processes. The proof follows the same lines.). Since the
frequency-domain driving noise sequences wij(ω,n) are the
discrete time Fourier transform (DTFT) of the respective
time-domain driving noise sequences wij(�,n), they are also
i.i.d. sequences. The independence of the channels also
implies that wij(ω,n) are independent for different i j pairs.
The state-space formulation can now be stated. Using (10)
and the formula [21]

vec(RFT) =
(

FT
�

R
)

vec(T), (26)

we get the measurement equation

yn(ω) =
(

INr

�
xT
n (ω)

)
dn(ω) + zn(ω), (27)

where from (12),

hn(ω)

� vec
(

HT
n (ω)

)

=
[
h11(ω,n) · · ·hNt1(ω,n) · · ·h1Nr(ω,n) · · ·hNtNr(ω,n)

]T
.

(28)
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Hence, dn(ω)∈ C(NtNr )×1 can be identified as hn(ω), and
(INr

⊗
xT
n (ω)) can be identified as the frequency domain

measurement matrix Gn(ω). Further, defining the innova-
tion vector

wn(ω) �
[
w11(ω,n) . . . . . . wNtNr (ω,n)

]T
, (29)

and the transition matrix

Φn � diag
([
α11 · · ·αNt1 · · ·αNtNr

])
, (30)

the model equation is readily shown to be

dn(ω) = Φndn−1(ω) + wn(ω). (31)

It is important to emphasize that separate sets of state-
space equations are formulated for all frequency bins. The
innovation noise vector wn(ω) is an i.i.d. process, with zero-
mean and covariance matrix

E
{

wn(ω)wH
m(ω)

}
� Qn(ω)δm,n. (32)

Assume that uncorrelated antennas Qn(ω) are a diagonal
matrix. Following the assumption that the driving noise
signals wij(�,n) are uncorrelated for all �, it is easily shown
that

E
{∣∣∣wij(ω,n)

∣∣∣
2
}
=

L−1∑

l=0

E
{∣∣∣wij(�,n)

∣∣∣
2
}
. (33)

The state-space formulation in the frequency domain is also
summarized in Algorithm2.

3.2.2. Tracking the Singular Vectors of the Bidirectional MIMO
System. A state-space formulation for the singular vectors of
the channel matrix [the matrices Un(ω) and Vn(ω)] is now
stated. Several modifications to the model in Section 3.2.1
are required for this exposition. We describe the model for
the downlink channel. The model for the uplink is derived in
a similar fashion.

Simplifying the channel-dependent transition factors αi j

to channel-independent transition factors α, the channel
matrix is reduced to Φn = αI. Then the channel model
simplifies to

Hn(ω) = αHn−1(ω) + Wn(ω). (34)

The matrix Hn(ω) was defined in (12), and the innovation
noise Wn(ω) is given by

Wn(ω) �

⎡
⎢⎢⎣

w11(ω,n) · · · wNt1(ω,n)
...

...
w1Nr (ω,n) · · · wNtNr (ω,n)

⎤
⎥⎥⎦. (35)

For the sake of brevity, we omit the frequency bin index ω
from the following derivation. Using (17), we have

yn = UnSnVH
n xn + zn

= UnSnVH
n Vnxn + zn

= UnSnxn + zn.

(36)

The last equation can be rewritten as

yT
n = xT

n (UnSn)T + zTn . (37)

Using the vec(·) operator, we have

yn = vec
(

xT
n (UnSn)T

)
+ zn

= vec
(

xT
n (UnSn)TINr

)
+ zn.

(38)

Using (26), we finally have

yn =
(

INr

�
xT
n

)
vec

(
(UnSn)T

)
+ zn. (39)

Equation (39) constitutes the measurement equation for the
bidirectional tracking scenario with the state vector defined
as dn � vec((UnSn)T) and Gn = (INr

⊗
xT
n ). The state

equation can be derived from (34) by using the SVD:

UnSnVH
n = αUn−1Sn−1VH

n−1 + Wn. (40)

Multiplying both sides of the equation by Vn, we get

UnSn = αUn−1Sn−1VH
n−1Vn + WnVn. (41)

Using dn definition yields

dn = vec
(

(UnSn)T
)

= vec
((

αUn−1Sn−1VH
n−1Vn

)T
+ (WnVn)T

)

= vec
(
α
(

VH
n−1Vn

)T
(Un−1Sn−1)T

)
+ vec

(
(WnVn)T

)

= vec
((

VH
n−1Vn

)T
(Un−1Sn−1)TαINr

)
+ vec

(
(WnVn)T

)
.

(42)

Using (26) again, we finally get

dn =
((

αINr

)�(
VH
n−1Vn

)T)
dn−1 + vec

(
(WnVn)T

)
.

(43)

Therefore, the transition matrix is evidently given by Φn =
((αINr )

⊗
(VH

n−1Vn)
T

). Note that the transition matrix in this
case is time varying, due to the term VH

n−1Vn, assumed to be
known in the application of the Kalman filter in Appendix
A. Moreover, it is also assumed that the transmitted signal
xn = Vnxn is accurately calculated. As a consequence,
deriving the benchmark for tracking the singular vectors
at the receiving side of the subscriber site, that is dn =
vec((UnSn)T) = vec(SnUT

n ), requires exact knowledge of the
singular vectors of the respective transmitting side Vn. Note,
that the innovation noise covariance matrix, defined in (32),
remains intact due to the orthogonality of the matrix Vn.
For the derivation presented in this paper, we assume that
the singular values matrix Sn can be accurately estimated.
Singular value estimation is out of the scope of this paper.
It should be noted though that decision-directed schemes,
which use the predefined constellation, can be applied to
estimate the singular values. Finally, at the receiving side
of the base station, the state vector is defined as dn =
vec(SnVH

n ). The tracking algorithm for the bidirectional
communication is depicted in Algorithm 2.
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4. The Application of the PASTd Algorithm

Bidirectional MIMO communication channel can be trans-
formed to parallel independent AWGN channels as shown
in (17) and in Figure 1. Knowing the right-hand singular
vector matrix Vn at the base station site and the left-hand
singular vector matrix Un at the subscriber site suffices for
diagonalizing the MIMO channel in both directions. Hence,
reliable communication necessitates the calculation of the
SVD in both terminals. As, in general, the channel matrix Hn

is time varying, direct calculation of the SVD is cumbersome
and imposes a computational burden that is too high for
practical applications. We therefore propose in this section
an efficient method for tracking the SVD matrices. We will
show that the received data on each terminal suffice for
estimating the corresponding matrix, and hence no feedback
between terminals is necessary.

We begin by assuming that the transmitted signals,
in both directions, are uncorrelated, white, zero-mean,
Gaussian with equal constant power per singular mode:

E
(

xnxH
m

)
= ρINt δm,n, E

(
x̃nx̃H

m

)
= ρ̃INr δm,n, (44)

where E denotes the expectation operation, ρ, ρ̃ are the input
signals power at the downlink and uplink, respectively, INt

and INr are, respectively, Nt × Nt and Nr × Nr identity
matrices, and δm,n is the Kronecker delta. The number of
available communication channels is min(Nt,Nr).

We concentrate on describing the tracking procedure for
Un held in the receiving terminal of the subscriber site. The
tracking procedure for Vn at the base station is equivalent.
Assume the receiver at the base station site, already converged
that is, Vn is known. This approximation can be justified
by using a proper initialization. Initialization schemes are
out of the scope of the current contribution. However, we
note by passing that a training sequence can be used while
the algorithm is in its acquisition stage. After the channel
has been acquired, channel tracking based on the proposed
method can be applied. As shown in (17), the received signal
at the subscriber site is given by

yn = Hnxn + zn. (45)

Assuming that the receiver noise is spatially white with unit
gain, that is, E(znzHm) = INr and using (17), the correlation
matrix of the vector of received signals is given by

R
y
n � E

(
ynyH

n

)
= HnE

(
xnxH

n

)
HH

n + INr

= ρHnVnVH
n HH

n + INr = Un

(
ρSnSH

n + INr

)
UH

n ,
(46)

where due to the noise power definition, ρ is now the SNR.
We conclude that the left singular vectors of Hn are the

eigenvectors of R
y
n. Therefore, calculation of the left SVD

matrix of Hn can be obtained by calculating the eigenvectors

of R
y
n from the received data vectors yn.
The PAST algorithm [15] provides an efficient recursive

method for estimating part of (or all) R
y
n eigenvectors.

The method is based on alternative interpretation of the

subspace, spanned by several eigenvectors, as a solution to
a minimization problem. The minimization of the resulting
cost function is then solved by applying the recursive
least squares (RLS) technique, combined with a subspace
projection approximation. However, usually the obtained
basis is not orthogonal. Therefore, we will use a variant of
PAST, denoted PASTd, as it uses a deflation technique in
order to provide the required orthonormal basis. The main
advantage of using the PASTd algorithm is its ability to
converge to an orthonormal basis of the correlation matrix
and to track its variations.

The algorithm used at the receiver of the subscriber
site is summarized in Algorithm 1. We assume that the
system exploits all available min(Nt,Nr) channels for the
communication. In this summary, we used the following
definitions. The eigenvectors comprising the matrix Un are
given by

Un =
[

u1
n u2

n · · ·uNr
n

]
. (47)

0 < β ≤ 1 is the forgetting factor of the recursive scheme,
and ûi

0; 1 ≤ n ≤ min(Nt,Nr) are the initial estimate of the
relevant eigenvectors at time 0. Note that the initialization
set, defined in Algorithm 1, is an orthonormal set.

Similarly, the estimates υ̂
j
n; 1 ≤ j ≤ min(Nt,Nr)

comprising the right singular value matrix of the channel are
estimated at the receiver of the base station site, using the
data received from the reverse channel, ỹn. The estimates Ûn

and V̂n are then used for transmission and reception in both
terminals. Recall that Un is only required at the base station
site, while Vn is only required at the subscriber site. Hence,
the effective channel is given by

Ŝn = ÛH
n UnSnVH

n V̂n (48)

which results in a diagonal channel [as in (17)] only had
the estimate been exact. In practical scenarios, Ŝn only
approximates a diagonal channel.

5. PerformanceMeasures for Approximate SVD

In this section, we suggest some information-theoretic-based
performance measures, in order to evaluate the quality of the
effective channel induced by an approximate SVD procedure
(as we are interested in evaluating the proposed PASTd-
based algorithm only the frequency-domain formulation is
considered here). Arguably, the best such measure is channel
capacity; however, the exact computation of the capacity
for fading channels is a cumbersome task even for simple
block-i.i.d. fading models [22]. Instead, we shall consider
the maximum rate that can be achieved under a number
of assumptions that simplify both the expression for the
achievable rate and the structure of the receiver. We will
assume that the fading coefficients are known at the receiver
and limit ourselves to coding schemes that first try to
diagonalize the channel via an (approximate) SVD and then
use each (approximated) mode as a scalar channel. Hence,
the residual crosstalk terms due to imperfect diagonalization
are not compensated for by joint decoding, capturing the
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negative effect of the approximation. For further simplicity,
we shall also assume that the transmitted power is equally
divided between the (approximated) modes, without tak-
ing into consideration possible difference between channel
modes. It should be emphasized that the resulting measures
provide only a rough estimate of the rate and are mostly
intended as a common yardstick rendering different tracking
algorithms commensurable. In what follows, we assume
that the process {Hn}∞n=1 is stationary and ergodic, so the
suggested performance measures can be estimated arbitrarily
well in practice by replacing the expectation with averaging.
Note that although we retain the time subscript, all our
expressions will in fact depend on the first-order statistics of
the channel matrix only.

We first consider the case of perfect SVD. In this case, the
maximal achievable rate (with equal mode power and fading
known at the receiver) is achieved by a circular symmetric
white Gaussian codebook [23] and is given by

Rmax = E log det
(

INt + ρHnHH
n

)

= E log det
(

INt + ρSnSH
n

)
.

(49)

Note that only the first-order statistics of Hn is required, since
the channel is memoryless given the fading coefficients, and
the latter are assumed independent of the input and known
at the reciever. Let us turn now to the case where only an
approximate SVD has been performed, via some tracking
algorithm. Since the receiver is assumed to decode each of
the approximated modes separately, we have two sources of
noise: (1) a Gaussian additive noise and (2) crosstalk noise
from other modes due to off-diagonal elements. Define the
three matrices

Λn � diag
(

ÛH
n Ûn

)
,

Γn � diag
(

ŜnŜH
n

)
− diag

(
Ŝn

)
diag

(
Ŝn

)H
,

Ψn � diag
(

Ŝn

)
diag

(
Ŝn

)H
,

(50)

where diag(M) is defined as a square diagonal matrix with
the same diagonal elements as M.

The signal power is given by the square absolute value of
the diagonal elements of the matrix Ŝn multiplied by the per-
antenna SNR ρ, which is the diagonal of the matrix ρΨn. The
channel noise is not white due to the fact that the estimate
Ûn is not orthonormal (although it is approximately so).
The noise covariance matrix is therefore given by ÛH

n Ûn,
and since the receiver performs separate decoding for each
mode, we are only concerned with the noise power which is
given by the diagonal of Λn. The crosstalk noise stems from
the off-diagonal elements of the effective channel matrix
Ŝn. The crosstalk noise power per mode is given by the
diagonal elements of the matrix ŜH

n Ŝn, multiplied by the
SNR ρ. Therefore, the total crosstalk noise power per mode
is given by the elements of the diagonal matrix ρΓn, and
the total noise per mode is given by the elements of the
diagonal matrixΛn+ρΓn. Thus, by using a circular symmetric

begin
1.1 Set di0 = 1, 1 ≤ i ≤ min(Nt ,Nr)

1.2 Initialize ûi
0 = [

i−1
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

Nr

]T

1.3 for n = 1, 2, . . . ,N do
1.4 yi

n = yn
1.5 for i = 1, 2, . . . , min(Nt ,Nr) do

gin = (ûi
n−1)Hyn

din = βdin + |gin|2
ein = yi

n − ûi
n−1g

i
n

ûi
n = ûi

n−1 + ein(gin)∗/din
yi+1
n = yi

n − ûi
ng

i
n

end
end

end

Algorithm 1: Summary of the PASTd algorithm performed at the
receiver of the subscriber site (downlink direction).

�{yi}

	{yi}

Constellation point due to crosstalk
Constellation point (no crosstalk)

Figure 2: Inversion probability in MIMO channel using BPSK
signaling.

white Gaussian codebook over the approximated modes and
treating the crosstalk as noise, it is easily observed that the
following rate is achievable:

Reff = E log det
(

INt + ρΨn
(
Λn + ρΓn

)−1
)

=
∑

i

E log (1 + SINRi),
(51)

where SINRi = ρψn,i/(λn,i + ργn,i) and ψn,i, λn,i, and γn,i are
the diagonal elements of Ψn, Λn, and Γn, respectively. Note,
that the expectation is taken w.r.t. the random SINRi, which
is assumed known at the receiver. Comparing Reff to Rmax can
give some idea of how large is the loss in rate due to tracking
misalignment.

It is also our aim to explore the degradation incurred
when using practical signaling constellation (rather than
a Gaussian codebook). For that purpose, we shall restrict
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our attention to the following simple transmission scheme.
BPSK signaling {−√ρ,√ρ} is transmitted over each of the
approximated modes, while a hard decision is taken with
respect to that constellation at the receiving side. Thus, for
any instantiation of the channel matrix, we essentially have
a binary symmetric channel (BSC) over each mode in each
direction. The capacity of a BSC is given by 1−hb(p), where p
is the associated inversion probability and hb(·) is the binary
entropy function. If the inversion probabilities constitute a
stationary and ergodic process {pn}∞n=1, independent of the
input and known at the receiver, then the capacity becomes
E(1− hb(pn)). Recall that the inversion probability for BPSK
signaling over an AWGN channel with output SNR ρout is
given by Q(√ρout) (Q(x) = 1/

√
2π

∫∞
x e−x

2/2 is the Gaussian
Q-function.). Following this, the maximal achievable rate for
BPSK signaling with equal power allocation over the modes
and perfect SVD is given by

RBPSK
max =

min(Nr ,Nt)∑

k=1

E
(

1− hb
(
Q

(√
ρskn

)))
, (52)

where skn are the singular values of Hn, that is, the diagonal
elements of Sn, which are assumed known at the receiver.

Turning back to the case of approximate SVD, we will
assume for simplicity that the phase of the diagonal elements
of the effective channel matrix Ŝn can be accurately estimated
at the receiver, by applying some decision-directed rule. The
receiver is then assumed to compensate for the phase, so that
the effective channel matrix becomes

Sn = �
(

diag
(

ŜH
n

))
· Ŝn, (53)

where �(re jθ) � e jθ for r > 0 is applied elementwise.
Now, for any transmitted vector from the BPSK constellation,
we can find the probability of inversion for each of the
BSC’s over the approximated modes and then average over
all possible transmitted vectors. As in the Gaussian input
case, the inversion probability is an accumulated impact of
channel noise and crosstalk interference (see Figure 2). It is
easy to see that the covariance matrix Σn of the noise after
both Ûn and the phase compensation are applied satisfies

Σn = �
(

diag
(

ŜH
n

))
· ÛH

n Ûn ·�
(

diag
(

Ŝn

))
. (54)

Note that diag(Σn) = Λn, that is, Σn, has the same diagonal
elements as Λn. Hence, the noise power per approximated
mode remains the same after phase compensation.

Recall that the transmitted vector xn is of the form √
ρb

for some min(Nr ,Nt)-dimensional vector b with elements
in {1,−1}. The corresponding received signal (without the
noise) after phase compensation is ρSnb, and hard-decision
decoding is applied only to its real part. Following that, and
using a uniform codebook independent over the modes, the
following rate is achievable:

RBPSK
eff =

min(Nr ,Nt)∑

k=1

E
(

1− hb
(
pkn

))
. (55)

The expectation is taken w.r.t.

pn � 2−min(Nr ,Nt)
∑

b

Q
(
−Λ−1

n ·Db ·R
(√

ρ Snb
))

, (56)

where pn = [p1
n, . . . , pmin(Nr ,Nt)

n ]
T

, and pkn is the (random)
inversion probability associated with the kth approximated
mode, at time n. The summation is taken over all vectors b
with elements in {1,−1}, Db is a diagonal matrix with the
vector b on the diagonal and Q(·) is applied elementwise.
(Note that pn is averaged over a uniform input, hence we are
considering the capacity of a corresponding “average BSC”
with pn known at the receiver.).

The performance measures above assume that the
ergodic nature of the channel is exploited, that is, that coding
is performed over many channel instances such that the
“entire range” of fading behavior is observed. In practice,
coding is usually performed over significantly shorter time
frames due to delay and complexity constraints, and a notion
of an outage probability for a given target rate is called for.
Given a transmission rate R and a fixed block size/time frame,
the outage probability is defined to be the probability that the
empirical channel observed over the block cannot support
the rate R. For many fading processes, outage is the dominat-
ing error event; hence outage probability is error probability
de facto. The outage probability can be estimated arbitrarily
well by taking enough averages, counting the fraction of
blocks in which the average rate (according to any one of the
desired measures above) falls below the target rate R.

6. Experimental Study

This section is dedicated to performance evaluation of the
proposed PASTd-based tracking algorithm. The tracking
ability, the effective rate, the outage probability, and SER
versus SNR curves are used to evaluate the algorithm and to
compare it with the benchmark method based on the Kalman
filter as described in Appendix A and the BIMA algorithm,
a channel tracking algorithm based on the iterative power
method that was proposed by Dahl et al. [12].

6.1. Test Scenario. Simulations were performed for a 2 × 2
MIMO channel, that is, Nr = Nt = 2. We use a simplified
version of Saleh and Valenzuela’s [19] model and describe
the transfer function of each element of the channel matrix
by

H
ij
n (z) =

3∑

k=1

a(k)
n z−τk , τk ∈ {0, 1, . . . ,L− 1}, (57)

where the reflection coefficients a(k)
n are AR(1) processes

and τk are their respective delays, randomly chosen in the
allowable channel delay spread. Typically, three coefficients
suffice to describe a wide range of actual in-door channels.
The delays are fixed for each simulation. However, the
channel coefficients are time varying

a(k)
n = αa(k)

n−1 + w(k)
n , 0 < α < 1, w(k)

n ∼ CN
(

0, γ−2k
)
.

(58)
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The channel coefficients variance is obeying an exponential
decay profile. The reflection coefficients were selected inde-
pendently for each matrix element 1 ≤ i, j ≤ 2.

The symbol rate was set to 20 MHz, and the maximal
delay spread is set to L = 16 symbols (0.8μs). The profile
parameter γ is set to 3 dB. This setting was converted
into a 64-subcarrier OFDM-MIMO setting, using a 16-
symbol cyclic prefix, for the comparison of time- versus
frequency-domain methods. In the rest of the evaluation, 32
subcarriers and the same cyclic prefix length were used. The
AR parameter was set to α = 1 − 10−4 which corresponds
to a coherence time of ∼ 104 OFDM symbols (0.5 ms). Since
normally it is not possible for the uplink and downlink to
transmit simultaneously under the reciprocity model, it is
more realistic to assume a TDD scheme. The TDD packet
size was set to 100 OFDM symbols (5μs). Simulations were
performed over a time interval of 4 · 104 OFDM symbols
(2 ms). We repeated each experiment 100 times and averaged
the results. Since the method presented aims at tracking
rather than acquisition, the channel matrix estimate was
initialized with the correct value. For a fair comparison with
the alternative algorithm and the benchmark, both the BIMA
algorithm and the Kalman filter were also initialized with the
correct value of the channel.

6.2. Test Procedure. Performance evaluation of the proposed
method is carried out as follows. First, time-domain tracking
schemes are compared with frequency-domain schemes
(using the Kalman-based benchmarks) for estimating the
expected performance loss due to the use of the latter. It
should be stressed that the PASTd tracking scheme is a
frequency-domain algorithm. Second, the proposed method
is evaluated and compared with the BIMA method and
the Kalman benchmark (frequency-domain, bidirectional
channel instance) by means of inspecting tracking traces
and by calculating the effective communications rate for
Gaussian input signals. Finally, the proposed communication
scheme is evaluated by estimating the outage probability for
both Gaussian and BPSK input signals and the SER versus
SNR curves for 4-QAM constellation.

The BIMA technique [12] uses the iterative power
method for tracking the right- and left-singular vectors
of the channel. Application of the technique necessitates
transmission of b symbols, where b > min(Nr ,Nt). It
is therefore implicitly assumed that the channel is almost
constant over b OFDM symbols.

One of the key components of the BIMA method is the
slicer, responsible for the BPSK detection. In our imple-
mentation, we used a slightly modified version to enable
detection of arbitrary constellations. This modification was
obtained by replacing the sign operator with a slicer suitable
for higher constellations. For a fair comparison between
BIMA and the proposed method, both algorithms are using
the correct singular values.

Reliable communications can only be guaranteed if the
estimated singular vectors in both sites form an orthonormal
basis. The deflation procedure in the PASTd technique
guarantees approximate orthonormalization of the basis

vector. In the BIMA algorithm, the orthonormalization is
obtained by sorting the intermediate basis vector according
to their norm and then applying QRD.

As a consequence of the orthonormalization step, the
computational complexity imposed by both algorithms sig-
nificantly differs. We only present and compare the number
of operations at the receiver side. Let N be either Nt or
Nr . In BIMA algorithm, the computational complexity of
calculating the norm and then sorting the basis vectors
is about O(N2), and the QRD requires O(N3) operations.
Overall, the number of multiplications per symbol for each
OFDM subcarrier is (4Nb+3N2+3N3)/b. The computational
burden imposed by the PASTd algorithm is 4N2 + 3N
multiplications per subcarrier which is significantly lower
than the complexity of the BIMA algorithm for large number
of antennas. The Kalman filter, which assumes known input
signal, cannot be used in a realistic scenario and is therefore
only used in this paper as a benchmark. For this reason, we
do not present the associated computational complexity.

6.3. Channel Tracking. In this section, tracking ability is eval-
uated. Firstly, we compare time- versus frequency-domain
schemes using the Kalman filter benchmark. Secondly, the
proposed method is compared with the alternative BIMA
tracking algorithm and with the Kalman-based benchmark.

The PASTd-based proposed algorithm is implemented in
the frequency-domain. It is therefore beneficial to demon-
strate the expected degradation due to the frequency-domain
implementation. Define the mean normalized estimation
error performance measure (averaged over all channels and
all time indexes):

MSE =
E
{∥∥∥d̂n|n − dn

∥∥∥
2
}

E
{
‖dn‖2

} , (59)

where dn is the channel to be tracked. dn = hn is
given by (3)–(4) for the time-domain algorithm and by
(28) for the frequency-domain algorithm. The MSE as a
function of the input signal-to-noise-ratio (SNR) is depicted
in Figure 3 for both time-domain and frequency-domain
Kalman filters. 100 independent runs were averaged to
obtain the results in the graph. It is evident that the time-
domain Kalman-based tracking algorithm outperforms the
frequency-domain Kalman-based tracking algorithm over
the entire SNR range. In input SNR levels lower than 20 dB,
the difference between the algorithms becomes insignificant.

With this conclusion in mind, we can proceed to the per-
formance evaluation of the proposed algorithm. In Figures
4(a), 4(b), we show tracking traces of the proposed PASTd-
based algorithm and compare them to the traces obtained
by the BIMA algorithm and the benchmark obtained by
the Kalman filter (which utilizes practically unavailable
information). The real channel trace and the benchmark
obtained by the bidirectional frequency-domain Kalman
filter are also depicted in the same graphs. All tracking traces
were simulated using SNR = 30 dB. For the BIMA algorithm,
we used b = 5 as a compromise between tracking ability and
reliable estimation. It is evident that the tracking ability of
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begin Time domain:
2.1 Let dn = hn, hn defined by (3)-(4)
2.2 Model equation: dn = Φndn−1 + wn

where Φn is defined by (22) and wn by (21) with diagonal covariance Qn

2.3 Measurement equation: yn = (INr

⊗
Xn)dn + zn

where Xn is defined by (7) and zn by (6) with diagonal covariance Rn

end
begin Frequency domain

2.4 Let dn = hn(ω), hn(ω) defined by(28)
2.5 Model Equation: dn = Φndn−1 + wn

where Φn is defined by (30) and wn by (29) with diagonal covariance Qn(ω)
2.6 Measurement equation: yn(ω) = (INr

⊗
xT
n (ω))dn(ω) + zn(ω)

where xn(ω) is the input signal and zn(ω) is the measurement noise with covariance Rn(ω)
end
begin Bidirectional, Frequency domain

2.7 Let dn = vec(SnUT
n )

2.8 Model equation: dn = Φdn−1 + wn

where Φn = ((αINr )
⊗

(VH
n−1Vn)T) and wn = vec((WnVn)T) with covariance Qn(ω)

2.9 Measurement equation:yn(ω) = Gndn(ω) + zn(ω)
where Gn = (INr

⊗
xT
n ) and zn(ω) is the measurement noise with covariance Rn(ω)

end

Algorithm 2: State-space formulation at the subscriber site.
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Figure 3: MSE versus SNR for time- and frequency-domain
Kalman filter-based benchmarks.

the proposed method outperforms the tracking ability of the
BIMA algorithm. We conclude that the proposed algorithm
has the ability to track rapidly changing MIMO channels.

6.4. Effective Rate, Outage probability, and SER versus SNR.
In this section, a communication system based on the
proposed method is evaluated. In Figure 5, the effective rate
obtained by the PASTd-based communication system with
Gaussian input and uniform power loading is depicted. For
comparison, the effective rate obtained by the BIMA-based
system and the bidirectional frequency-domain Kalman

filter benchmark are also depicted and compared with the
maximum achievable rate (49), under the uniform power
loading assumption.

It is evident that the rate loss due to the tracking ability
of the PASTd algorithm is only minor for SNR not exceeding
10 dB.

We proceed by examining the empirical outage proba-
bility obtained by the PASTd algorithm for Gaussian input
and for BPSK constellation. Simulations were carried out
using the optimal parameters for the PASTd algorithm, as
explained in [16]. The outage probability was estimated
assuming that coding takes place only at the packet level.
100 OFDM symbols (5μs) constitute a packet. The results are
depicted in Figure 6(a) for the BPSK input and in Figure 6(b)
for Gaussian input. To obtain the results in the graphs, 200
runs, each using 400 packets of 100 OFDM symbols each
(i.e., 2 ms for each run), were used.

As a reference, the effective rate of a communication
scheme, based on the PASTd algorithm, is also depicted
in the graph. For BPSK constellation, a negligible out-
age probability can be guaranteed for communication
rate of 17.5 Mbit/sec (compared with the effective rate of
23.7 Mbit/second). For Gaussian input, communicating at a
rate of 55.5 Mbit/second(compared with the effective rate of
64.4 Mbit/second) guarantees very low outage probability.

Finally, SER as a function of SNR is presented in
Figure 7 for 4-QAM constellation. In the graph legend,
strong and weak modes pertain to high and low singular
values, respectively. Recall that uniform power loading per
mode was used according to our transmission scheme. It
is anticipated that a more sophisticated communication
scheme using waterfilling [24] will improve the performance
of the proposed communication scheme.
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Figure 4: Tracking traces for OFDM subcarrier number 32 as a function of the symbol index n. Comparison between the real, bidirectional
frequency-domain benchmark, the BIMA algorithm, and the proposed PASTd-based algorithm.
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Figure 5: Effective rate of the PASTd algorithm compared with
the BIMA algorithm, the rate obtained by the Kalman-based
benchmark, and the maximal achievable rate obtained by full CSI
for uniform power loading transmission. Input signal is Gaussian.

7. Summary

In this paper, a novel tracking algorithm for OFDM-MIMO
channels in TDD regime was derived. The frequency-domain
method uses the PASTd procedure for tracking the SVD of
the channel matrix.

The method was compared with the BIMA tracking algo-
rithm, which is based on the power method for calculating
the channel singular vectors and with a benchmark derived
for this evaluation study. The benchmark is obtained by

the application of the Kalman filter to the problem at hand
using known input signals and channel statistics. We measure
the performance of the various algorithms by evaluating the
effective communication rate and the outage probability. It is
shown that the proposed algorithm outperforms the BIMA
algorithm and exhibits minor performance degradation with
respect to the Kalman benchmark (which uses unavailable
signal and channel information). Finally, the proposed blind
tracking method is evaluated by testing the SER versus SNR
for BPSK and 4-QAM constellations.

The PASTd-based algorithm is therefore shown to be a
reliable and computationally efficient tracking algorithm for
OFDM-MIMO channels.

Appendix

A. The Application of the Kalman Filter

The Kalman filter is used in the paper solely as a performance
benchmark for our proposed method. Three instances of the
Kalman filter are used in the paper. The time-domain and
frequency-domain instances are used for roughly estimating
the expected performance loss due to the application of the
PASTd-based tracking algorithm in the frequency domain.
The bidirectional frequency-domain instance of the Kalman
filter is used for evaluating the proposed communication
scheme (based on either PASTd or BIMA channel tracking
algorithms).

The Kalman filter is based on state-space formulation of
the system’s dynamics. Assume that the underlying process of
interest dn satisfies the following recursive model equation:

dn = Φndn−1 + wn, (A.1)
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Figure 6: Rate versus outage, SNR = 10 dB per mode.
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where dn is the desired state vector, Φn is the transition
matrix, and wn is the innovation process. Further, assume
that the measurement yn is related to the state vector dn via
the following measurement equation:

yn = Gndn + zn, (A.2)

where Gn is the measurement matrix and zn is the noise
process.

Define d̂n|n as the casual minimum MSE estimator of
dn in (A.1) based on the measurements yk, k = 1, 2, . . . ,n

in (A.2), and let Pn|n = E{(d̂n|n − dn)(d̂n|n − dn)
H} be its

respective error covariance matrix. The Kalman procedure

is initialized with d̂0|0 = E{d0}, the expectation of the
state vector at time instant 0, and P0|0 = P0, the respective
covariance matrix. We used the correct channel as an
initialization, since we are interested in tracking rather than
acquisition performance.

The Kalman filter is a recursive procedure [20], in which
two estimation stages are applied in each time instant n =
1, 2, . . .. In the first step, often referred to as the propagation

step, d̂n|n−1, the optimal estimate of dn based on all previous
measurements up to yn−1, is calculated. This step, which
does not involve the current measurement, predicts the state-
vector value based on the previous estimate d̂n−1|n−1 and
the known dynamics of the process. In the second step,
often denoted the update step, the current measurement yn
is utilized to update the estimate d̂n|n−1 from the first step.
The update optimally weights the propagated estimate and
the innovation embedded in the current measurement. The
weighting is given by the Kalman gain matrix Kn, resulting in

an optimal estimate d̂n|n of dn based on the measurements
y1, . . . , yn. The algorithm then proceeds to the next time
instant n + 1. For the application of the Kalman filter,
E{wnwH

m} = Qnδmn, the innovation noise covariance matrix,
and E{znzHm} = Rnδmn, the measurement noise covariance
matrix, are assumed to be a priori known.

The Kalman gain Kn, calculated by the recursive proce-
dure, is optimally weighting the innovation induced by the
measurements and the known dynamics.

The different instances of (A.1) and (A.2) are summa-
rized in Algorithm 2 for time-domain, frequency-domain,
and bidirectional frequency-domain tracking schemes.
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[23] İ.E. Telatar, “Capacity of multi-antenna Gaussian channels,”
Tech. Rep. Rm. 2C-174, Lucent Technologies, Bell Laborato-
ries, 1995.

[24] W. Yu and J. M. Cioffi, “Constant-power waterfilling: per-
formance bound and low-complexity implementation,” IEEE
Transactions on Communications, vol. 54, no. 1, pp. 23–28,
2006.


	1. Introduction
	2. Problem Statement
	2.1. Time Domain.
	2.2. Frequency Domain.
	2.3. BidirectionalMIMO System.
	2.4. Channel Model.

	3. State-SpaceModeling and Algorithm Benchmark
	3.1. State-Space Formulation in the Time Domain.
	3.2. State-Space Formulation in the Frequency Domain.
	3.2.1. Tracking the Channel Matrix
	3.2.2. Tracking the Singular Vectors of the Bidirectional MIMO System.

	4. The Application of the PASTd Algorithm
	5. PerformanceMeasures for Approximate SVD
	6. Experimental Study
	6.1. Test Scenario.
	6.2. Test Procedure.
	6.3. Channel Tracking.
	6.4. Effective Rate, Outage probability, and SER versus SNR.

	7. Summary
	Appendix

	A. The Application of the Kalman Filter

	Acknowledgments
	References

