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We discuss the production of induced noise by a pulse and the propagation of the noise in a dispersive medium. We present a
simple model where the noise is the sum of pulses and where the mean of each pulse is random. We obtain explicit expressions for
the standard deviation of the spatial noise as a function of time. We also formulate the problem in terms of a time-frequency phase
space approach and in particular we use the Wigner distribution to define the spatial/spatial-frequency distribution.

1. Introduction

In many situations noise is induced by a pulse due to the
scattering of the pulse from many sources. To take a specific
example, consider a pulse that hits a school of fish; each fish
scatters the wave and the acoustic field seen at an arbitrary
point is the sum of the waves received from each fish; the sum
of which is noise like. Another example is the creation of a set
of bubbles by a propeller in a finite region in space. When
each bubble explodes it produces a wave and the acoustic
pressure seen is the sum of the waves produced by each
bubble. Of course this is a simplified view since there could be
many other effects such as multiple scattering. Now as time
evolves the noise field is propagating and can be changing
in a significant way if the medium has dispersion. Our aim
here is to investigate how a noise field which is composed of
a group of pulses behave as it is propagating and in particular
we want to investigate the spreading of the field as a function
of time. Suppose we consider a space-time signal composed
of the sum of elementary signal, un,

ψ(x, t) = A
N∑

n=1
anun(x, t; εn), (1)

where un is a deterministic function and an and εn are
random parameters. We have put in an overall A for
normalization convenience. The production of noise by
expressions like (1) are sometimes called FOM models of
noise production [1–7]. Here, we consider the case where
the only random variables are the means of each of the

elementary signals and where all un are the same. Hence we
write

ψ(x, t) = A
N∑

n=1
anu(x − xn, t), (2)

where xn are the means of the elementary signals, assuming
that the mean of u(x, t) is zero. The approach we take is the
following. At time t = 0 we form an ensemble of signals

ψ(x, 0) = A
N∑

n=1
anu(x − xn, 0). (3)

We then evolve u(x−xn, 0) into u(x−xn, t) in a mediumwith
dispersion giving (2) and calculate the appropriate ensemble
averaged moments of ψ(x, t).

For the elementary signal we define the moments in the
standard way

〈xn〉t =
∫
xn|u(x, t)|2dx. (4)

Now if there are random parameters as for example the
means then use E[·] to signify ensemble averaging. In
particular

E[〈xn〉t] =
∫
xnE

[
|u(x, t)|2

]
dx. (5)

Note that in general it is not the case that the ensemble
averaging and ordinary averaging can be interchanged.
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Which is to be used depends on the quantity we are
considering. In this paper we will assume that

E
[
a∗n am

] = |a|2δnm. (6)

As to the means xn we assume they are taken from a
distribution P(xn) and we define the ensemble mean and
standard deviation by

E[xn] =
∫
xnP(xn)dxn, (7)

E
[
x2n
] =

∫
x2nP(xn)dxn, (8)

μ2 = E
[
x2n
]− E2[xn]. (9)

2. Pulse Propagation

We briefly review some of our previous results regarding
pulse propagation in a dispersive medium. We consider one
mode and also assume that the dispersion relation ω = ω(k)
is real, which means there is no attenuation. The solution for
each mode is [8–13],

u(x, t) = 1√
2π

∫
S(k, 0)e−iω(k)teikxdk, (10)

where S(k, 0) is the initial spatial spectrum

S(k, 0) = 1√
2π

∫
u(x, 0)e−ikxdx. (11)

The pulse is normalized so that
∫
|u(x, t)|2dx = 1. (12)

If we define

S(k, t) = S(k, 0)e−iω(k)t (13)

then S(k, t) and u(x, t) form Fourier transform pairs for all
time and hence the spatial moments can be obtained by way
of

〈xn〉t =
∫
S∗(k, t)XnS(k, t)dk, (14)

whereX is the position operator in the k representation

X = i
∂

∂k
. (15)

The first two moments and standard deviation are

〈x〉t =
∫
x|u(x, t)|2dx =

∫
S∗(k, t)XS(k, t)dk,

〈
x2
〉
t =

∫
x2|u(x, t)|2dx =

∫
S∗(k, t)X2S(k, t)dk,

σ2x|t =
〈
x2
〉
t − 〈x〉2t =

∫
S∗(k, t)(X− 〈x〉t)2S(k, t)dk.

(16)

These expressions have been explicitly obtained [14, 15] to
give

〈x〉t = 〈x〉0 +Vt, (17)

〈
x2
〉
t =

〈
x2
〉
0 + t〈vX +Xv〉0 + t2

〈
v2g
〉
, (18)

σ2x|t = σ2x|0 + 2tCovxv|0 + t2σ2v , (19)

where

v(k) = dω(k)
dk

(20)

is the group velocity and where

V = 〈v〉0 =
∫
v(k)|S(k, 0)|2dk = 〈v〉0,

σ2v =
∫
(v(k)−V)2|S(k, 0)|2dk,

Covxv|0 = 1
2
〈vX +Xv〉0 − 〈v〉0〈x〉0.

(21)

2.1. An Exactly Solvable Case. An interesting and exactly
solvable example that we will use is where the dispersion
relation is

ω(k) = ck +
γk2

2
(22)

and the initial pulse is taken to be

u(x, 0) =
(
α

π

)1/4
e−αx

2/2+iβx2/2+ik0x. (23)

At t = 0 the means and standard deviations of x and k are

〈x〉0 = 0; 〈k〉0 = k0,

σ2x|0 =
1
2α

; σ2k|0 =
α2 + β2

2α
.

(24)

Using (17)–(21), one obtains that

Covxvg =
γβ

2α
,

〈
vg
〉
= c + γk0,

〈
v2g
〉
= γ2

α2 + β2

2α
− (c + γk0

)2,

σ2vg = γ2
α2 + β2

2α
,

(25)

and these yield

〈x〉t =
(
c + γk0

)
t,

σ2x|t = σ2x|0
[
1 + 2βγt + γ2

(
α2 + β2

)
t2
]
.

(26)
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3. Spread of theWave Group

For convenience we repeat the basic equations producing the
noise field

ψ(x, t) = A
N∑

n=1
anu(x − xn, t). (27)

We normalize ψ to one by considering
∫ ∣∣ψ(x, t)

∣∣2dx

= A2
N∑

n,m=1
a∗n am

∫
u∗(x − xn, t)u(x − xm, t)dx.

(28)

Now taking the ensemble average we have

E
[∫ ∣∣ψ(x, t)

∣∣2dx
]

= A2E

⎡
⎣

N∑

n,m=1
a∗n am

∫
u∗(x − xn, t)u(x − xm, t)dx

⎤
⎦

= A2
N∑

n,m=1
E
[
a∗n am

]
E
[∫

u∗(x − xn, t)u(x − xm, t)dx
]

= A2|a|2
N∑

n,m=1
δnmE

[∫
u∗(x − xn, t)u(x − xm, t)dx

]

= A2|a|2
N∑

n=1
E
[∫
|u(x − xn, t)|2dx

]

= A2|a|2N
(29)

and therefore we take A so that

A2|a|2N = 1. (30)

In the above we have assumed that an and xn are indepen-
dent.

Now consider the mean

〈x〉t = A2
∫
x
∣∣ψ(x, t)

∣∣2dx

= A2
N∑

n,m=1
a∗n am

∫
xu∗(x − xn, t)u(x − xm, t)dx.

(31)

The ensemble average is

E[〈x〉t] = A2|a|2
N∑

n,m=1
δnmE

[∫
xu∗(x − xn, t)u(x − xm, t)dx

]

= A2|a|2
N∑

n=1
E
[∫

x|u(x − xn, t)|2dx
]

= A2|a|2
N∑

n=1
E
[∫

(x + xn)|u(x, t)|2dx
]

(32)

giving

E[〈x〉t] = 〈x〉t + E[xn], (33)

where E[xn] is given by (7).
For the calculation of 〈x2〉t the first few steps as above

lead to

E
[〈
x2
〉
t

] = A2|a|2
N∑

n=1
E
[∫

x2 |u(x − xn, t)|2dx
]

= A2|a|2
N∑

n=1
E
[∫

(x + xn)
2|u(x, t)|2dx

]
(34)

which gives

E
[〈
x2
〉
t

] = 〈x2〉t + E
[
x2n
]
+ 2〈x〉tE[xn]. (35)

The standard deviation is therefore

Γ2x|t = E
[〈
x2
〉
t

]− E2[〈x〉t] (36)

which, combining (33) and (35) leads to

Γ2x|t = σ2x|t + μ2, (37)

where μ is given by (9). Also, noting that

Γ2x|0 = σ2x|0 + μ2, (38)

one has

Γ2x|t = Γ2x|0 + σ2x|t − σ2x|0. (39)

Further, if we use (19) we then have

Γ2x|t = Γ2x|0 + 2tCovxv|0 + t2σ2v . (40)

4. The Spread inWave Number

We now consider the spatial spectrum. For the total wave we
define

ψ(x, t) = 1√
2π

∫
F(k, t)eikxdk, (41)

F(k, t) = 1√
2π

∫
ψ(x, t)e−ikxdx (42)

and for the elementary wave we define

u(x, t) = 1√
2π

∫
S(k, t)eikxdk,

S(k, t) = 1√
2π

∫
u(x, t)e−ikxdx.

(43)

The standard wave number moments are defined by

〈kn〉t =
∫
kn|S(k, t)|2dk. (44)
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Substituting ψ(x, t) into (42), we have

F(k, t) = 1√
2π

∫
ψ(x, t)e−ikxdx

= 1√
2π

A
N∑

n=1
an

∫
u(x − xn, t)e−ikxdx

= 1√
2π

A
N∑

n=1
an

∫
u(x, t)e−ik(x+xn)dx.

(45)

Or

F(k, t) = AS(k, t)
N∑

n=1
ane

−ikxn . (46)

Now consider the ensemble average of the wave number

E[〈k〉t] = E
[∫

k|F(k, t)|2dk
]

= A2
∫
|S(k, t)|2

N∑

n,m=1
ka∗n amE

[
e−ik(xn−xm)

]
dk

= A2|a|2
∫
|S(k, t)|2

N∑

n,m=1
kδnmE

[
e−ik(xn−xm)

]
dk

= A2|a|2N
∫
k|S(k, t)|2 = A2|a|2N〈k〉t = 〈k〉t

(47)

and hence

E[〈k〉t] = 〈k〉t . (48)

Similarly

E
[〈
k2
〉
t

] = 〈k2〉t (49)

and further

E
[
σ2x|t
]
= σ2x|t . (50)

Thus we see that the ensemble of the wave number moments
are the moments of the individual pulse. This is the case
because our model deals with random spatial translations
only.

4.1. Example. For the example we described in Section 2.1
we substitute (26) into (33) and (39) to obtain

E[〈x〉t] =
(
c + γk0

)
t + E[xn],

Γ2x|t = σ2x|0
[
1 + 2βγt + γ2

(
α2 + β2

)
t2
]
+ μ2.

(51)

Also using (40) we have

Γ2x|t = Γ2x|0 +
βγ

α
t +

γ2
(
α2 + β2

)

2α
t2. (52)

To be concrete we now take a particular distribution for
xn,

P(xn) = 1√
2πq2

e−(xn−z)
2/2q2

(53)

in which case

E[x] = z,

μ2 = q2
(54)

and therefore we have

E[〈x〉t] =
(
c + γk0

)
t + z,

Γ2x|t =
1
2α

[
1 + 2β γt + γ2

(
α2 + β2

)
t2
]
+ q2.

(55)

5. Wigner Spectrum Approach

We now show that an effective method to study these types
of problems is using phase-space methods. The advantage is
that one can study nonstationary noise in a direct manner.
Suppose we have a random function z(t), one can think
of a particular realization and substitute into the Wigner
distribution and then take the ensemble average of it [16–19]

W(t,ω) = 1
2π

∫
E
[
z∗
(
t − 1

2
τ
)
z
(
t +

1
2
τ
)]

e−iτωdτ. (56)

Wz(t,ω) is called the Wigner spectrum and satisfies the
marginal conditions

∫
W(t,ω)dω = E

[
|z(t)|2

]
,

∫
W(t,ω)dt = E

[
|Z(ω)|2

]
,

(57)

where Z(ω) is the Fourier transform of z(t). As standard we
define the autocorrelation function by way of

R(t1, t2) = E[z(t1)z∗(t2)] (58)

and hence the Wigner spectrum can be written as

Wz(t,ω) = 1
2π

∫
R
(
t +

τ

2
, t − τ

2

)
e−iτωdτ. (59)

Taking the inverse

R
(
t +

τ

2
, t − τ

2

)
=
∫
W(t,ω, x)eiτωdω (60)

and letting t2 = t − τ/2 and t1 = t + τ/2, we also have that

R(t1, t2) =
∫
W
(
t1 + t2
2

,ω
)
e−i(t2−t1)ωdω. (61)

However in this paper we are dealing with spatial noise
and hence we have a spatial random function z(x).We define
the spatial Wigner spectrum by

W(x, k) = 1
2π

∫
E
[
z∗
(
x − 1

2
τ
)
z
(
x +

1
2
τ
)]

e−iτkdτ. (62)
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The spatial autocorrelation is defined by

R(x1, x2) = E[x(t1)x∗(t2)] (63)

and therefore

W(x, k) = 1
2π

∫
R
(
x +

τ

2
, x − τ

2

)
e−iτkdτ. (64)

To specialize to our case we have

W(x, k, t) = 1
2π

∫
E
[
ψ∗
(
x − 1

2
τ, t
)
ψ
(
x +

1
2
τ, t
)]

e−iτkdτ

(65)

and we can substitute (2) into (65). However, it is more
effective if we work in the Fourier domain. The Wigner
spectrum can be written as

W(x, k, t) = 1
2π

∫
E
[
F∗
(
k +

θ

2
, t
)
F
(
k − θ

2
, t
)]

e−iθxdθ,

(66)

where F(k, t) is given by (42). Now combining (13) and (46),
we have

F(k, t) = AS(k, t)
N∑

n=1
ane

−ikxn

= AS(k, 0)e−iω(k)t
N∑

n=1
ane

−ikxn

(67)

and therefore

F(k, t) = F(k, 0)e−iω(k)t . (68)

Substituting this into (66), we obtain

W(x, k, t) = 1
2π

∫
E
[
F∗
(
k +

θ

2
, 0
)
F
(
k − θ

2
, 0
)]

× ei[ω(k+θ/2)−ω(k−θ/2)]te−iθxdθ.

(69)

Setting t = 0, we have

W(x, k, 0) = 1
2π

∫
E
[
F∗
(
k +

θ

2
, 0
)
F
(
k − θ

2
, 0
)]

e−iθxdθ

(70)

and taking the Fourier inverse we have that

E
[
F∗
(
k +

θ

2
, 0
)
F
(
k − θ

2
, 0
)]
=W(x, k, 0)iθxdx. (71)

Substituting this back into (69), we obtain

W(x, k, t)

= 1
2π

∫
W(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]te−iθ(x−x

′)dθdx′.
(72)

This expresses the Wigner spectrum at an arbitrary time
given the spectrum at time zero.

One can further simplify by defining the Wigner distri-
bution for each pulse as

Wu(x, k, t) = 1
2π

∫
u∗
(
x − 1

2
τ, t
)
u
(
x +

1
2
τ, t
)
e−iτkdτ.

(73)

Now consider

Wψ(x, k, t)

= 1
2π

∫
ψ∗
(
x − 1

2
τ, t
)
ψ
(
x +

1
2
τ, t
)
e−iτkdτ

= A2

2π

N∑

n,m=1
a∗n am

∫
u∗
(
x − 1

2
τ − xn, t

)

× u
(
x +

1
2
τ − xm, t

)
e−iτkdτ.

(74)

Now taking the ensemble average we have

W(x, k, t)

= A2

2π
E

⎡
⎣

N∑

n,m=1
a∗n am

∫
u∗
(
x − 1

2
τ − xn, t

)

×u
(
x +

1
2
τ − xm, t

)
e−iτkdτ

⎤
⎦

= A2

2π
|a|2

N∑

n, m=1
δnmE

[∫
u∗
(
x − 1

2
τ − xn, t

)

×u
(
x +

1
2
τ − xm, t

)
e−iτkdτ

]

= A2

2π
|a|2

N∑

n=1
E
[∫

u∗
(
x − 1

2
τ − xn, t

)

×u
(
x +

1
2
τ − xn, t

)
e−iτkdτ

]

(75)

and therefore we have that in general

W(x, k, t) = A2|a|2E[Wu(x − xn, k, t)]. (76)

Setting t = 0, we also have

W(x, k, 0) = A2|a|2E[Wu(x − xn, k, 0)]. (77)

We now aim at expressing W(x, k, t) in terms of
W(x, k, 0). Using (72), we have that

W(x, k, t) = 1
2π

∫
E[Wu(x′ − xn, k, 0)]ei[ω(k+θ/2)−ω(k−θ/2)]t

× e−iθ(x−x
′)dθdx′

= 1
2π

∫
Wu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

× E
[
e−iθ(x−xn−x

′)
]
dθdx′.

(78)
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Or

W(x, k, t) = 1
2π

∫
Wu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

× e−iθ(x−x
′)E
[
eiθxn

]
dθdx′.

(79)

This allows for the calculation of the Wigner spectrum in
a simple and direct manner. We also point out that E[eiθxn]
may be considered as the characteristic function

M(θ) = E
[
eiθxn

]
=
∫
eiθxnP(xn)dxn (80)

and hence we may write (79) as

W(x, k, t) = 1
2π

∫
Wu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

× e−iθ(x−x
′)M(θ)dθdx′.

(81)

Our previous results can be obtained using this Wigner
spectrum. For example, consider the first conditional
moment

E[〈x〉t]

=
∫
xW(x′, k, t)dx

= 1
2π

∫
xWu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

× e−iθ(x−x
′)M(θ)dθdx′dxdk

= − 1
2πi

∫
Wu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

×
{
∂

∂θ
e−iθ(x−x

′)
}
M(θ)dθdx′dxdk

= −1
i

∫
Wu(x′, k, 0)ei[ω(k+θ/2)−ω(k−θ/2)]t

× eiθx
′
{
∂

∂θ
δ(θ)

}
M(θ)dθdx′dk

= 1
i

∫
Wu(x, k, 0)

∂

∂θ
ei[ω(k+θ/2)−ω(k−θ/2)]teiθx

′
M(θ)

∣∣∣∣
θ=0

dx′dk

(82)

which evaluates to (33).

6. Conclusion

We emphasize that the above model assumed that the only
random variable was the mean of the individual pulses. In
a future paper we will consider more general cases and of
particular interest is to allow the standard deviation of each
pulse to be a random variable. For example instead of (2) we
can write

ψ(x, t) = A
N∑

n=1
an
√
αnu(αn(x − xn), t), (83)

where
√
αn is inserted for normalization purposes. The

combination of xn and αn allows us to make both the means
and standard deviation of each pulse random variable.

We now discuss our main result, namely, (37) and (40)
which we repeat here for convenience

E[〈x〉t] = 〈x〉t + E[xn],

Γ2x|t = σ2x|t + μ2,

Γ2x|t = Γ2x|0 + 2tCovxv|0 + t2σ2v .

(84)

First we point out that one can consdier the case for the
ensomble as one particle having an initial mean given 〈x〉0 +
E[xn] and an initial standard deviation Γ2x|0 = σ2x|t + μ2.

For the case of no dispersion then σ2x|t = σ2x|0 and
therefore

Γ2x|t = Γ2x|0 no dispersion. (85)

For large times the dominant term is t2σ2v and since the
coefficient of t2 is manifestly positive we have that

Γ2x|t −→ t2σ2v t −→ ∞. (86)

Hence for large times the spread, Γx|t, is a linear function of
time.
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