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The coefficient of determination (CoD) has significant applications in genomics, for example, in the inference of gene regulatory
networks. We study several CoD estimators, based upon the resubstitution, leave-one-out, cross-validation, and bootstrap error
estimators. We present an exact formulation of performance metrics for the resubstitution and leave-one-out CoD estimators,
assuming the discrete histogram rule. Numerical experiments are carried out using a parametric Zipf model, where we compute
exact performance metrics of resubstitution and leave-one-out CoD estimators using the previously derived equations, for varying
actual CoD, sample size, and bin size. These results are compared to approximate performance metrics of 10-repeated 2-fold
cross-validation and 0.632 bootstrap CoD estimators, computed via Monte Carlo sampling. The numerical results lead to a
perhaps surprising conclusion: under the Zipf model under consideration, and for moderate and large values of the actual CoD,
the resubstitution CoD estimator is the least biased and least variable among all CoD estimators, especially at small number of
predictors. We also observed that the leave-one-out and cross-validation CoD estimators tend to perform the worst, whereas the
performance of the bootstrap CoD estimator is intermediary, despite its high computational complexity.

1. Introduction

The coefficient of determination (CoD) has significant
applications in genomics, for example, in the inference
of gene regulatory networks. We study several CoD
estimators, based upon theresubstitution, leave-one-out,
cross-validation, and bootstrap error estimators. We present
an exact formulation of performance metrics for the
resubstitution and leave-one-out CoD estimators, assuming
the discrete histogram rule. Numerical experiments are
carried out using aparametric Zipf model, where we compute
exact performance metrics of resubstitution and leave-one-
out CoD estimators using the previously derived equations,
for varying actual CoD, sample size, and bin size. These
results are compared to approximate performance metrics
of10-repeated 2-fold cross-validation and 0.632 bootstrap
CoD estimators, computed via Monte Carlo sampling. The
numerical results lead to a perhaps surprising conclusion:
under the Zipf model under consideration, and for moderate
and large values of the actual CoD,the resubstitution CoD
estimator is the least biased and least variable among all
CoD estimators, especially at small number of predictors.

We also observed that the leave-one-out andcross-validation
CoD estimators tend to perform the worst whereas the
performance of the bootstrap CoD estimator is intermediary,
despite its high computational complexity.

In classical regression analysis, the nonlinear coefficient
of determination (CoD) gives the relative decrease in
unexplained variability when entering a variable X into
the regression of the dependent variable Y , in comparison
with the total unexplained variability when entering no
variables. Applying this to pattern prediction, Dougherty
and collaborators [1] introduced a very similar concept,
that of CoD for binary random variables, which measures
the predictive power of a set of predictor variables X =
{X1,X2, . . . ,Xn} ∈ {0, 1}n with respect to a target variable
Y ∈ {0, 1}, as given by

CoD = ε0 − ε

ε0
, (1)

where ε0 is the error of the best predictor of Y in the
absence of other observations and ε is the error of the best
predictor of Y based on the observation of X. The binary
CoD measures the relative decrease in prediction error when
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using predictor variables to estimate the target variable, as
opposed to using no predictor variables. The closer it is
to one, the tighter the regulation of the target variable by
the predictor variables is, whereas the closer it is to zero,
the looser the regulation is. The CoD will correctly produce
low values in cases where the no-predictor error is already
small, or when adding predictors does not contribute to a
significant decrease in error. The CoD is a function only of
the joint distribution between predictors and target, thus it
characterizes the regulatory relationship among them.

The concept of CoD has far-reaching applications
in Genomics. The CoD was perhaps the first predictive
paradigm utilized in the context of microarray data, the
goal being to provide a measure of nonlinear interaction
among genes [1–6]. In [2, 4, 6], the CoD is applied to the
prediction problem dealing with gene expressions quantized
into discrete levels in discrete prediction. In [3, 5], the CoD
has its application in the reconstruction or inference of gene
regulatory networks. As its classic counterpart, the binary
CoD is a goodness-of-fit statistic that can be used to assess
the relationship between predictor and target variables, for
example, the associations between gene expression patterns
in practical applications. The CoD permits biologists to focus
on particular connections in the genome, and the estimated
coefficients provide a practical criterion for selecting among
potential predictor sets [1].

The error of the best predictor corresponds to the
optimal prediction error, also known as Bayes error, which
depends only on the underlying probability model [7].
However, in practical real-world problems, the underlying
probability model is unknown, and thus we arrive at the
fundamental issue of how to find a good prediction error
estimator in small-sample settings [8, 9]. An error estimator
may be a deterministic function of the sample data, in
which case it is called a nonrandomized error estimator; such
popular error estimators as resubstitution and leave-one-
out are examples. These error estimators are random only
through the random sample data. Closed-form analytical
expressions for performance metrics such as bias, deviation
variance, and RMS of resubstitution and leave-one-out error
estimators have been given in [9, 10]. By contrast, random-
ized error estimators, like cross-validation and bootstrap,
have “internal” random factors that affect their outcome,
and thus approximate approaches, usually via Monte Carlo
sampling, are typically used to analyze their performance.

Likewise, the CoD must in practice be estimated from
sample data. A CoD estimator is obtained from (1) by
using one of the usual error estimators for the prediction
error with variables ε, and the empirical frequency estimator
for the prediction error with no variables ε0; we may
speak thus of non-randomized CoD estimators, including
the resubstitution and leave-one-out CoD estimators, and
randomized CoD estimators, including bootstrap and cross-
validation CoD estimators. The CoD with the true values
of ε and ε0 in (1) will be called in this paper the “actual
CoD.” We will employ the discrete histogram rule [7, 8], the
most widely used and intuitive rule for discrete prediction
problems, in order to estimate prediction errors and CoDs
from the sample data.

This paper presents, for the first time, an exact formula-
tion for performance metrics of the resubstitution and leave-
one-out CoD estimators, for the discrete histogram rule.
Numerical experiments are carried out using a parametric
Zipf model, where we compute the exact performance of
resubstitution and leave-one-out CoD estimators using the
previously derived equations, for varying actual CoD, sample
size, and bin size. We compare these results to approxi-
mate performance metrics of randomized CoD estimators
(bootstrap and cross-validation), computed via Monte Carlo
sampling. The numerical results indicate that, under the
Zipf model under consideration, and for moderate and large
values of the actual CoD, the resubstitution CoD estimator is
the least biased and least variable among all CoD estimators,
especially at small number of predictors. In fact, with
two predictors, the resubstitution CoD nearly dominates
uniformly over all other estimators across all values of actual
CoD. The leave-one-out and cross-validation CoD estimator
tend to perform the worst whereas the performance of the
bootstrap CoD estimator is intermediary, despite its high
computational complexity. This indicates that provided one
has evidence of moderate to tight regulation between the
genes, and the number of predictors is not too large, one
should use the CoD estimator based on resubstitution.

This paper is organized as follows. In section 2, the prob-
ability model used in discrete prediction is introduced. In
section 3, the discrete histogram rule is recalled, and formal
definitions are given for the actual CoD and several CoD
estimators, including two non-randomized CoD estimators
(i.e., resubstitution and leave-one-out) and two randomized
CoD estimators (i.e., .632 bootstrap and 10-repeated 2-fold
cross-validation). Section 4 introduces performance metrics
(i.e., bias, deviation variance, RMS) of a CoD estimator,
and Section 5 presents an analytical formulation of exact
performance metrics of the resubstitution and leave-one-
out CoD estimators. In Section 6, we present numerical
results, based on a parametric Zipf model, that compare the
performance metrics of all the CoD estimators considered in
this paper. Finally, Section 7 presents concluding remarks.

2. Discrete Prediction

Let X1,X2, . . . ,Xp be p predictor random variables, such
that each Xi take on a finite number bi of values, and
Y ∈ {0, 1} be the target random variable, for the discrete
prediction problem. The predictors as a group can take on
values in a finite space with b = ∏p

i=1bi possible states.
For analysis purposes, we establish a bijection between this
finite state space and a single predictor variable X taking
values in the set X ∈ {1, 2, . . . , b}. The variable X has a
one-to-one relationship with the finite space state coded by
X1,X2, . . . ,Xp: one specific value of X represents a specific
combination of the values of the original predictors, that is,
a “bin” into which the data is categorized. The value b is the
number of bins, which provides a direct measure of predictor
complexity.

The probability model for the pair (X ,Y) is specified by
class prior probabilities: c0 = P(Y = 0), c1 = P(Y = 1), and
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class-conditional probabilities: pi = P(X = i | Y = 0) and
qi = P(X = i | Y = 1), for i = 1, . . . , b, where we have the
identities

c0 + c1 = 1,

b∑

i=1

pi = 1,

b∑

i=1

qi = 1.

(2)

Given a specific probability model, the optimal predictor
for the problem is given by

ψ(X = i) =
⎧
⎨

⎩

1, c1qi > c0pi,

0, o.w
(3)

with optimal error rate, also called the Bayes error [7],
determined by

ε =
b∑

i=1

min
{
c0pi, c1qi

}
. (4)

If no features are provided, the optimal error rate becomes

ε0 = min{c0, c1}. (5)

By using the simple inequality
∑

min{ai, bi} ≤ min{∑ ai,∑
bi}, one concludes that ε ≤ ε0 in all cases.

The coefficient of determination [1] is defined as (assum-
ing that ε0 /= 0)

CoD = ε0 − ε

ε0
= 1− ε

ε0
= 1−

∑b
i=1 min

{
c0pi, c1qi

}

min{c0, c1} . (6)

Since 0 ≤ ε ≤ ε0, we have that 0 ≤ CoD ≤ 1. We have
CoD = 1 if and only if ε = 0, that is, there is perfect
regulation between predictors and target. On the other hand,
CoD = 0 if and only if ε = ε0, that is, the predictors exert no
regulation on the target.

3. CoD Estimation

In practice, the underlying probability model is unknown,
and thus the CoD is not known. The need arises thus to
find estimators of the CoD from i.i.d. sample data Sn =
{(X1,Y1), . . . , (Xn,Yn)} drawn from the unknown probabil-
ity model distribution. All CoD estimators considered here
will be of the form


CoD = ε̂0 − ε̂

ε̂0
= 1− ε̂

ε̂0
, (7)

where ε̂ is one of the usual error estimators for a selected
discrete prediction rule, and ε̂0 is the empirical frequency
estimator for the prediction error with no variables

ε̂0 = min
{
N0

n
,
N1

n

}

, (8)

where N0 and N1 are random variables corresponding to the
number of sample points belonging to classes Y = 0 and
Y = 1, respectively. We assume throughout that ε̂0 /= 0, that
is, each class is represented by at least one sample. Note that
ε̂0 has the desirable property of being a universally consistent
estimator of ε0 in (5), that is, ε̂0 → ε0 in probability (in fact,
almost surely) as n → ∞, regardless of the probability model.

The discrete prediction rule to be used with the error
estimator ε̂ is the discrete histogram rule, which is the
“plug-in” rule for approximating the minimum-error Bayes
predictor [9]. Even though we make this choice, we remark
that the methods described here can be applied to any
discrete prediction rule. Given the sample data Sn, the
discrete histogram classifier is given by

ψn(X = i) = IVi>Ui =
⎧
⎨

⎩

1, Vi > Ui,

0, Ui ≥ Vi,
i = 1, 2, . . . , b,

(9)

where Ui is the number of samples with Y = 0 in bin X = i,
and Vi is the number of samples with Y = 1 in bin X = i, for
i = 1, . . . , b.

We review next some facts about the distribution of the
random vectors U = {U1, . . . ,Ub} and V = {V1, . . . ,Vb},
which will be needed in the sequel. The variables N0 =
∑b

i=1 Ui, N1 = ∑b
i=1 Vi, Ui, and Vi, for i = 1, . . . , b, are

random variables due to the randomness of the sample
data Sn (this is the case referred to as “full sampling” in
[9]). More specifically, Ni is a random variable binomially
distributed with parameters (n, ci), that is, Ni ∼ B(n, ci), for
i = 0, 1, while the vector-valued random variable (Ui,Vi) is
trinomially distributed with the parameter set (n, c0pi, c1qi),
that is,

P(Ui = k,Vi = l) =
(

n
k, l,n− k − l

)
(
c0pi

)k(
c1qi

)l

× (1− c0pi − c1qi
)n−k−l,

(10)

for i = 1, . . . , b. In addition, the vector {U1, . . . ,Ub,
V1, . . . ,Vb} follows a multinomial distribution with parame-
ters (n, c0p1, . . . , c0pb, c1q1, . . . , c1qb), so that

P(U1 = u1, . . . ,Ub = ub,V1 = v1, . . . ,Vb = vb)

=
(

n
u1, . . . ,ub, v1, . . . , vb

)

× (c0p1
)u1 . . .

(
c0pb

)ub(c1q1
)v1 . . .

(
c1qb

)vb .

(11)

We introduce next each of the CoD estimators considered
in this paper.

3.1. Resubstitution CoD Estimator. This corresponds to the
choice of resubstitution [11] as the prediction error estimator


CoDr = 1− ε̂r
ε̂0

, (12)
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where, for the discrete histogram predictor,

ε̂r = 1
n

b∑

i=1

[
UiIVi>Ui + ViIUi≥Vi

]
. (13)

The resubstitution CoD can be written equivalently as


CoDr = 1−
∑b

i=1 min{(N0/n)(Ui/N0), (N1/n)(Vi/N1)}
min{(N0/n), (N1/n)} ,

(14)

which reveals that 
CoDr has the desirable property of being
a universally consistent estimator of CoD in (6), that is,

CoDr → CoD in probability (in fact, almost surely) as
n → ∞, regardless of the probability model.

3.2. Leave-One-Out CoD Estimator. This corresponds to the
choice of the leave-one-out error estimator [12] as the
prediction error estimator


CoDl = 1− ε̂l
ε̂0

, (15)

where, for the discrete histogram predictor (as can be readily
checked)

ε̂l = 1
n

b∑

i=1

[
UiIVi≥Ui + ViIUi≥Vi−1

]
. (16)

The leave-one-out CoD estimator provides an oppor-
tunity to reflect on the uniform choice of the empirical
frequency estimator ε̂0 in (8) as an estimator of ε0, including
here. Clearly, the empirical frequency corresponds to the
resubstitution estimator of ε0. The question arises as to
whether, for the leave-one-out CoD estimator, the leave-
one-out error estimator of ε0 should be used instead. For
N0 = N1 = n/2, we get ε̂0 = 1/2 with the choice of the
resubstitution estimator (empirical frequency), but ε̂0 = 1
with the choice of leave-one-out estimator, which is a useless
result. Similar problems beset other estimators of ε0. Hence,
the empirical frequency estimator is employed here as the
estimator of ε0 for all CoD estimators.

3.3. Cross-Validation CoD Estimator. This corresponds to the
choice of the cross-validation error estimator [12, 13] as the
prediction error estimator. In k-fold cross-validation, sample
data Sn is partitioned into k folds Si, for i = 1, . . . , k. For
simplicity, we assume that k can divide n. A classifier ψi is
designed on the training set Sn \ Si, and tested on Si, for
i = 1, . . . , k. Since there are different partitions of the data
into k folds, one can repeat the k-fold cross-validation r
times and then average the results. Such a process leads to the
r-repeated k-fold cross-validation error estimator ε̂cv, given
by

ε̂cv = 1
nr

r∑

m=1

k∑

i=1

n/k∑

j=1

∣
∣
∣Yi,m

j − ψi,m

(
Xi,m

j

)∣
∣
∣, (17)

where (Xi,m
j ,Yi,m

j ) represents the jth sample point in the ith
fold for the m-th repetition of the cross-validation, for i =
1, . . . , k, m = 1, . . . , r and j = 1, . . . ,n/k.

Based upon (17), the r-repeated k-fold cross-validation
CoD estimator is defined by


CoDcv = 1− ε̂cv
ε̂0

. (18)

In order to get reasonable variance properties, a large number
of repetitions may be required, which can make the cross-
validation CoD estimator slow to compute.

3.4. Bootstrap CoD Estimator. This corresponds to the use
of the bootstrap [14, 15] for the prediction error estimator.
A bootstrap sample S∗n = {(X∗1 ,Y∗1 ), . . . , (X∗n ,Y∗n )} consists
of n equally-likely draws with replacement from the original
data Sn. Some sample points from the original data may
appear multiple times in the bootstrap sample whereas other
sample points may not appear at all. The actual proportion of
times a sample point (Xi,Yi) appears in S∗n can be written as
P∗i = (1/n)

∑n
j=1 I(X∗i ,Y∗i )=(Xi ,Yi), for i = 1, . . . ,n. A predictor

ψt may be designed on a bootstrap sample S∗tn , and tested
on Sn \ S∗tn , for t = 1, . . . ,T , where T is a sufficiently large
number of repetitions (in this paper, T = 100). Then, the
basic bootstrap zero estimator is given by

ε̂ZERO =
∑T

t=1

∑n
i=1

∣
∣Yi − ψt(Xi)

∣
∣IP∗ti =0

∑T
t=1

∑n
i=1 IP∗ti =0

. (19)

The .632 bootstrap estimator then performs a weighted
average of the bootstrap zero and resubstitution estimators

ε̂b632 = (1− 0.632)ε̂r + 0.632 ε̂ZERO. (20)

Based on (19) and (20), the 0.632 bootstrap CoD
estimator is then defined as


CoDb632 = 1− ε̂b632

ε̂0
. (21)

The bootstrap CoD estimator can be very slow to compute
due to the complexity of ε̂ZERO.

4. PerformanceMetrics of CoD Estimators

In analogous fashion to the performance metrics of predic-
tion error estimators [8], the key performance metrics for an
CoD estimator 
CoD are its bias

Bias
[

CoD

]
= E

[

CoD− CoD

]
= E

[

CoD

]
− CoD,

(22)
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the deviation variance (which in the present case is equal
simply to its variance)

Vard

[

CoD

]
= Var

(

CoD− CoD

)
= Var

(

CoD

)
, (23)

and the root mean-square (RMS) error

RMS
[

CoD

]
=
√

E
[(

CoD− CoD

)2
]

=
√

Var
[

CoD

]
+ Bias

[

CoD

]2
.

(24)

For a given probability model, all the performance metrics
are thus obtained as a function of the expectation E[
CoD]
and variance Var(
CoD).

Working further, we obtain

E
[

CoD

]
= 1− E

[
ε̂

ε̂0

]

, (25)

Var
[

CoD

]
= E

[(

CoD

)2
]

−
(
E
[

CoD

])2

= E

[
ε̂2

ε̂2
0

]

−
(

E

[
ε̂

ε̂0

])2

,

(26)

as can be easily checked. We conclude that all the key
performance metrics for CoD estimators can be obtained
from the first and second moments of ε̂/ε̂0.

5. Exact Moments of Nonrandomized
CoD Estimators

As mentioned in the Introduction, we can categorize
CoD estimators into non-randomized and randomized,
depending on whether the prediction error estimator ε̂
is non-randomized or randomized. Non-randomized CoD
estimators, such as the resubstitution and leave-one-out CoD
estimators, are deterministic functions of the sample data,
which makes it possible an analytical formulation of their
performance metrics. On the other hand, the performance
of randomized CoD estimators, such as the cross-validation
and bootstrap CoD estimators, is very difficult to study
analytically and is typically investigated via Monte Carlo
sampling (which is done in Section 6).

In this section, we will present exact expressions for the
computation of the first moment E[ε̂/ε̂0] and the second
moment E[ε̂2/ε̂2

0] for the case of resubstitution and leave-
one-out error estimators, which suffices to compute the bias,
variance, and RMS of the corresponding CoD estimator,
as discussed in the previous section. These expressions are
functions only of sample size, number of bins (complexity),
and the probability model. We will assume throughout, for
definiteness, that the sample size n is even. The case where n
is odd is in fact slightly simpler and can be readily obtained
in analogous fashion to the derivations presented below.

5.1. Resubstitution. The first moment of ε̂r /ε̂0 is given by

E

[
ε̂r
ε̂0

]

= E

[

E

[
ε̂r
ε̂0
| ε̂0

]]

=
n/2∑

m=1

E

[
ε̂r
m/n

|M = m

]

P(M = m),

(27)

where M = nε̂0. Since ε̂0 = (1/n) min(N0,N1), we have M =
min(N0,n−N0). It follows that the event [M = m] is equal to
the union of the disjoint events [N0 = m] and [N0 = n−m],
for m = 1, . . . ,n/2− 1 whereas [M = n/2] = [N0 = n/2]. By
using Proposition 1 in the appendix, we can write both cases
in a single expression as follows:

E

[
ε̂r
m/n

|M = m

]

= P(N0 = m)
P(N0 = m) + P(N0 = n−m)

× E

[
ε̂r
m/n

| N0 = m

]

I1≤m<n/2

+
P(N0 = n−m)

P(N0 = m) + P(N0 = n−m)

× E

[
ε̂r
m/n

| N0 = n−m

]

I1≤m≤n/2,

m = 1, . . . ,n/2.

(28)

By using (28) in (27) and considering that P(M = m) =
P(N0 = m) + P(N0 = n−m), we obtain

E

[
ε̂r
ε̂0

]

=
n/2∑

m=1

{

E

[
ε̂r
m/n

| N0 = m

]

× P(N0 = m)I1≤m<n/2

+ E

[
ε̂r
m/n

| N0 = n−m

]

×P(N0 = n−m)I1≤m≤n/2

}

,

(29)

where

E

[
ε̂r
m/n

| N0 = t

]

= 1
m

b∑

i=1

⎧
⎨

⎩

∑

l>k

kP(Ui = k,Vi = l | N0 = t)

+
∑

k≥l
lP(Ui = k,Vi = l | N0 = t)

⎫
⎬

⎭
,

(30)
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with

P(Ui = k,Vi = l | N0 = t)

= P(Ui = k | N0 = t)P(Vi = l | N1 = n− t)

=
(
t
k

)

pki
(
1− pi

)(t−k)

×
(
n− t
l

)

qli
(
1− qi

)(n−t−l),

(31)

for t = m, n−m.
The second moment of ε̂r /ε̂0 is given by

E

[
ε̂2
r

ε̂2
0

]

=
n/2∑

m=1

E

[
ε̂2
r

m2/n2
|M = m

]

P(M = m), (32)

where M = nε̂0, as before. By using Proposition 1 in the
appendix, and the same reasoning applied previously in the
case of the first moment, we can write

E

[
ε̂2
r

m2/n2
|M = m

]

= P(N0 = m)
P(N0 = m) + P(N0 = n−m)

× E

[
ε̂2
r

m2/n2
| N0 = m

]

I1≤m<n/2

+
P(N0 = n−m)

P(N0 = m) + P(N0 = n−m)

× E

[
ε̂2
r

m2/n2
| N0 = n−m

]

I1≤m≤n/2,

m = 1, . . . ,n/2.

(33)

Combining (33) and (32) leads to

E

[
ε̂2
r

ε̂2
0

]

=
n/2∑

m=1

{

E

[
ε̂2
r

m2/n2
| N0 = m

]

× P(N0 = m)I1≤m<n/2

+ E

[
ε̂2
r

m2/n2
| N0 = n−m

]

,

×P(N0 = n−m)I1≤m≤n/2

}

,

(34)

where

E

[
ε̂2
r

m2/n2
| N0 = t

]

= 1
m2

b∑

i=1

⎧
⎨

⎩

∑

l>k

k2P(Ui=k,Vi= l |N0= t)

+
∑

k≥l
l2P(Ui = k,Vi = l | N0 = t)

⎫
⎬

⎭
+

1
m2

×
b∑

i, j=1
i /= j

⎧
⎨

⎩

∑

l>k

∑

s>r

krP
(
Ui=k,Vi= l,Uj=r,Vj=s|N0= t

)

+
∑

l>k

∑

r≥s
ksP

(
Ui=k,Vi= l,Uj=r,Vj=s|N0= t

)

+
∑

k≥l

∑

s>r

lrP
(
Ui=k,Vi= l,Uj=r,Vj=s|N0= t

)

+
∑

k≥l

∑

r≥s
lsP
(
Ui=k,Vi= l,Uj=r,Vj=s|N0= t

)
⎫
⎬

⎭
,

(35)

with P(Ui = k,Vi = l | N0 = t) as in (31) and

P
(
Ui = k,Vi = l,Uj = r,Vj = s | N0 = t

)

= P
(
Ui = k,Uj = r | N0 = t

)

× P
(
Vi = l,Vj = s | N1 = n− t

)

=
(

t
k, r, t − k − r

)

pki p
r
j

(
1− pi − pj

)t−k−r

×
(

n− t
l, s,n− t − l − s

)

qliq
s
j

(
1− qi − qj

)n−t−l−s
,

(36)

for t = m, n−m.

5.2. Leave-One-Out. To obtain the first moment of ε̂r /ε̂0, one
can proceed exactly as in the resubstitution case to get

E

[
ε̂l
ε̂0

]

=
n/2∑

m=1

{

E

[
ε̂l

m/n
| N0 = m

]

P(N0 = m)I1≤m<n/2

+E

[
ε̂l

m/n
|N0=n−m

]

P(N0=n−m)I1≤m≤n/2

}

,

(37)
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Figure 1: Bias, variance, and RMS for several CoD estimators versus actual CoD under a Zipf model with c0 = 1/2, for n = 40 and varying
number of bins. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-repeated 2-fold cross-validation (black).
The curves for resubstitution and leave-one-out are exact; the curves for the other CoD estimators are approximations based on Monte Carlo
sampling.

where now

E

[
ε̂l

m/n
| N0 = t

]

= 1
m

b∑

i=1

⎧
⎨

⎩

∑

l≥k
kP(Ui = k,Vi = l | N0 = t)

+
∑

k≥l−1

lP(Ui = k,Vi = l | N0 = t)

⎫
⎬

⎭
,

(38)

with P(Ui = k,Vi = l | N0 = t) as in (31), for t = m, n−m.

To obtain the second moment of ε̂r /ε̂0, one can again
proceed as in the resubstitution case to get

E

[
ε̂2
l

ε̂2
0

]

=
n/2∑

m=1

{

E

[
ε̂2
l

m2/n2
| N0 = m

]

P(N0 = m)I1≤m<n/2

+E

[
ε̂2
l

m2/n2
|N0=n−m

]

P(N0=n−m)I1≤m≤n/2

}

,

(39)
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Figure 2: Bias, variance, and RMS for several CoD estimators versus number of bins (b = 4, 8, 12, and 16) under a Zipf model with
c0 = 1/2, for actual CoD = 0.6 and varying sample size. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-
repeated 2-fold cross-validation (black). The curves for resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte Carlo sampling.

where now

E

[
ε̂2
l

m2/n2
|M = t

]

= 1
m2

b∑

i=1

⎧
⎨

⎩

∑

l≥k
k2P(Ui = k,Vi = l | N0 = t)

+
∑

k≥l−1

l2P(Ui = k,Vi = l | N0 = t)

+
∑

l−1≤k≤l
2klP(Ui = k,Vi = l | N0 = t)

⎫
⎬

⎭
+

1
m2

×
b∑

i, j=1
i /= j

⎧
⎨

⎩

∑

l≥k

∑

s≥r
krP

(
Ui=k,Vi= l,Uj=r,Vj=s|N0= t

)

+
∑

l≥k

∑

r≥s−1

ksP
(
Ui=k,Vi=l,Uj=r,Vj=s|N0=t

)

+
∑

k≥l−1

∑

s≥r
lrP
(
Ui=k,Vi=l,Uj=r,Vj=s|N0=t

)

+
∑

k≥l−1

∑

r≥s−1

lsP
(
Ui=k,Vi=l,Uj=r,Vj=s|N0=t

)
⎫
⎬

⎭
,

(40)

with P(Ui = k,Vi = l | N0 = t) as in (31) and P(Ui = k,Vi =
l,Uj = r,Vj = s | N0 = t) as in (36), for t = m, n−m.

6. Numerical Experiments

Assuming a parametric probability model in this section,
we plot the exact performance metrics of the resubstitution
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Figure 3: Bias, variance, and RMS for several CoD estimators versus number of bins (b = 4, 8, 12, and 16) under a Zipf model with
c0 = 1/2, for actual CoD = 0.8 and varying sample size. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-
repeated 2-fold cross-validation (black). The curves for resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte Carlo sampling.

and leave-one-out CoD estimators, by using the analytical
expressions obtained in Sections 4 and 5, under varying
actual CoD, sample size, and predictor complexity (number
of bins). We also compare these exact performance met-
rics with the approximate performance metrics for cross-
validation and bootstrap CoD estimators computed via
Monte Carlo sampling. The Monte Carlo computation was
carried out by drawing M = 5000 simulated training data
sets of the required sample size from the probability model
in each case, and employing sample means and sample vari-
ances to approximate the performance metrics in Section 4.

The probability model used here is a parametric Zipf
model [16]. The class-conditional probabilities under the
parametric Zipf model are given by

pi = K

iα
,

qi = pb−i+1,
(41)

for i = 1, . . . , b, and α > 0. The normalizing constant K is
given by

K =
⎡

⎣
b∑

i=1

1
iα

⎤

⎦

−1

. (42)

For simplicity, we assume that c0 = c1 = 1/2. It can be
seen easily from (6) that the CoD increases monotonically
with α, so that large α leads to tight regulation, that is,
easy prediction, and vice versa. There are two extreme cases.
When α = 0, there is maximal confusion between the
classes, and CoD = 0. When α → ∞, there is maximal
discrimination between the classes, and CoD = 1. Thus,
varying the parameter α can traverse the probability model
space continuously from easy to difficult models.

We consider here the prediction setting where each
predictor variable is binary. If we employ 2, 3, and 4 predictor
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Figure 4: Bias, variance, and RMS for several CoD estimators versus sample size (n = 20, 30, 40, 50, and 60) under a Zipf model with
c0 = 1/2, for actual CoD = 0.6 and varying number of bins. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-
repeated 2-fold cross-validation (black). The curves for resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte Carlo sampling.

variables then this would correspond to bin sizes b =
4, 8, 16, respectively. In functional genomics applications,
these cases correspond to the gene prediction problem by
using 2, 3, and 4 genes, where the activity of each gene is
represented by binary gene expressions, for example, the on-
and-off switch effect of a promoter.

Figure 1 displays bias, variance, and RMS of the CoD
estimators considered here, as a function of varying actual
CoD (computed by suitable tuning the parameter α). We
recall that, in the figure, tight regulation, that is, easy
prediction, is located on the right of these plots whereas loose
regulation, that is, difficult prediction, is located on the left.

Figure 1 makes apparent several facts. The resubstitution
CoD is often optimistically biased, except at moderate to
large CoD with b = 4 (two binary predictors) whereas the
other estimators are generally pessimistically biased. As the

number of predictors increase, the bias (in magnitude) of
the resubstitution CoD increases accordingly; however, its
variance remains quite low in each case. The leave-one-out
CoD is highly variable, in addition to being pessimistically
biased. By observing the RMS, we conclude that the resub-
stitution CoD estimator is the best-performing estimator,
except at small values of the actual CoD, beating all the
other estimators, including the bootstrap. The leave-one-out
CoD estimator is the worst-performing estimator for cases
with small number of predictors (b = 4) whereas the cross-
validation CoD estimator becomes the worst-performing
estimator for large number of predictors and moderate actual
CoD. As the number of predictors increases, the actual CoD
cut off decreases accordingly at which the leave-one-out
CoD estimator starts to outperform the cross-validation CoD
estimator. It is also interesting to note that, for b = 4, only
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Figure 5: Bias, variance, and RMS for several CoD estimators versus sample size (n = 20, 30, 40, 50, and 60) under a Zipf model with
c0 = 1/2, for actual CoD = 0.8 and varying number of bins. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-
repeated 2-fold cross-validation (black). The curves for resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte Carlo sampling.

the bootstrap beats resubstitution, and for very small actual
CoD. For b = 8, both bootstrap and cross-validation perform
better than the resubstitution, for small actual CoD. For b =
16, all the other CoD estimators outperform resubstitution
for small actual CoD. As the number of predictors increases,
the cut-off at which the resubstitution CoD estimator beats
all other estimators increases.

In order to assess the performance of the resubstitution
CoD estimator and the remaining CoD estimators with
respect to the classifier complexity (number of predictors),
we display the performance metrics as a function of varying
number of bins in Figures 2 and 3, for sample size n = 20, 40,
and 60, and moderate CoD = 0.6 and large CoD = 0.80. The
bias column shows that, for CoD = 0.60, the resubstitution
CoD is actually slightly pessimistically biased for b = 4
(a perhaps surprising fact, given the optimistic bias of

resubstitution in discrete classification), but quickly becomes
optimistically biased for larger bin sizes. In the RMS column,
we can see that the resubstitution CoD always beats all other
estimators, especially in the case of CoD = 0.80 (tight
regulation), which is the more surprising when we consider
that the other estimators are much more computation-
intensive. It is interesting to see that the leave-one-out
CoD estimator beats the more complex cross-validation
CoD estimator for small number of bins and large sample
size. The resubstitution CoD is the least biased and least
variable among all CoD estimators, across the whole range
of classifier complexity and sample size considered here, and
thus it also displays the best RMS overall.

In Figures 4 and 5, we examine how these performance
metrics behave with varying sample sizes for b = 4, 8, 16, and
moderate CoD= 0.6 and large CoD= 0.80. As expected, bias
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(in magnitude), variance and RMS all decrease as sample size
increases. We can see that the resubstitution CoD is the least
biased and least variable among all estimators, and thus also
displays the best RMS. The cross-validation CoD estimator
is the most biased, and the leave-one-out CoD estimator is
the most variable, among all CoD estimators. The bootstrap
CoD estimator is less variable than the cross-validation CoD
estimator.

7. Conclusion

This paper presented a comprehensive study of CoD
estimators. We derived for the first time exact analytical
expressions of performance metrics of the resubstitution
and leave-one-out CoD estimators. Using a parametric Zipf
model, we have compared the exact performance metrics
of resubstitution and leave-one-out between each other
and against approximate performance metrics of cross-
validation and bootstrap CoD estimators. Our results lead to
a perhaps surprising conclusion: under the Zipf model under
consideration, the resubstitution CoD estimator is the best-
performing estimator among all, for moderate to large actual
CoD and not too large number of predictors. However, for
small actual CoD values and high classifier complexity, the
other three CoD estimators can outperform resubstitution.
This indicates that provided one has evidence of moderate
to tight regulation between the genes, and the number of
predictors is not too large, one should use the CoD estimator
based on resubstitution.

This work is intended to serve as foundation for a
detailed study of the application of CoD estimation in
Genomics and related fields. An obvious application is
the inference of genomic regulatory networks from sample
microarray data. In addition to that, there are several issues
related to nonlinear prediction in the discrete domain, which
can benefit from the work presented here.

Appendix

Proposition 1. For a discrete random variable X and disjoint
events A and B, one has

E[X | A∪ B] = P(A)
P(A) + P(B)

E[X | A]

+
P(B)

P(A) + P(B)
E[X | B].

(A.1)

Proof.

E[X | A∪ B]

=
∑

x

x P(X = x | A∪ B)

=
∑

x

x
P(A∪ B | X = x)P(X = x)

P(A∪ B)

=
∑

x

x
[P(A|X=x) + P(B |X=x)]P(X=x)

P(A)+P(B)

=
∑

x

x
P(X=x |A)P(A)+ P(X=x |B)P(B)

P(A)+P(B)

= P(A)
P(A) + P(B)

∑

x

x P(X = x | A)

+
P(B)

P(A) + P(B)

∑

x

x P(X = x | B)

= P(A)
P(A) + P(B)

E[X | A]

+
P(B)

P(A) + P(B)
E[X | B].

(A.2)
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