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Multiplicative noise removal is of momentous significance in coherent imaging systems and various image processing applications.
This paper proposes a new nonconvex variational model for multiplicative noise removal under the Weberized total variation (TV)
regularization framework. Then, we propose and investigate another surrogate strictly convex objective function for Weberized TV
regularization-based multiplicative noise removal model. Finally, we propose and design a novel way of fast alternating optimizing
algorithm which contains three subminimizing parts and each of them permits a closed-form solution. Our experimental results
show that our algorithm is effective and efficient to filter out multiplicative noise while well preserving the feature details.

1. Introduction

Image denoising is one of the fundamental problems in
image processing and computer vision. Multiplicative noise
appears in various image processing applications, for exam-
ple, in synthetic aperture radar (SAR), ultrasound imaging,
single particle emission computed tomography (SPECT),
and positron emission tomography (PET) [1]. Hence, mul-
tiplicative noise removal is of momentous significance in
coherent imaging systems and various image processing
applications.

The essential idea for image denoising is to filter out
noise in an image without losing significant features such
as edges and textures. However, one of the challenges in
image denoising is its ill-posed nature. To cope with this
problem, a large number of approaches have been proposed,
most of them under the regularization or the Bayesian
frameworks [2, 3]. These approaches are supported on some
form of a priori knowledge or regularization about the
original image to be estimated. Some of these methods,
including Markov random field priors, wavelet-based priors
or regularization [4, 5], curvelet-based diffusion [6], and
total variation (TV) regularization [7–9] are considered
the state-of-the-art. Among these approaches, variational
functional regularization and partial differential equations-
(PDE-) based models have become international popular

issues. These models provide a good theoretical foundation
to the image denoising task and other inverse problems such
as image segmentation and image inpainting, and so forth.
And they also simulate the human vision well because of its
close relationship to multi-scale analysis theory [10].

1.1. Background. Although other types of noise (e.g.,
impulse or Poisson noise) have also been studied in the
literature of image processing, the term “image denoising”
is usually devoted to the problem associated with additive
Gaussian noise. The goal of image denoising is to recover
ideal u from the observed noisy data u0 = u + v, where u0

is an observed image defined on Ω, and Ω ⊂ R2 denotes an
open bounded set with Lipschitz boundary, and v denotes
the additive Gaussian noise. To cope with the ill-posed nature
of denoising, the regularization techniques are often utilized
to solve such a problem. Specifically, the regularization
functional-based denoising is given by

û = arg min
u
{Esmooth(u) + λEdata(u,u0)}, (1)

where Edata(u,u0) is the image fidelity term depending upon
the additive noise model, which penalizes the inconsistency
between the underestimated recovery image and the acquired
noisy image, Esmooth(u) is the regularization term which
imposes some priori constraints on the original image and
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to a great degree determines the quality of the recovery
image, and λ is the regularization parameter which controls
the trade-off between the image fidelity term Edata(u,u0)
and the regularization term Esmooth(u) [2, 3, 9, 11]. The
classical model is the minimizing total variational functional
[7] Esmooth(u) = TV(u) = ∫

Ω |∇u|dx with least square data
fidelity Edata(u,u0) = ∫

Ω (u− u0)2dx. We refer the readers to
[2, 3] and references herein for an overview of the subject [9].

In this paper, we focus on the issue of multiplicative
noise removal. Specifically, we are interested in the denoising
of SAR images. According to [12] and other references, the
noise in the observed SAR image is a type of multiplicative
noise which is called speckle. And the image formation
model is

u0 = uv, (2)

where u0 is the observed image, u is the original SAR image,
and v is the noise which follows a Gamma Law with mean
one with its probability density function given by

fV (v) = LL

Γ(L)
vL−1e(−Lv) · 1{v > 0}, (3)

where L is the number of looks (in general, an integer
coefficient) and Γ(·) is a Gamma function. Speckle is one
of the more complex image noise models. It is signal
independent, non-Gaussian, and spatially dependent. Hence,
speckle denoising is a very challenging problem compared
with additive Gaussian noise.

1.2. Prior Works on Variational Approaches. Multiplicative
noise removal methods have been discussed in many reports.
Popular methods include the Lee method [13], the Kuan
method [14], and various anisotropic diffusion-based meth-
ods [15–17], which will not be addressed in this paper. We
will focus on the variational approaches-based multiplicative
noise removal, especially that our researches will emphasis
on the TV model-based methods.

To the best of our knowledge, there exist only several vari-
ational approaches devoted to multiplicative noise removal
problem. The first total variation-based multiplicative noise
removal model was presented by Rudin et al. [18], which
used a constrained optimization approach with two Lagrange
multipliers. The authors derived a denoising model (RLO) as
follows:

min
∫

Ω
|∇u|dx,

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

Ω
v dx = 1,

∫

Ω
(v − 1)2dx = σ2

(4)

and designed a gradient projection-based algorithm. Follow-
ing the maximum a posteriori (MAP) estimator for multi-
plicative Gamma noise, Aubert and Aujol [19] introduced a
nonconvex model (AA):

min
u

{

E(u) = TV(u) + λ
∫

Ω

(

logu +
u0

u

)

dx
}

, (5)

where Edata(u,u0) = ∫

Ω(logu + u0/u)dx is the data fitting
term and Esmooth(u) = TV(u) = ∫

Ω |∇u|dx is the total
variation (TV) regularization term. They also used gradient
descend method to solve AA model. Recently, Shi and
Osher [20] adopted a noisy observation logu0 = logu +
log v and the data term of the AA model then derived the
TV minimization model for multiplicative noise removal
problems. They applied a corresponding relaxed inverse
scale space flow as denoising technique. Huang et al.
[21] proposed a strictly convex model by letting w =
logu and replacing TV(w) by TV(u) based on the prior
work in [19], and they proposed a simpler alternating
minimization algorithm by adding a quadratic term to the
model. A variational model involving curvelet coefficients
for cleaning multiplicative Gamma noise was considered
in [22]. Steidl and Teuber [1] introduced a variational
restoration model consisting of the I-divergence as data
fitting term and the total variation seminorm as regular-
izer. They applied Douglas-Rachford splitting techniques,
respectively, alternating split Bregman methods to denois-
ing.

1.3. Contributions. The main aim of this paper is to
propose and investigate another nonconvex variational
model for multiplicative noise removal which inspiring
from the Weberized TV regularization method [23, 24].
We also incorporate another way of surrogate functional
model to recover image edges. We develop an alternating
minimization algorithm to find the minimizer of such
an objective function efficiently. Our experimental results
show that our proposed method has good performance
for multiplicative noise removal. The outline of this paper
is as follows. In Section 2, we introduce our Weberized
total variation-based multiplicative noise removal model.
In Section 3, we propose a surrogate functional model
which can be viewed as an approximating way of the new
nonconvex model. In Section 4, we develop a novel fast
algorithm for minimizing such surrogate functional model.
In Section 5, we show experimental results to demonstrate
the quality of the denoised images and the efficiency of our
proposed algorithm. Finally, concluding remarks are given in
Section 6.

2. Weberized TV RegularizationModel for
Multiplicative Noise Removal

All images are eventually perceived and interpreted by the
Human Visual System (HVS). As a result, many researchers
have found that human vision psychology and psychophysics
play an important role in image processing. The classical
example is the using of the Just Noticeable Difference Model
(JND) in image coding and watermarking techniques [25,
26]. In these fields, the JND model is used to control the
visual perceptual distortion during the coding procedure
and watermark embedding. Weber’s law was first described
in 1834 by German physiologist Weber [27]. The law
reveals the universal influence of the background stimulus
u on human’s sensitivity to the intensity increment |∇u|,
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or so-called JND, in the perception of both sound and
light:

|∇u|
u

= const. (6)

According to Weber’s law, when the mean intensity of the
background is increasing with a higher value, the intensity
increment |∇u| also has higher value. In literature [23], the
author gave a complete analysis and report for the Gaussian
denoising problem:

u0 = u + v. (7)

He proposed a nonconvex variational model:

min
u

{

E(u) = TV
(

logu
)

+ λ‖u0 − u‖L2(Ω)

}

. (8)

The essential idea of the above model is the use of Weber’s
law. For the optimizing model (8), the author had given
complete existence and uniqueness theorem in the following
natural admissible space S(Ω) defined as

S(Ω) =
{

u > 0 | u ∈ L2(Ω),
∫

Ω

∣

∣∇ logu
∣

∣dx <∞, u >
u0

2

}

(9)

and presented a fast gradient descent algorithm.
Inspired from the Weberized TV regularization method,

we propose a nonconvex Weberized TV regularization-based
multiplicative noise removal model:

û = arg min
u

{

E(u) = TV
(

logu
)

+ λ
∫

Ω

(

u0

u
+ logu

)

dx
}

= arg min
u

{

E(u) =
∫

Ω

|∇u|
u

dx + λ
∫

Ω

(

u0

u
+ logu

)

dx
}

,

(10)

where the first term Ew(u) := TV(logu) = ∫

Ω(|∇u|/u)dx is
the well-known Weberized TV regularization term, while the
second one is the nonconvex data fidelity term. Comparing
the model in (10) with the model in (5), it is very interesting
to see that the model in (10) is essentially similar to
Weberized TV Regularization for Gaussian noise removal
model (8), and the difference is that the data fidelity term
is adjusted by AA model’s data fidelity term. Furthermore,
the proposed model (10) can be understood and interpreted
from the statistical perspective using Bayesian formulation,
and this is straightforward application of MAP theory as
illustrated in [19, 21].

In addition, one may wonder whether the minimizing
problem of (10) has the unique solution or not. It is very
important to point that existence and uniqueness of this
problem can also be valid and can be proved. The proof can
be made very similar to the discussion for the model (8),
which can be found in [13].

3. The Proposed Surrogate Functional Model
andMathematical Analysis

3.1. The Proposed Surrogate Functional Model. In this sub-
section, we will propose another extension strictly convex
objective function which can be viewed as a surrogate
functional model for minimizing Weberized TV regulariza-
tion problems (10). To do this, we first give the formal
equilibrium Euler-Lagrange equation of problem (10). For
the sake of convenience, let us denote that Φ(u) = 1/u.

Lemma 1. Let Φ(u) : R+ → R+ be a C1 function and

E(u) =
∫

Ω
Φ(u)|∇u|dx + λ

∫

Ω

(

u0

u
+ logu

)

dx, (11)

then the formal equilibrium Euler-Lagrange equation of E(u)
is

−Φ(u) div
( ∇u
|∇u|

)

+ λ
u− u0

u2
= 0,

∂u

∂−→n
∣

∣

∣

∣

∂Ω
= 0,

(12)

where −→n is the outward normal to ∂Ω and −→n = (∇u/|∇u|).

Proof. Note that in the first integral of the second line, by the
standard computation of the operator div(Φ(u)∇u/|∇u|), it
is easy to prove that

div
(

Φ(u)
∇u
|∇u|

)

= Φ(u) · div
( ∇u
|∇u|

)

+ Φ′(u)|∇u|.
(13)

Then we use the standard computation of Calculus of
Variation E → E + δE:

δE =
∫

Ω

(

Φ′(u)|∇u|δu + Φ(u)
∇u
|∇u|∇(δu)

)

dx

+ λ
∫

Ω

u− u0

u2
δudx

=
∫

Ω

(

Φ′(u)|∇u| − div
(

Φ(u)
∇u
|∇u|

)

δu
)

dx

+
∫

∂Ω

Φ(u)
|∇u|

∂u

∂−→n δuds + λ
∫

Ω

u− u0

u2
δudx

=
∫

Ω

(

−Φ(u) · div
( ∇u
|∇u|

))

δu dx

+
∫

∂Ω

Φ(u)
|∇u|

∂u

∂−→n δuds + λ
∫

Ω

u− u0

u2
δudx,

(14)

where ds denotes the arc-length element of the boundary.
This completes the proof.

Since u > 0, Φ(u) = 1/u, then the Euler-Lagrange
equation (12) can be rewritten equivalently as

−div
( ∇u
|∇u|

)

+ λ
u− u0

u
= 0,

∂u

∂−→n
∣

∣

∣

∣

∂Ω
= 0.

(15)
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Suppose that there exists a function M(u) which satisfies
M′(u) = (u − u0)/u, then it is easy to find the function
M(u) = u− u0 logu, and then (15) is also the corresponding
Euler-Lagrange equation of another objective functional or a
new reference energy ER(u) which is defined as follows:

ER(u) =
∫

Ω
|∇u|dx + λ

∫

Ω

(

u− u0 logu
)

dx. (16)

Note that optimization problems given in (10) and (16)
have the same equilibrium Euler-Lagrange equation (15). In
Section 3.2, we can prove that the solution of optimizing
model (16) admits a unique solution. In other words, on
one hand, the unique solution of optimization problems
given in (10) is also a solution of optimizing model (16).
On the other hand, optimizing model (16) admits a unique
solution which satisfies (15). Taking into consideration two
facts mentioned above, it is clear to see that the equivalence
of optimization problems given in (10) and (16) can be
guaranteed. Hence, model (16) can be viewed as a surrogate
functional for minimizing the Weberized TV regularization
problem (10).

3.2. Existence and Uniqueness Results. As discussed in
Section 3.1, to show the equivalence of optimization prob-
lems given in (10) and (16), we need to prove the existence
and uniqueness of solution in optimizing model (16). To do
this, we briefly recall some notations and basic preliminaries
of BV(Ω) (see [3, 24]). Let C

p
0 (Ω) denote the space of

real-valued functions, p is continuously differentiable with
compact support, let Lp(Ω) denote the space of Lebesgue
measurable functions u such that

∫

Ω |u|pdx < ∞ and L∞(Ω)
the space of Lebesgue measurable functions u such that there
exists a constant c with |u(x)| ≤ c a.e. x ∈ Ω.

Definition 1. Let BV(Ω) be a space of function of u ∈ L1(Ω)
such that the following quantity:
∫

Ω
|∇u| = sup

{∫

Ω
u div

(−→g )dx | −→g ∈ C1
0

(

Ω;R2),
∣

∣
−→g ∣∣ ≤ 1

}

(17)

is finite. BV(Ω) is a Banach space with the norm ‖u‖BV(Ω) =
TV(u) + ‖u‖L1(Ω).

We summarize below the lower semicontinuity and
compactness properties of BV(Ω) [3, 28] that we will use in
the proof.

(i) Suppose that uk ∈ BV(Ω) (k = 1, 2, . . .)
and uk → u in L1

loc(Ω), then
∫

Ω |∇u|dx ≤
limn→∞ inf

∫

Ω |∇un|dx.

(ii) Suppose that {un}∞n=1 is a sequence in BV(Ω) sat-
isfying supn‖un‖BV(Ω) < ∞, then there exists a
subsequence {unj}∞j=1

and a function u ∈ BV(Ω)

such that unj → u in L1(Ω) as j → ∞.

Using the lower semicontinuity and compactness of
BV(Ω), we can conclude the following existence and unique-
ness theorem.

Theorem 1. Let u0 ∈ L∞(Ω) be a positive, bounded function
with infΩu0 > 0, then the minimizing problem of energy
functional in (16) admits a unique solution u ∈ BV(Ω)
satisfying

inf
Ω

(u0) ≤ u ≤ sup
Ω

(u0). (18)

Proof. See the appendix.

4. Proposed Fast Algorithm

4.1. Motivation. In this subsection, we will develop a fast
multiplicative noise removal algorithm for the optimizing
energy functional of (16). Our algorithm is designed using
the well-known variable-splitting and penalty techniques
in optimization [20–22]. An auxiliary variable w is firstly
introduced to transfer u out of the nondifferentiable term
TV(u), and the difference between w and u is penalized,
yielding the following approximation model of model (16):

min
u,w

{

Es(u,w) =
∫

Ω
|∇w|dx + α2

∫

Ω
|w − u|2dx

+ α3

∫

Ω

(

u− u0 logu
)

dx
}

,

(19)

with a sufficiently large penalty parameter α2 > 0. It is well
known that the solution of (19) converges to that of (16)
as α2 → ∞. While either one of the two variables u and w
is fixed, problem (19) can be solved by alternative iterative
subproblem minimizing:

(i) û = arg min
u

{

α2

∫

Ω
|w − u|2dx

+ α3

∫

Ω

(

u− u0 logu
)

dx
}

,

(20)

(ii) ŵ = arg min
w

{∫

Ω
|∇w|dx + α2

∫

Ω
|w − u|2dx

}

. (21)

The main advantage of this procedure is that the proposed
model takes advantage of using the total variation mini-
mization scheme to remove the multiplicative noise. It can
be solved by many TV denoising fast methods such as the
Chambolle projection algorithm [29], primal-dual method,
and the lagged diffusivity fixed point method [30–33]. In
this paper, we will use another fast algorithm proposed in
[34, 35] to deal with TV denoising problem (21). Similar to
the previous discussion, we introduce another vector variable
v = (v1, v2) to approximate ∇w, and then subproblem (21)
is approximated by

(v̂, ŵ) = arg min
v,w

{∫

Ω
|v|dx + α1

∫

Ω
|∇w − v|2dx

+ α2

∫

Ω
|w − u|2dx

}

,

(22)

where α1 > 0 is the penalty parameter, and the solution of
(22) converges to that of (21) as α1 → ∞.
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4.2. Discrete Scheme. Let us consider the discrete scheme of
the problem. Let matrix u0 ∈ RN×N represent a two dimen-
sional gray-scale digital image, where each component (u0)i, j
is the intensity value of pixel (i, j) for i, j ∈ {1, 2, . . . ,N}.
Similarly, we let matrix u represent the unknown image to be
restored. Let us define the forward finite difference operator

(Du)i j =
⎛

⎝

(D1u)i j

(D2u)i j

⎞

⎠ =
⎛

⎝

ui+1, j − ui, j

ui, j+1 − ui, j

⎞

⎠, 1 ≤ i, j < N ,

(23)

with periodic boundary adjustments for i = N and j = N ,
and D is a block-circulant-circulant-block (BCCB) matrix.
Under the above definitions, the corresponding discrete form
of (20) and (22) is

(i) u-subproblem:

û = arg min
u

⎧

⎨

⎩

α2

∑

i, j

∥

∥

∥wi, j − ui, j
∥

∥

∥

2

2

+ α3

∑

i, j

(

ui, j −
(

u0 logu
)

i, j

)

⎫

⎬

⎭

,

(24)

(ii) w-subproblem:

ŵ = arg min
v,w

⎧

⎨

⎩

∑

i, j

∥

∥

∥vi, j
∥

∥

∥

2
+ α1

∑

i, j

∥

∥

∥(Dw)i, j − vi, j
∥

∥

∥

2

2

+ α2

∑

i, j

∥

∥

∥wi, j − ui, j
∥

∥

∥

2

2

⎫

⎬

⎭

.

(25)

4.2.1. u-Subproblem. Since this is strictly convex problem, it
is equivalent to solve

(u−w) +
α3

2α2

(

1− u0

u

)

= 0 (26)

or (let γ = α3/(2α2)) find the meaningful positive root for
this equation, that is,

û = w − γ +
√

(

w − γ
)2 + 4γu0

2
. (27)

4.2.2. w-Subproblem. It can be solved by alternately mini-
mizing the objective function with respect to v while fixing
w, and vice versa:

(i) v̂ = arg min
v

⎧

⎨

⎩

∑

i, j

∥

∥

∥vi, j
∥

∥

∥

2
+ α1

∑

i, j

∥

∥

∥(Dw)i, j − vi, j
∥

∥

∥

2

2

⎫

⎬

⎭

,

(28)

(ii) ŵ = arg min
w

⎧

⎨

⎩

α1

∑

i, j

∥

∥

∥(Dw)i, j − vi, j
∥

∥

∥

2

2

+ α2

∑

i, j

∥

∥

∥wi, j − ui, j
∥

∥

∥

2

2

⎫

⎬

⎭

.

(29)

It is not difficult to verify that the v-subproblem permits
a closed-form solution [34]:

v̂i j = max
(
∥

∥

∥(Dw)i j
∥

∥

∥

2
− 1

2α1
, 0
)

· (Dw)i j
∥

∥

∥(Dw)i j
∥

∥

∥

2

. (30)

For a fixed v, let μ = α1/α2, then w-subproblem (29) is
quadratic in w and the minimizer ŵ is given by the normal
equation [34, 35]
[

μ
(

DT
1 D1 + DT

2 D2

)

+ I
]

w = μ
(

DT
1 v1 + DT

2 v2

)

+ u. (31)

Under the periodic boundary condition forw, D1, andD1 are
block circulant. So DT

1 D1 and DT
2 D2 are all block circulant.

Therefore, the Hessian matrix on the left-hand side of (31)
can be diagonalized by two-dimensional discrete Fourier
transform F. Using the convolution theorem of Fourier
transforms, we can write

ŵ = F−1

(

F(u) + μ ·∑2
k=1 F(Dk)∗ ◦ F(vk)

1 + μ ·∑2
k=1 F(Dk)∗ ◦ F(vk)

)

, (32)

where the symbol “∗” denotes complex conjugacy, “◦”
denotes component-wise multiplication, and the division is
component-wise as well. With a slight abuse of notation, we
have used F(D1) for the Fourier transform of the function
represented by D1 in the convolution D1u (and similarly
for D2). Since all quantities but v1 and v2 are constant,
computing ŵ from (32) involves two FFTs and one inverse
FFT, once the constant quantities are computed.

4.3. Parameters Choice. There are three parameters α1, α2,
and α3 or equivalently α1, γ = α3/(2α2), and μ = α1/α2

involved in the iterative procedure.
Firstly, from the connection between model (16) and

model (19), how well the solution of (19) approximates
that of (16) or its constrained equivalent depends on the
magnitude of α1, α2, which determines the amount of
penalty applied to the discrepancy between u and w and also
between ∇w and v in the squared L2-distance. Hence, the
magnitude of α1, α2 must have larger enough value.

Secondly, α3 is the regularization parameter which
controls the trade-off between the image fidelity term and
the regularization term. We dynamically compute the value
of α3 according to the variance of the recovered noise which
matches that of our prior knowledge [7]. The Gamma
distributed noise has the mean and variance as follows:

∫

Ω

u0

u
dx = 1,

∫

Ω

(

u0

u
− 1

)2

dx = σ2. (33)

Notice that the Euler-Lagrange equation of the optimizing
problem of (16) is (15). The solution procedure uses a
parabolic equation with time as an evolution parameter. This
means that we solve

∂u

∂t
= div

( ∇u
|∇u|

)

+ α3
u0 − u

u
,

∂u

∂−→n
∣

∣

∣

∣

∂Ω
= 0,

(34)
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for t > 0. We merely multiply the first equation of (34) by
((u0 − u)/u) and integrate by parts over Ω. If steady state
has been reached, the left side of the first equation of (34)
vanishes, then we have

α3 = 1
σ2

∫

Ω

[ ∇u
|∇u| · ∇

(

u0 − u

u

)]

dx. (35)

4.4. Proposed Fast Algorithm. In summary, according to
the iterative process analysis and parameters choice which
were discussed in Sections 4.1 and 4.2, respectively, we can
propose a fast algorithm framework as follows. Two loops of
iterations are contained in this algorithm framework. In the
outer loop, we use the continued method by increasing the
parameters α1 and α2 to achieve the good convergence. At
the same time, in the inner loop, we update the parameter α3

in order to match the variance of the recovered noise.
According to the optimality conditions of (20), (28), and

(29), the stopping criterion of the proposed algorithm is
proposed in the following. Let

r1 = u−w + γ
(

1− u0

u

)

,

r2
(

i, j
) = vi, j

(

2α1

∥

∥

∥vi, j
∥

∥

∥

2

) + vi, j − (Dw)i, j ,
∥

∥

∥vi, j
∥

∥

∥

2 /= 0,

r3
(

i, j
) = 2α1

∥

∥

∥(Dw)i, j
∥

∥

∥

2
≤ 1,

∥

∥

∥vi, j
∥

∥

∥

2
= 0,

r4 = μDT(Dw − v) + (w − u).

(36)

The inner loop is terminated once

Res = max

{

‖r1‖∞, max
i, j

{
∥

∥r2
(

i, j
)∥

∥

2

}

,

max
i, j

{
∥

∥r3
(

i, j
)∥

∥

2

}

, ‖r4‖∞
}

≤ ζ ,

(37)

where Res measures the total residual and ζ > 0 is a
prescribed tolerance.

The complete resulting algorithm is summarized in
Algorithm 1.

4.5. Convergence Analysis. The convergence of the quadratic
penalty method as the penalty parameter goes to infinity
is well known (e.g., see [36, Theorem 17.1]). That is, as
α1,α2 → ∞ the solution of (19) converges to that of
(16), and the solution of (22) converges to that of (21),
respectively. In this subsection, we present the convergence
results of Algorithm 1 for fixed α1 and α2 without proofs
since these results are rather straightforward application of
[34, Theorem 3.4]. For the sake of completeness, we first
present some necessary definitions and then give the main
convergence results.

To begin with, for a ∈ R2, we define the 2D shrinkage
operator s : R2 → R2 by

s(a) = max
(

‖a‖2 − 1
2α1

, 0
)

· a

‖a‖2
, (38)

Initialization: u(0) = w(0) = u0, ε > 0, α1 > 0,
α2 > 0, α1 max � 0,α2 max � 0.
While α1 < α1 max and α2 < α2 max Do
While Res > ζ , Do

(1) Save the previous iterate: u∗ = u,
(2) Compute u according to (27) for fixed w,
(3) Compute v according to (30) for fixed w,
(4) Compute w according to (32) for fixed v,
(5) Update α3 according to (35).

End Do
Increase α1 and α2,
End Do
Output: u∗.

Algorithm 1

where 0 · (0/0) = 0 is followed. An then we define an N-
dimensional vector shrinkage operator S(u; v) : R2N2 → R2N2

by

S(u; v) = (s(u1, v1); . . . ; s(uN2 , vN2 )), u, v ∈ RN2
, (39)

that is, S applies 2D shrinkage to each pair (ui, vi) ∈ R2, i =
1, 2, . . . ,N2.

In addition, we define a linear operator h : R2N2 → R2N2

as h(v) = (h1(v);h2(v)), where hj(v) = DjM−1(μDTv +
u), j = 1, 2. M denotes the symmetric positive definite
matrix which satisfies M = μDTD + I .

Using the definition of S and h, we can rewrite the three
iterative steps in Algorithm 1 into

u(m+1) = w(m) − γ +
√

(

w(m) − γ
)2 + 4γu0

2
, (40)

v(m+1) = S
(

D1w
(m);D2w

(m)
)

= S · h
(

v(m)
)

, (41)

w(m+1) =M−1
(

μDTv(m+1) + u(m+1)
)

, (42)

then the convergence results of Algorithm 1 can be proved
as discussed in [34]. Firstly, as proved by Proposition 3.1
in [34], the nonexpansiveness of the shrinkage operator
S can be ensured. Then, it is easy to check that M is
nonsingularity, thus another symmetric positive definite
matrix T = DM−1DT is well defined and the spectral
radius ρ(T) < 1. Thus the operator h is also nonexpansive.
Secondly, the objective function in (25) is convex, bounded
below, and coercive. Hence, for any fixed α1 > 0, the
sequence {(v(m),w(m))} generated by (40), (41), and (42)
from any star point w(0) converges to a solution of (25)
(see [34, Theorem 3.4]). Furthermore, the convergence of
{u(m)} to some u∗ follows directly from (40), hence we can
conclude that for fixed α1 and α2, the sequence {(u(m),w(m))}
generated by Algorithm 1 from any start point (u(0),w(0))
converges to a fixed point (u∗,w∗), which is the solution of
(24) and (25).

4.6. Some Complexity Notes. It is clear that the complexity
of the proposed algorithm mainly includes three parts.
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The calculation in (27) and (30) has a linear-time complexity
of order O(N2) for an N-by-N image. Hence, the u-
subproblem and v-subproblem can be solved quickly. The
solution of the w-subproblem (32) requires three fast Fourier
transforms and one inverse transform and a total complexity
in the order of O(N2 log(N2)) = O(N2 log(N)).

5. Numerical Results and Performance Analysis

In this section, we demonstrate the effectiveness of our
proposed Algorithm 1 in image denoising. The numerical
results are compared with those obtained by the “HMW”
method proposed by Huang et al. [21], “AA” method
proposed by Aubert and Aujol [19], and the “RLO” method
proposed by Rudin et al. [18]. In the tests, each pixel of
an original image is degraded by a noise which follows a
Gamma distribution with density function in (3) and v being
specified to have mean 1 and standard deviation 1/

√
L. The

noise level is controlled by the value of L in the experiments.
To compare the performance of the algorithms men-

tioned above, we compute the quality of restored images by
the peak signal-to-noise ratio (PSNR), the improved SNR
(ISNR), and the relative error (ReErr) of the restored image
defined by

PSNR = 10 log10

{

MN max {u}2

‖u∗ − u‖2
2

}

,

ISNR = 10 log10

{

‖u0 − u‖2
2

‖u∗ − u‖2
2

}

,

ReErr = ‖u0 − u‖2
2

‖u‖2
2

,

(43)

where u, u∗, and u0 are the original, the restored, and the
observed images, respectively.

The solution of model (4) by the “RLO” method is
obtained by using the following gradient projection iterative
scheme [18]:

u(m+1) = u(m) + Δt

⎡

⎣div

⎛

⎝

∇u(m)
√

∣

∣∇u(m)
∣

∣
2 + ε

⎞

⎠

+ λ
u2

0

(u(m))3 + μ
u0

(u(m))2

]

.

(44)

Here, the two Lagrange multipliers λ and μ are dynamically
updated to satisfy the constraints (as explained in [18]).

The solution of the “AA” model (5) is obtained by using
the following explicit iterative scheme [19]:

u(m+1) = u(m) + Δt

⎡

⎣div

⎛

⎝

∇u(m)
√

∣

∣∇u(m)
∣

∣
2 + ε

⎞

⎠ + λ
u0 − u(m)

(u(m))2

⎤

⎦.

(45)

Here, the regularization parameter λ is dynamically updated
(as explained in [7]). In the “RLO” and “AA” methods, ε is
set to be 10−4, and Δt is set to be a small positive number to
ensure the convergence of the iterative scheme.

(a) (b)

(c)

Figure 1: (a) The original “Lena” image; (b) the synthetic image
“SynImag”; (c) the SAR image.

(a) (b)

Figure 2: The degraded “Lena” image with L = 33 (a) and the
degraded “Lena” image with L = 5 (b).

(a) (b)

Figure 3: The degraded “SynImag” image with L = 2 (a) and the
degraded SAR image with L = 10 (b).
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(a) (b)

(c) (d)

Figure 4: The restored “Lena” images for denoising Figure 2(a): (a)
by the proposed method (α1 = 0.9 × 232, α2 = 1.5 × 232, and ζ =
5 × 10−3); (b) by the “HMW” method (α1 = 0.01, α2 = 0.004); (c)
by the “AA” method; (d) by the “RLO” method.

(a) (b)

(c) (d)

Figure 5: The restored “Lena” images for denoising Figure 2(b): (a)
by the proposed method (α1 = 0.5 × 232, α2 = 0.2 × 232, and ζ =
5 × 10−3); (b) by the “HMW” method (α1 = 0.01, α2 = 0.01); (c)
by the “AA” method; (d) by the “RLO” method.

(a) (b)

(c) (d)

Figure 6: The restored “SynImag” images for denoising of
Figure 3(a): (a) by the proposed method (α1 = 4.6 × 232, α2 =
1.5 × 232, and ζ = 5 × 10−3); (b) by the “HMW” method (α1 =
0.01, α2 = 0.01); (c) by the “AA” method; (d) by the “RLO” method.

(a) (b)

(c) (d)

Figure 7: The restored SAR images for denoising of Figure 3(b): (a)
by the proposed method (α1 = 4 × 232, α2 = 18 × 232, and ζ =
5 × 10−3); (b) by the “HMW” method (α1 = 0.01, α2 = 0.004); (c)
by the “AA” method; (d) by the “RLO” method.
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Figure 8: The 60th line of the original, noisy, and restored images for denoising Figure 2(a). (a) The noisy image; (b) the slice restored by
the proposed method; (c) the slice restored by the “HMW” method; (d) the slice restored by the “AA” method; (e) the slice restored by the
“RLO” method. Here the blue line is the original image, and the red line is the restored image.

The solution of the “HMW” model [21]

min
z,w

⎧

⎨

⎩

N2
∑

i=1

(

[z]i + [u0]i e
−[z]i

)

+ α1‖z −w‖2
2 + α2TV(w)

⎫

⎬

⎭

(46)

is obtained by using the following alternating minimization
algorithm:

z(m) = arg min
z

N2
∑

i=1

(

[z]i + [u0]ie
−[z]i

)

+ α1

∥

∥

∥z −w(m−1)
∥

∥

∥

2

2
,

(47)
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Figure 9: The 100th line of the original, noisy, and restored images for denoising Figure 2(b). (a) The noisy image; (b) the slice restored by
the proposed method; (c) the slice restored by the “HMW” method; (d) the slice restored by the “AA” method; (e) the slice restored by the
“RLO” method. Here the blue line is the original image, and the red line is the restored image.

w(m) = arg min
w

{

α1

∥

∥

∥z(m) −w
∥

∥

∥

2

2
+ TV(w)

}

. (48)

The corresponding nonlinear Euler-Lagrange equation of
subproblem (47)

1− [u0]i e
−[z]i + 2α1

(

[z]i −
[

w(m−1)
]

i

)

= 0,

i = 1, 2, . . . ,N2,
(49)

was solved using the Newton method. The Chambolle pro-
jection algorithm was employed in the denoising subproblem
(47), and then the restored image was computed by exp(w).
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Figure 10: The 128th line of the original, noisy, and restored images for denoising Figure 3(a). (a) The noisy image; (b) the slice restored by
the proposed method; (c) the slice restored by the “HMW” method; (d) the slice restored by the “AA” method; (e) the slice restored by the
“RLO” method. Here the blue line is the original image, and the red line is the restored image.

The stopping criterion of the “HMW” method, the “AA”
method, and the “RLO” method is that the PSNR value of
the restored image reaches its maximum.

Our numerical experiments use several natural and
manmade images such as “Lena” (Figure 1(a)), the synthetic

image (Figure 1(b)), and the SAR image (Figure 1(c)) to
compare various algorithms’ performances. As shown in
Figure 2, the “Lena” images are corrupted by a Gamma
noise with L = 33 (Figure 2(a)) and L = 5 (Figure 2(b)).
Figure 3(a) shows the noisy synthetic image which is
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Figure 11: The 128th line of the original, noisy, and restored images for denoising Figure 3(b). (a) The noisy image; (b) the slice restored by
the proposed method; (c) the slice restored by the “HMW” method; (d) the slice restored by the “AA” method; (e) the slice restored by the
“RLO” method. Here the blue line is the original image, and the red line is the restored image.

corrupted by a Gamma noise with L = 2, while Figure 3(b)
shows the noisy SAR image which is distorted by Gamma
noise with L = 10.

Figures 4, 5, 6, and 7 show the restored “Lena,” synthetic
image and SAR images, respectively. In these experiments,

the initial guess is set to be u(0) = u0. It is clear that the
restoration results by the proposed method are visually much
better than those by the “HMW” method, the “AA” method
and the “RLO” method, especially when the noise variance
is large, that is, when L is small. The effectiveness of our
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Table 1: The PSNR, ISNR, and ReErr of the restored images using four methods.

Experiments
Our algorithm “HMW” algorithm “AA” algorithm “RLO” algorithm

PSNR ISNR ReErr PSNR ISNR ReErr PSNR ISNR ReErr PSNR ISNR ReErr

“Lena” in Figure 2(a) 27.973 7.914 0.0049 27.439 7.419 0.0056 27.016 6.950 0.0061 27.646 7.580 0.0053

“Lena” in Figure 2(b) 23.457 11.573 0.0139 21.032 9.131 0.0244 22.554 10.702 0.0171 23.143 11.291 0.0150

“SynImag” in Figure 3(a) 26.961 12.535 0.0279 22.338 7.860 0.0808 25.717 11.292 0.0371 25.841 11.416 0.0361

“SynImag” in Figure 3(b) 25.031 5.950 0.0252 24.579 5.589 0.0279 22.451 3.370 0.0456 22.657 3.5770 0.0435

Table 2: The number of iterations and computational times of four algorithms.

Experiments
Our algorithm “HMW” algorithm “AA” algorithm “RLO” algorithm

CPU time (s) Iterative
no.

CPU time (s) Iterative
no.

CPU time (s) Iterative
no.

CPU time (s) Iterative
no.

“Lena” in Figure 2(a) 8.438 77 8.609 72 39.860 278 51.938 115

“Lena” in Figure 2(b) 10.594 103 9.438 92 33.984 274 125.13 280

“SynImag” in Figure 3(a) 16.188 111 24.078 275 43.688 252 158.88 260

“SAR” image in Figure 3(b) 7.578 69 7.469 110 38.938 272 20.563 67

proposed method is confirmed by the computing results of
PSNR, ISNR, and ReErr of the three methods, as listed in
Table 1. From Table 1, we can see that the PSNRs and ISNRs
of the images restored by using our method are more than
those restored by using the other three methods, and the
relative errors ReErr are less than the other three methods.
Moreover, our proposed algorithm is efficient. Table 2 shows
the number of iterations required for convergence and the
computational times required by our method, the “HMW”
method, the “AA” method, and the “RLO” method. Although
our method takes little more time than the “HMW” method
in some experiments, it is clear that the computational time
required by our method is quite competitive with the other
two methods.

We check the homogeneity of regions of interest in the
image and analyze the loss (or the preservation) of contrast.
In Figures 8, 9, 10, and 11, we show several lines of the
original, noisy, and restored images. It is clear from the
figures that the lines restored by the proposed method are
better than those restored by the other three methods. Table 3
lists the results of mean square errors (MSEs) between the
corresponding line of the original images and one of the
restored images in Figures 8–11. From the computing MSE
results, we can conclude that our algorithm has the best
performance.

We also prove that the proposed algorithm does not
depend on starting point by experiment. In our experiment,
we use two different initial guessed images in the proposed
method. The first initial guess is set to be u(0) = u0, and
the second is set to be a constant image where the constant
is the mean of u0. Here we do not give the restored images
using the mean image as initial guess, because they are almost
the same with those using the u(0) = u0. Table 4 shows
that the PSNRs, ISNRs, and relative errors of the restored
images using two different initial guesses are about the same.
These means that our method is not sensitive to initial
guess.

6. Conclusion

In this paper, we have investigated a new nonconvex varia-
tional model for the multiplicative noise removal problem
under the Weberized TV regularization framework. Using a
reference energy functional, we propose another surrogate
strictly convex objective function for multiplicative noise
removal. Our algorithm is designed using the well-known
variable-splitting and penalty techniques in optimization.
The proposed algorithm contains three subminimizing parts
and each of them permits a closed-form solution. Our
experimental results show that our proposed algorithm is
effective and efficient to filter out multiplicative noise while
well preserving the significant details.

Appendix

Proof of Theorem 1

Let us denote that α = infΩ(u0), β = supΩ(u0), TV(u) =
∫

Ω |∇u|dx, Edata(u) = ∫

Ω(u − u0 logu)dx, and h(s) = s −
u0 log s. It is obvious that h′′(s) = u0/s2 and h is strictly
convex as u0 > 0. Therefore, we have h(s) ≥ u0 − u0 logu0

for all s ∈ R2. This implies that ER(u) has a lower bound for
all u ∈ BV(Ω). Hence we consider a minimizing sequence
{un} ∈ BV(Ω) for (16).

First, we show that α ≤ un ≤ β. Since u0 ∈ L∞(Ω) is
a positive, bounded function with infΩu0 > 0, we choose a
sequence {un} ∈ C∞(Ω) such that un → u0 in L1(Ω) and
a.e. in Ω as n → ∞, and infΩ(u0) ≤ un ≤ supΩ(u0). We
remark that h(s) is decreasing as s ∈ (−∞,u0) and increasing
as s ∈ (u0, +∞). Therefore, if M > u0, one always has
h(min(s,M)) ≤ h(s). Hence, if we let M = β = sup(u0),
then

Edata
(

inf
(

u,β
)) ≤ Edata(u). (A.1)
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Table 3: The mean square error between the line of the original images and the restored images using four algorithms.

Experiments Our algorithm “HMW” algorithm “AA” algorithm “RLO” algorithm

“Lena” in Figure 2(a) 0.4892 0.5134 0.5512 0.5034

“Lena” in Figure 2(b) 0.8905 1.2748 1.0664 1.0778

“SynImag” in Figure 3(a) 0.4147 0.5309 0.5502 0.5355

“SAR” image in Figure 3(b) 1.0903 1.1204 1.1729 1.1294

Table 4: The PSNR, ISNR, and ReErr of the restored images using two different initial guesses in our algorithms.

Experiments
u(0) = u0 u(0) = mean(u0)

PSNR ISNR ReErr PSNR ISNR ReErr

“Lena” in Figure 2(a) 27.973 7.914 0.0049 28.001 7.981 0.0049

“Lena” in Figure 2(b) 23.457 11.573 0.0139 23.564 11.663 0.0136

“SynImag” in Figure 3(a) 26.961 12.535 0.0279 27.003 12.524 0.0276

“SAR” image in Figure 3(b) 25.031 5.950 0.0252 25.003 6.013 0.0253

Moreover, we have that (e.g., see [37, Section 4.3,
Lemma 1]):

TV
(

inf
(

u,β
)) ≤ TV(u). (A.2)

Combining (A.1) and (A.2), we thus deduce that

ER
(

inf
(

u,β
)) ≤ ER(u). (A.3)

And we get in the same way that

ER
(

sup(u,α)
) ≤ ER(u). (A.4)

Therefore, we can assume without restriction that infΩ(u0) ≤
un ≤ supΩ(u0).

Second, the above proof implies in particular that un is
bounded in L1(Ω). Moreover, by the definition of {un}, we
get that there exists a constant C such that

TV(un) + λEdata(un) ≤ C. (A.5)

Moreover, standard computations show that Edata(un)
reaches its minimum value when u = u0 and thus we deduce
that TV(un) ≤ C.

Therefore, we get that un is bounded in BV(Ω) and there
exists u ∈ BV(Ω) such that up to a subsequence, un → u in
BV(Ω)-weak∗ and un → u in L1(Ω)-strong. Necessarily, we
have 0 ≤ α ≤ u ≤ β, and thanks to the lower semicontinuity
of the total variation and Fatou’s lemma, we get that u is a
solution of problem (16).

Since h is strictly convex as u0 > 0, the uniqueness of
the minimizer follows from the strict convexity of the energy
functional in (16). This completes the proof.
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