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Spectrum awareness of orthogonal frequency division multiple access- (OFDMA-) based cognitive radios (CRs) can be improved
by enabling them to separate the primary user signals in the uplink (UL). Assuming availability of information about the basic
parameters of the primary system as well as time synchronization to the first arriving user signal, two algorithms are proposed in
this paper. The first one targets estimating the size of the frequency allocation block of the primary system. The performance of
this algorithm is compared with the results of a Gaussian approximation-based approach that aims to determine the probability
of correct block size estimation theoretically. The second one is a semiblind user separation algorithm, which estimates the carrier
frequency offsets and time delays of each block by exploiting the cross-correlations over pilot subcarriers. A two-dimensional
clustering method is then employed to group the estimates, where each group belongs to a different user. It is shown that the
proposed algorithms can improve the spectrum opportunity detection of cognitive radios. Feasibility of the algorithms is proved

through practical simulations.

1. Introduction

Spectrum awareness is one of the fundamental features of
cognitive radios (CRs) [1]. It has conventionally been con-
sidered a radio’s being aware of the occupied and available
frequency bands within its target spectrum [2]. It is achieved
through spectrum sensing, where interference temperature
is measured over the entire spectrum targeted, and the parts
whose energy level exceeds a certain threshold are considered
to be occupied [3, 4]. A different aspect was added to the
spectrum awareness concept in [5] by attempting to charac-
terize the source of the signal in the occupied spectrum. In
this work, we propose to enhance the spectrum awareness
by providing the cognitive radios with the capability of
separating the primary user signals from each other in the
uplink (UL). We consider orthogonal frequency division
multiple access- (OFDMA-) based CR systems that coexist
with a primary network that is also OFDMA-based. The
proposed algorithm can be applicable to single carrier-
frequency disivion multiple accessing- (SC-FDMA-) based

UL systems, as well, given that the resource blocks employed
enable estimation of user specific parameters.

Due to the involvement of multiple user signals, the
uplink of OFDMA systems poses a number of challenges
that do not exist in the downlink (DL). Most of these
problems including multiuser channel estimation [6], carrier
frequency offset (CFO) estimation [7], synchronization and
symbol timing estimation [8, 9], multiuser interference
cancellation [10], and subcarrier and power allocation [11]
are investigated extensively in the prior art. However, the
problem of separating UL user signals without access to
the subcarrier assignment scheme (SAS) has not been
investigated in detail in the literature.

A practical cognitive radio application where user sepa-
ration might be quite useful is a cochannel femtocell network
coexisting with a macrocell network [12, 13], both of which
have an OFDMA-based physical layer. If the coexistence is
based on a shared spectrum approach where the femtocell
utilizes the available parts of the macrocell spectrum in an
opportunistic manner, user separation can be very beneficial
to the femtocell. How the user separation and block size
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FI1GURE 1: (a) Flowchart for block size estimation. (b) Flowchart for user signal separation.

estimation algorithms proposed in this paper that might
improve the spectrum opportunity detection for femtocells is
explained in Section 5. Other possible applications regarding
femtocell-macrocell coexistence are discussed in detail in
[14].

User separation in UL-OFDMA was considered in [15]
for interleaved OFDMA systems. In [15], subcarriers allo-
cated to different users follow a certain periodic structure,
which leads to a user-specific CFO. Hence, by estimating the
CFOs, different user signals are identified and separated. In
this paper, however, we propose a semi-blind user separation
algorithm that can be applied to any SAS, which does
not necessarily involve any periodicity. The user separation
algorithm considered in this paper is based on exploiting
the differences in user CFOs and delays. In the uplink of an
OFDMA system, CFOs of users vary due to the differences
in oscillator frequencies as well as the Doppler shifts caused
by the different velocities of users. User delays, on the other
hand, vary due to the different distances of users to the UL
receiver.

In this paper, we assume time synchronization to the first
arriving UL user signal as well as availability of information
on the basic OFDMA system parameters such as FFT size,
sampling time, and cyclic prefix (CP) duration. Considering
scenarios where information about block dimensions is
not available, a block size estimation algorithm is devised,
which exploits the correlation between the pilot subcarriers
within the same block. A Gaussian approximation-based
approach is then introduced, which tries to determine the
potential performance of the block size estimation algorithm
theoretically.

The second algorithm proposed aims at user separation.
It estimates the CFOs and delays for each block separately
by performing cross-correlations over pilot subcarriers and
groups the blocks in the UL symbol according to their

CFOs and delays using the subtractive clustering and iterative
partitioning techniques. This way, it is able to determine
the number of UL users and to separate their subcarriers.
Flowcharts for both the block size estimation and user
separation techniques are illustrated in Figures 1(a) and 1(b),
respectively, which will be discussed in more detail in the
later sections.

The organization of the paper is as follows. Section 2
provides the UL-OFDMA system model. In Section 3, the
block size estimation method is presented, and a Gaussian
approximation approach to block size estimation is given.
In Section 4, a mathematical model of the proposed user
separation algorithm is provided. In Section 5, the potential
contribution of block size estimation and user separation
algorithms to spectrum opportunity detection of cognitive
radios is explained. Simulation results are presented in
Section 6, and Section 7 concludes the paper.

2. UL-OFDMA System Model

Consider an OFDMA system with N, users in the uplink. The
sampled time domain signal at the transmitter of user i can
be written as

x0(n) = \[Eus > XD (0N, —Nep <n< N -1,

ker;
(1)

where Ei; is the total transmitted energy per symbol for
user i, N is the FFT size, I; is the set of subcarriers with N;
elements assigned to user i out of 4 used subcarriers, k € I';
is the subcarrier index, Ncp is the length of the cyclic prefix,
and X (k) is the data on the kth subcarrier of ith user.
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A received symbol of user i after the FFT operation can
be written as

RO (k) = XD (k) HD (k)e 72N e/ isine(n&;) o™
o )
x sinc(mk&;)e!® + IV (k) + W (k),

where &; is the carrier frequency offset (normalized by the
subcarrier spacing f;/N, where f; is the sampling frequency),
d; is the sampling clock error, 7; is the timing offset of user i,
®; is the random phase noise caused by the instability of user
i’s oscillator, H® (k) is the frequency selective channel of user
i, IV(k) is the intercarrier interference (ICI) of user i, and
W (k) is complex additive white Gaussian noise (AWGN).
In the remainder of this paper, it will be assumed that the
random phase noise as well as the sampling clock error in (2)
are negligible.

From (2), it is seen that the CFO has two effects on
the received signal. First, it results in amplitude degradation
and a constant phase shift, and second, in ICI. Another
effect, which becomes apparent when the phases of identical
pilot subcarriers in two adjacent symbols are compared [16],
is a phase shift that changes linearly over symbols. Taking
this linear phase shift into account, the received signal over
multiple symbols can be modeled as

YO (m, k)
— R(i)(m’k)ejan£,-(1+NCp/N) + W(m,k)
= [X(i)(m,k)H“)(m,k)ejﬂg"sinc(ﬂfi)e’jz”k“m +I(i)(m,k)]

X ejanEi(1+Ncp/N) + W(m, k)’

(3)

where m is the symbol index.

3. Block Size Estimation

Uplink OFDMA signal is composed of independent fre-
quency allocation blocks (B’s) such as bins or tiles (tile
structure in WIMAX UL-PUSC is depicted in Figure 2). A
certain user may use a number of these (not necessarily
adjacent) blocks in the UL, depending on its data rate
requirements and scheduling information.

If the coexistence of the primary network and the cog-
nitive radio is cooperative (which might be the case, e.g., in
a cognitive femtocell deployment where both the macrocell
and femtocells are operated by the same service provider),
then the primary network might provide information about
its fundamental parameters such as N, Ncp, and f; to the
cognitive radio. Although the CR might get informed about
the dimensions of 8, as well, it is possible that the CR has to
determine the block size blindly.

It is feasible to determine the block size of an UL-
OFDMA system in a blind manner utilizing any received
signal Y (m, k) that contains an arbitrary number of symbols,
given that the two following assumptions are valid.

(i) The pilot subcarriers are at the corners of the
resource blocks, for example, as in the PUSC mode
of WIMAX standard. Note that extensions to other
pilot structures may also be possible after certain
modifications.

(ii) In the transmitter, the (BPSK modulated) pilot sub-
carriers within the same resource block are assigned
the same value.

Although the second condition causes some slight increase in
the peak-to-average power ratio (PAPR) of the UL signal, this
increase is tolerable especially in a cooperative coexistence
scenario, where the primary network is willing to facilitate
cognitive communications.

The pilots in each B are correlated with each other,
whereas the data subcarriers are uncorrelated. Also, there is
not a considerable correlation between the pilots in different
Bs since each B is assigned a random BPSK value for its
pilots. The dimensions of 8 can be determined by exploiting
the correlation between the pilots within the Bs.

The vertical dimension of B can be found by performing
autocorrelation over an entire symbol (vertical correlation),
where it is assumed that the orientation of subcarriers versus
symbols is as depicted in Figure 2. Without taking the effects
of delays and CFOs into consideration, we define the absolute
value of the vertical correlation as

| RV(D] = |E{Y* (m, k)Y (m, k + D} |
g2+ar 1=0,
. (4)
= 2 ]
k1% =6
0 otherwise,

where [ is the lag index, E{-} denotes the expectation
operation, K is the separation between the pilots in the same
symbol of B, 02 is the average subcarrier power, and o7 is the
noise power. Note that the expectation is performed over all
subcarriers, and the 1/(K + 1) term is the ratio of the number
of pilot pairs in a symbol (number of Bs) to the number of
occupied subcarriers 4.

In a similar manner, the horizontal dimension of 8B can
be obtained via an autocorrelation over rows (horizontal
correlation), where a row is the set of subcarriers at the
same subcarrier index k. The absolute value of the horizontal
correlation is given by

‘JR(H)(Z)‘ = |E{Y*(m,k)Y(m+Lk)}|
0'52 + (Tnz I= 0)
1 (5)
= 2 =
M+1 % =M
0 otherwise,

where M is the separation between the pilots in the same row
of 8. The expectation is performed over all symbols involved
in the correlation, and the 1/(M + 1) term is the ratio of
the number of pilot pairs (number of Bs) to the number of
nonempty subcarriers in a row.
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FIGURE 2: 6 blocks in a WIMAX UL-PUSC system, where each block is a 4 x 3 tile, that is, K = 3 and M = 2. Correlations for obtaining EA are
illustrated in the first block, while the correlations for obtaining 7 are illustrated in the second block.

In both vertical and horizontal correlations, the desired
peak is the one that is strongest after the peak at the origin.
In order to accentuate the desired peak, noise averaging
is performed by averaging R(Y) over all symbols available
and by averaging R") over N rows. The desired peak in
the vertical correlation is expected to appear at the Kth
lag yielding the vertical dimension of B8 as K+1. Similarly,
the horizontal dimension is obtained from the horizontal
correlation as M+1.

An illustrative example of the vertical and horizontal
correlations is provided in Figure 3, where the main peaks
are normalized to 1. The block dimensions that need to
be determined are 4 subcarriers by 3 symbols (4 X 3) as
in Figure 2. Hence, peaks are observed in the 3rd lag in
the vertical correlation and in the 2nd lag in the horizontal
correlation. In Figures 3(a) and 3(b), the theoretical curves
represent the values provided by (4) and (5), where the
delays and CFOs are not taken into account. Under the
effect of delays and CFOs, the second curves are obtained,
where the desired peaks appear weaker than the theoretical
values. The reason for the weakening of the desired peaks
is that the delays and CFOs introduce different correlations
to the subcarriers of each user, which, in effect, deteriorates

the overall correlations of the pilots. Finally, the correlation
values that are obtained in a practical simulation are plotted,
where the desired peaks are considerably weaker. This is
because in a practical scenario, the vertical correlations
are averaged over all symbols, only 2/(M + 1) of which
contain pilot subcarriers; and the horizontal correlations are
averaged over all rows, 2/(K + 1) of which contain pilots.
Therefore, the heights of the desired peaks for the practical
caseare 1/(K+1) x2/(M+1)and 1/(M +1) x 2/(K + 1) for
the vertical and horizontal correlations, respectively, which
are equal to each other.

3.1. Gaussian Approximation for Block Size Estimation. In
both vertical and horizontal correlations performed for
block size estimation, each of the samples in the output
of the correlation can be approximated using Gaussian
approximation (GA). Ignoring the sample at the zeroth lag,
all of the correlation samples have a zero mean except the
sample at the desired peak location. Therefore, the problem
of detecting a peak at the correlator output can actually be
considered as finding a variable with a nonzero mean within
a group of zero-mean variables.
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FiGure 3: Normalized autocorrelations obtained utilizing a 60-
symbol long signal (with FFT size 512) for a block size of 4 x 3 at
30 dB SNR in an AWGN channel. (a) Vertical autocorrelation. (b)
Horizontal autocorrelation.

Let y; and 07 denote the mean and the standard deviation
of a correlation value R(I) at the Ith lag, respectively. If I,
denotes the lag corresponding to the peak of the correlation
outputs, then we have w, > 0, and y is equal to zero
otherwise. Taking into account that the peak detection is
performed after absolute value operation, the probability
density function of |R(I,)| can be written as

(=) -m)

In order for x = 0 to have the largest amplitude, all other
samples at the other correlation lags need to have absolute
values that are smaller than |R(I;)|. This has a probability
of [1 — 2Q(|<‘R(lp)|/al)]c_1, where C is the half-length of
the correlator output excluding the sample at the zeroth
lag. Therefore, the total probability of detection of peak of

the correlation output can be obtained by the following
equation:

s (1R ()] )

Py = j ———=—1 €X
|R(1)] 01, v/ 27 P 20}

_("R<ZP)‘+WP>2 (7)

20,?)

x [1 2Q(“Rg")’)rld\ﬁ(lp) .

Performing (7) for both horizontal and vertical correlations
yields the probabilities of detecting the corresponding peaks.
Denoting these two probabilities as Py and Py, the proba-
bility of detecting the block size correctly is simply equal to
Py X Py.

Note that (7) is an approximation due to two primary
reasons. First, as discussed before, noise-cross-noise terms in
the pilot correlations are approximated using a GA. Secondly,
all of the correlation samples are assumed to be uncorrelated
random variables, which is not true in practice. The existence
of delays introduces correlation between subcarriers in the
same symbol, and the CFOs result in correlation between
subcarriers in adjacent symbols. Despite these factors, it
will be shown in Section 6 that the approximation yields
relatively close results to the simulation results, especially
when the block size is estimated over large number of
symbols.

+exp

4. User Separation Method

The proposed user separation method is based on exploiting
the differences in the 7;s and &’s of different UL-OFDMA
users. The first step of the method is to determine the
occupied B’s via energy detection. Then, for each occupied
B, the UL receiver performs 7 and & estimation. Next,
occupied B’s are clustered according to their 7 and & values,
where each separate cluster yields the $B’s that belong to
a certain user. This way, fi, which is an estimate for T, is
obtained for each user i.

The total energy of each block B can be calculated as
follows:

¥(B)= > [Y(mk) (8)

(m,k)eB

This energy value is averaged over the subcarriers within
the block and inputted to an energy detector that employs
a threshold { as follows:

¥(8)
K+DM+D 2 )

where hypothesis H; implies that block 8B is occupied,
and hypothesis H, implies that it is not. Details of energy
detection in OFDMA-UL, such as optimizing {, can be found



in [17]. Let B denote the set of all the occupied 8B’s that satisfy
the hypothesis H; in (9). Then, for each B within f, carrier
frequency offset and delay estimations are performed.
Regarding the CFO estimation, an important observa-
tion from (3) is that the linear phase shift caused by the
CFO affects both the desired signal and ICI the same way.
Therefore, a reliable £ estimate can be obtained by correlating
two identical pilot symbols [16] or pilot subcarriers in
different symbols as illustrated in Figure 2. If p; denotes
the indices of symbols (within the jth block) that carry
pilot subcarriers and I, ; denotes the subcarrier indices of
pilots in symbol m within 8B, a £ estimate for B, which will

be denoted as EA]-, can be obtained by performing pairwise
correlation between II,; in different symbols within B,
separated by M symbols. Ignoring the ICI and noise terms,
this correlation would be as follows:

(M) = DY (m, )Y (m+ M,k), mep, k€T,
m,k

= /2EMUNG/NIN" X (1, k) [P H* (m, k)H (m + M, k)
m,k

x sinc? (7€),
(10)

where symbol m + M is within 8. fAj can then be obtained as

AU, an
77 27M(1 + Nop/N)’

where

Im r@(M)
Z(rj(f)(M)) = tanil (w) (12)

The timing offset causes a phase shift that changes
linearly over the subcarriers but is independent from the
symbol index. If py; denotes indices of rows with pilots
within 8, a T estimate for 8B, which will be denoted as 7;, can
be obtained by correlating pilots at different rows separated
by K subcarriers (illustrated in Figure 2) as

rD(K) = X Y*(m, k)Y (m,k+K), m¢€u;, k€ pj

m,k

= e 7NN X (m, k)P H* (m, k)H (m, k + K)

m,k
x sin ¢ (7€),
(13)

where subcarrier k + K is within 8. The 7 estimate for B is
obtained as follows:

~ A(r;f)(K)) (14)

T T o0KIN

B Im| 7™ (K)
4(71( )(K)) = tan71 (MI) (15)

where
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As seen from (10), an important condition necessary for

fj to be reliable is that the channel can be considered
constant during M symbols. Taking the WiMAX standard as
a reference, Table 2 [18] provides information about channel
coherence times for two different frequency bands. Given
that the WiMAX symbol duration is around 0.1 ms, the
channel coherence time covers up to 20 symbols even at a
speed of 100 km/h in the 5.8 GHz band. Similarly, for any
typical OFDMA-based standard, it can be expected that this
channel constancy condition is met.

Equation (13) also introduces a similar requirement in
the frequency dimension. A reliable 7; can only be obtained
if Hy, (k) for pilots separated by K subcarriers are highly
correlated. Although this condition is met for any K in a
single tap channel, in a frequency selective channel, K is
typically taken as a small number (e.g., in the WIMAX UL-
PUSC system K is defined as 3).

Once ;s and ?j’s are obtained for all elements of S,
the user separation algorithm requires that B’s be clustered

according to their &’s and 7)’s, taking both values into
account simultaneously. Each separate cluster generated by
the clustering algorithm corresponds to a different user i and
yields its subcarrier allocation vector estimate I';.

The clustering method first yields an estimate for the
number of users (ﬁu), which is determined by finding the
cluster centers through the subtractive clustering algorithm
outlined in [19, 20]. A critical input required by the
subtractive clustering algorithm is the ratio of dimensions of
the potential clusters, which will be denoted as Dg and Ds.

In the next step, utilizing Ny, the separation is performed
via iterative partitioning algorithm discussed in [21, 22].
Iterative partitioning splits the input data into N, initial
clusters. Then, for each cluster, it computes the sum of
absolute distances from each point in the cluster to the cluster
centroid, where the centroid is the component wise median
of the points in the cluster. By minimizing the total of these
sums in an iterative manner, the clusters are determined.
Prior to applying the clustering method, the sets of &;’s

and 7;’s, which will be denoted as 2 and 7, respectively, need
to be normalized. The normalization is mandated by the fact
that the range of numerical values for 7 is wider than the

range of & by at least two orders of magnitude. In fact,
clustering without normalization results in a user separation
that is solely based on 7 values. In particular, we apply the
following normalizations:

~ 2 - min(%)
T ax(®) _min(3) 1o

T — min(7)
max(7) — min(7)’

T (17)
respectively, which map both 2’ and 7 into the interval [0, 1].
Therefore, as shown in Figure 4, the clustering is performed
ona [0,1] x [0,1] plane.

A second point related to the subtractive clustering
algorithm is that it requires to optimize the ratio of cluster
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dimensions for the best performance. This ratio (Dg/D;) is

proportional to the ratio of variances of &; and 7j, that is,
(053 / 0% ), which are related to each other as follows:
J

Var(A(T))

R GO (18)
% = Var(A®) 7

where 4™ and A© denote the sets of all A(r]@(K ))’s and
Z(rj(-f) (M))’s, respectively. The Dy/Dz input of the subtractive

clustering algorithm is set as \/Var(A(T))/ Var(4®)). From
(18), it is seen that the wider the range of values that
A(rj(-T)(K)) can take, the smaller is the Dy dimension of
the clusters (the same analogy applies Dy dimension, as

well). Moreover, (18) also indicates that 0~/o~ can be

found before performlng clusterlng by simply calculatmg the
ratio of Var(A(™) to Var(A®). An important assumption
regarding (18) is that the ¢ and 7 values of different
users are uniformly spread within [min(£), max(£)] and
[min(7), max(7)], respectively.

A visual example that illustrates the clustering algorithm
is provided in Figure 4. It shows the clusters in a 10-user
scenario, where SNR is assumed to be 30 dB for all user
signals, and a multipath (MP) channel is considered along
with the delay and CFO values in Table 1. In Figure 4, the
large red dots constitute the cluster centers found through
subtractive clustering, and the markers surrounding each of
them indicate the resource blocks that belong to a certain
user determined through iterative partitioning.

5. Using Block Size Estimation and User
Separation in Spectrum
Opportunity Detection

Opportunistic spectrum usage is one of the main goals of
a cognitive radio. It requires that the CR reliably determine

7
TasBLE 1: Simulation parameters.
Parameter Value
FFT Size 512
Occupied subcarriers 360
Ncp, CP duration 1/8, 11.2 us
Number of users 10
Sampling frequency 5.714 MHz
Symbol Time 100.8 us
Bandwidth 5MHz
CFOs (in Hz) [—500, —400,...,0,...,400,500]

[100, 200, 400, 600,.. ., 1800]
[4,8,15,23,30,38,46,53,61,69]

User distances (in m)
RTD:s (in samples)

TaBLE 2: Typical Doppler spreads and coherence times for WIMAX.

Carrier Freq Speed Max. doppler Coherence time
2.5GHz 2km/h 4.6 Hz 200 ms
2.5GHz 45 km/h 104.2 Hz 10 ms
2.5GHz 100 km/h 231.5Hz 4ms

5.8 GHz 2 km/h 10.7 Hz 93 ms

5.8 GHz 45km/h 241.7Hz 4 ms

5.8 GHz 100 km/h 537 Hz 2ms

the temporarily empty parts of the spectrum of a primary
network and utilize them without causing any interference to
the primary network. In this section, we propose techniques
that make use of the user separation and block size estima-
tion methods proposed in the previous sections in order to
improve the opportunity detection performance.

In an OFDMA-based primary network, the spectrum
opportunities correspond to the unused subcarriers within
the spectrum. A simple method that might be employed for
the detection of these opportunities by the cognitive radios
is energy detection, where, the unused subcarriers may be
simply identified through hytpothesis test as follows:

H,
1Y (m, k)|* = (.

Hy

(19)

Note that similar to (9), hypothesis H; implies that a
subcarrier is occupied, and hypothesis H, implies that it is
not. However, with subcarrier-based opportunity detection
asin (19), each of the individual subcarriers is subject to false
alarms and misdetections. As an alternative, if the resource
block size is perfectly known, the opportunities within the
spectrum of a primary system can be determined via tile-
based energy detection using (9). Since all the subcarriers
within the same tile should all be affiliated with the same
hypothesis (i.e., all subcarriers should be occupied, or all
subcarriers should be nonoccupied), probability of misde-
tections and probability of false-alarms will be minimized
compared to the subcarrier-based detection. If the resource
block size is not known, on the other hand, block size
detection algorithm as in Section 3 can be utilized to estimate
the resource block dimensions and improve the opportunity
detection performance with respect to the subcarrier-based
detection.



As a third technique, we also propose an additional
method in order to decrease the false-alarm probability of the
block- (tile) based opportunity detection with perfect block
size knowledge. In this approach, which we will call user
separation-based opportunity detection, we consider each
resource block with index j that is estimated to belong to
hypothesis H; (i.e., detected as occupied). Then, hypothesis
for the resource block j is changed to H if any of the
following criteria is satisfied for the resource block:

(i) {?}1), ?J(»z)} < 0, that is, the delay estimates for tile-j

are smaller than 0.

(ii) I‘?J(-l) - ?}2)\ > Tinrs, that is, different delay estimates
for the same resource block have a considerably large

difference.

(iii) IfAjI > &nax, that is, the absolute value of the
CFO estimate for tile-j is larger than the maximum
possible CFO value.

(iv) IEA](»I) - EA](-Z)I > &, that is, different CFO estimates
for the same resource block have a considerably large
difference.

As will be shown in Section 6, the performance of user
separation-based opportunity detection can be improved
using the above tests that pose some constraints on the
occupied resource blocks.

6. Simulation Results

Computer simulations were performed in order to determine
the success rate in blind block size estimation, to test the
performance of the proposed user separation algorithm, and
to determine the opportunity detection performance using
various methods. In the simulations, the basic system param-
eters are set according to the WIMAX UL-PUSC standard,
and both an AWGN channel and a 6-tap multipath channel
(ITU-R Vehicular A) are employed. Detailed simulation
parameters are provided in Table 1, where RTD stands for
the round-trip-delay.

6.1. Block Size Estimation Simulations. The performances of
the block size estimation method as well as the Gaussian
approximation are simulated using two separate Y (m,k)’s
that are 60 symbols and 120 symbols long. The variation of
the performances with respect to signal-to-noise ratio (SNR)
is plotted for both AWGN and multipath (MP) channels
in Figures 5 and 6, where the block sizes to be found are
4 x 3 and 6 X 6, respectively. The results show that the
performance heavily depends on the block size. While the
simulated performance is 100% in all cases examined for
the 4 x 3 block, it can be around 70% for the 6 X 6
block when the SNR is low. There are two reasons for the
relatively lower performance for the 6 x 6 block. First, the
number of symbols and rows with pilot subcarriers is lower,
which weakens the desired correlation peaks. And second,
the physical separation between the pilots is larger, which,
in a MP channel, decreases the correlation between them
due to the variation of the channel in time and frequency.
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FIGURE 5: Simulation and Gaussian approximation results for
estimating the size of a 4 x 3 block.

It is also worth to note that the Gaussian approximation
matches with the simulation results quite well for the 4 x 3
block. The match between the simulations and the GA is
still acceptable for the 6 x 6 block when 120 symbols are
available. When there are just 60 symbols, however, there is
an apparent difference between them. This is due to the fact
that w;, cannot be estimated reliably over 60 symbols, and
also the correlation between the nonpilot subcarriers has a
nonzero value that is considerably larger than in case of 120
symbols.

6.2. User Separation Simulations. Performance of the pro-
posed user separation algorithm was tested via simulations
using the following performance metrics.

Performance in finding the number of users is given as

’1?1,, ~N,
- Nu) (20)

Performance in finding the user subcarriers is given as

i 0p (L) = T(k) )
2.iNi ’

where &p is the Dirac delta function. The performances
obtained in AWGN and MP channels using a 4 x 3
block are demonstrated in Figure 7. The assumption in the
corresponding simulations was that the received SNR is the
same for all users regardless of their distance. Note that if
the cognitive radio performing user separation is close to the

Py, = 100 x (1

(21)

Pr =100 x
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FIGURE 6: Simulation and Gaussian approximation results for
estimating the size of a 6 X 6 block.

TaBLE 3: User separation performances when received powers
depend on user distances.

AWGN MP
Py, 86.07% 81.25%
Pr 78.55% 77.78%

primary receiver, such a scenario may be valid. Due to power
control, the SNRs of the received UL signals at the primary
receiver (e.g., a macrocell BS) would be similar; hence, a
close-by cognitive radio (e.g., a femtocell BS) would also
observe similar SNR levels. The performance at each SNR
is maximized by employing the optimum cluster dimension

given by \/Var(A(T))/ Var(4©). The results show that better
than 90% user separation performance is achievable for
sufficiently high SNR values.

In Table 3, additional simulation results are provided for
a practical scenario, where the received powers from different
users depend on their distances to the receiver as specified
in Table 1 (free space path loss model is considered). The
transmission power of users is 27 dBm, and the received
signal SNRs descend from 30 dB towards 5 dB. The blocks
whose power levels do not exceed a certain threshold are
discarded as in (9). Simulation results in Table 3 show that
Py, values that exceed 80% and Pr values close to 80% are
achievable.

Another analysis is performed to investigate the effect
of number of users on the performance in finding the user

100

Performance (%)

50 1 1 1
10 15 20 25 30

SNR (dB)

—6— Py, in AWGN
—&— Py, in MP

—%— Pr in AWGN
—— Pr in MP

FIGURE 7: Performances in finding the number of users and separat-
ing the user subcarriers in AWGN and MP channels assuming the
same SNR for all users.

Performance (%)

50 L L L

10 15 20 25 30
SNR (dB)

—8— 5 users, AWGN
->- 5 users, MP
—— 10 users, AWGN

-¢- 10 users, MP
—&— 20 users, AWGN
- — 20 users, MP

F1GURE 8: Performances in separating the user subcarriers in AWGN
and MP channels for various numbers of users.

subcarriers. Pr is obtained for N, values 5, 10, and 20. The
CFOs of users are equally spaced between —500Hz and
500 Hz, while the user distances are equally spaced between
2000/N,, and 2000 meters. The Pr curves obtained for both
AWGN and MP channels are shown in Figure 8. It is observed
that a smaller user number such as 5 yields considerably
higher performance, especially in AWGN channel. It is also
important to note that when the SNR level is high enough,
even 20 user signals can be separated with an accuracy rate
that exceeds 80%.
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FIGURE 9: Error probability in detecting the spectrum opportunities
using four different methods for a resource block size of 4 x 3.
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F1GURE 10: Error probability in detecting the spectrum opportuni-
ties using four different methods for a resource block size of 6 x 6.
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6.3. Opportunity Detection Simulations. The results of the
opportunity detection simulations are demonstrated in
Figures 9 and 10. The error probability is computed as the
sum of probability of false alarms (PFAs) and probability of
missed detections (PMDs). PFA is the ratio of the number of
subcarriers detected as used although they are unused to N,
whereas PMD is defined as the ratio of number of subcarriers
detected as unused although they are used to N. In the related
simulations, the occupancy rate of the subcarriers is kept at
50% to have equal contribution from PMD and PFA to the
total error probability.

In Figure9, the error probabilities for four different
methods are shown for an optimum ({ = 0.15) and for a
nonoptimum ({ = 0.50) normalized threshold value, where
the block size of the primary system is 4x3. The methods that
are employed are subcarrier based, user separation based, tile
based with known tile size, and tile based with estimated
tile size. It is observed that the subcarrier-based method
yields the worst performance, while the tile-based method
performs the best. Therefore, if the tile size is not known,
instead of employing the subcarrier-based method, first the
proposed tile size estimation can be performed and then the
tile-based detection method can be applied. Given that the
proposed tile size estimation for this small block size is very
accurate, this way, the detection performance can be made as
good as in the known tile size case. User separation-based
method is seen to introduce some errors and to degrade
the performance when the threshold is optimum. If the
optimum threshold is not available and an intuitive value
such as 0.5 is employed, however, then the user separation-
based method improves the performance.

Error probability curves obtained for a block size of 6 X 6
are demonstrated in Figure 10. Being different from the 4 x
3 case, for a 6 X 6 block, the block size estimation method
does not perform very well. Therefore, the subcarrier-based
detection method is superior to the tile-based method with
tile size estimation. It is noteworthy that the user separation-
based method is slightly superior to the tile-based method
for both optimum and nonoptimum thresholds.

7. Concluding Remarks

In order to increase the spectrum awareness of OFDMA-
based cognitive radios, separation of primary user signals in
the uplink is proposed. An algorithm is devised for deter-
mining the frequency allocation block dimensions blindly.
The probability of finding the block size correctly is obtained
through a Gaussian approximation-based approach, and
it is compared with the simulated performance of the
devised algorithm. Moreover, a user separation method
is proposed, and a rather high performance is obtained
in practical computer simulations proving its feasibility.
Spectrum opportunity detection is highlighted as a potential
application area where the proposed methods might be
considerably useful. The improvement in opportunity detec-
tion performance of cognitive radios is quantified through
simulations and shown to be significant.
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