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A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different
speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using
Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale
pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human
postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the
walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of
the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a
model of human motion for action recognition and full-body tracking purposes.

1. Introduction

Analysis of human motion in activities remains one of the
most challenging open problems in computer vision [1–3].

The nature of the open problems and techniques used
in human motion analysis approaches strongly depends on
the goal of the final application. Hence, most approaches
oriented to surveillance demand performing activity recogni-
tion tasks in real-time dealing with illumination changes and
low-resolution images. Thus, they require robust techniques
with a low computational cost, and mostly, they tend to
use simple models and fast algorithms to achieve effective
segmentation and recognition tasks in real-time.

In contrast, approaches focused on 3D tracking and
reconstruction require to deal with a more detailed repre-
sentation about the current posture that the human body
exhibits [4–6]. The aim of full body tracking is to recover
the body motion parameters from image sequences dealing
with 2D projection ambiguities, occlusion of body parts, and
loose fitting clothes among others.

Many action recognition and 3D body tracking works
rely on proper models of human motion, which constrain the
search space using a training dataset of prerecorded motions

[7–10]. Consequently, it is highly desirable to extract useful
information from the training set of motion. Traditional
treatment suffers from problems inadequate modeling of
nonlinear dynamics: training sequences may be acquired
under very different conditions, showing different durations,
velocities, and accelerations during the performance of an
action. As a result, it is difficult to collect useful statistics
from the raw training data, and a method for synchronizing
the whole training set is required. Similarly to our work, in
[11] a variation of DP is used to match motion sequences
acquired from a motion capture system. However, the overall
approach is aimed to the optimization of a posterior key-
frame search algorithm. Then, the output from this process
is used for synthesizing realistic human motion by blending
the training set.

The DP approach has been widely used in literature
for stereo matching and image processing applications [12–
14]. Such applications often demand fast calculations in
real-time, robustness against image discontinuities, and
unambiguous matching.

The DP technique is a core of the dynamic time
warping (DTW) method. Dynamic time warping is often
used in speech recognition to determine if two waveforms
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represent the same spoken phrase [15]. In addition to speech
recognition, dynamic time warping has also been found
useful in many other disciplines, including data mining,
gesture recognition, robotics, manufacturing, and medicine
[16].

Initially DTW method was developed for the one-
dimensional signal processing (in speech recognition, e.g.).
So, for this kind of the signal the Euclidean distance
minimization with a weak constraint (the derivative of the
synchronization path is constrained) works very well. In our
case the dimensionality of the signal is up to 37D and weak
constraint does not yield satisfactory robustness due to the
noise and the signal complexity. We propose to minimize a
composite distance that consists of two terms: a distance itself
and a smoothness term. Such kind of a distance has the same
meaning of the energy in MRF optimization techniques.

The MRF energy minimization approach shows the
perfect performance in stereo matching and segmentation.
Likewise, we present a dense matching algorithm based on
DP, which is used to synchronize human motion sequences
of the same action class in the presence of different speeds
and accelerations. The algorithm finds an optimal solution
in real-time.

We introduce a median sequences or the best pattern
for time synchronization, which is another contribution of
this work. The median sequence is automatically selected
from the training data following a minimum global distance
criterion among other candidates of the same class.

We present an action-specific model of human motion
suitable for many applications, that has been successfully
used for full body tracking [4, 5, 17]. In this paper, we explore
and extend its capabilities for gait analysis and recognition
tasks. Our action-specific model is trained with 3D motion
capture data for the walking action from the CMU Graphics
Lab Motion capture database. In our work, human postures
are represented by means of a full body 3D model composed
of 12 limbs. Limbs’ orientations are represented within
the kinematic tree using their direction cosines [18]. As a
result, we avoid singularities and abrupt changes due to
the representation. Moreover, near configurations of the
body limbs account for near positions in our representation
at the expense of extra parameters to be included in
the model. Then, PCA is applied to the training data to
perform dimensionality reduction over the highly correlated
input data. As a result, we obtain a lower-dimensional
representation of human postures which is more suitable to
describe human motion, since we found that each dimension
on the PCA space describes a natural mode of variation of
human motion. Additionally, the main modes of variation
of human gait are naturally represented by means of the
principal components found. This leads to a coarse-to-fine
representation of human motion which relates the precision
of the model with its complexity in a natural way and makes
it suitable for different kinds of applications which demand
more or less complexity in the model.

The synchronized version of the training set is utilized
to learn an action-specific model of human motion. The
observed variances from the synchronized postures of the
training set are computed to determine which human

postures can be feasible during the performance of a
particular action. This knowledge is subsequently used in a
particle filter tracking framework to prune those predictions
which are not likely to be found in that action.

This paper is organized as follows. Section 2 explains
the principles of human action modeling. In Section 3 we
introduce a new dense matching algorithm for human
motion sequences synchronization. Section 4 shows some
examples of data base syncronisation. Section 5 describes the
action specific model and explains the procedure for learning
its parameters from the synchronized training set. Section 6
summarizes our conclusions.

2. Human ActionModel

The body model employed in our work is composed of twelve
rigid body parts (hip, torso, shoulder, neck, two thighs,
two legs, two arms, and two forearms) and fifteen joints;
see Figure 1(a). These joints are structured in a hierarchical
manner, constituting a kinematic tree, where the root is
located at the hip. However, postures in the CMU database
are represented using the XYZ position of each marker that
was placed to the subject in an absolute world coordinates
system. Therefore, we must select some principal markers
in order to make the input motion capture data usable
according to our human body representation. Figure 1(b)
relates the absolute position of each joint from our human
body model with the markers’ used in the CMU database.
For instance, in order to compute the position of joint 5
(head) in our representation, we should compute the mean
position between the RFHD and LFHD markers from the
CMU database, which correspond to the markers placed on
each side of the head. Notice that our model considers the
left and the right parts of the hip and the torso as a unique
limb, and therefore we require a unique segment per each.
Hence, we compute the position of joints 1 and 4 (hip and
neck joints) as the mean between the previously computed
joints 2 and 3, and 6 and 9, respectively.

We use directional cosines to represent relative orienta-
tions of the limbs within the kinematic tree [18]. As a result,
we represent a human body posture Ψ using 37 parameters,
that is,

ψ =
{
u, θx1 , θ

y
1 , θz1, . . . , θx12, θ

y
12, θz12

}
, (1)

where u is the normalized height of the pelvis, and θxl , θ
y
l ,

θzl are the relative directional cosines for limb l, that is,
the cosine of the angle between a limb l and each axis x,
y, and z, respectively. Directional cosines constitute a good
representation method for body modeling, since it does not
lead to discontinuities, in contrast to other methods such
as Euler angles or spherical coordinates. Additionally, unlike
quaternion, they have a direct geometric interpretation.
However, given that we are using 3 parameters to determine
only 2 DOFs for each limb, such representation generates
a considerable redundancy of the vector space components.
Therefore, we aim to find a more compact representation of
the original data to avoid redundancy.
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Figure 1: (a) Details of the human body model used; (b) the
relationship to the marker set employed in the CMU database.

Let us introduce a particular performance of an action.
A performance Ψi consists of a time-ordered sequence of
postures

Ψi =
{
ψ1
i , . . . ,ψFi

i

}
, (2)

where i is an index indicating the number of performance,
and Fi is the total number of postures that constitute the
performance Ψi. We assume that each two consecutive
postures are separated by a time interval δf, which depends
on the frame rate of the prerecorded input sequences; thus
the duration of a particular performance is Ti = δ f Fi.
Finally, an action Ak is defined by all the Ik performances that
belong to that action Ak = {Ψ1, . . . ,ΨIk}.

As we mentioned above, the original vector space is
redundant. Additionally, the human body motion is intrin-
sically constrained, and these natural constraints lead to
highly correlated data in the original space. Therefore, we
aim to find a more compact representation of the original
data to avoid redundancy. To do this, we consider a set of
performances corresponding to a particular action Ak and
perform the Principal Component Analysis (PCA) to all the
postures that belong to that action. Eventually, the following
eigenvector decomposition equation has to be solved:

λje j = Σke j , (3)

where Σk stands for the 37 × 37 covariance matrix cal-
culated with all the postures of action Ak. As a result,
each eigenvector e j corresponds to a mode of variation
of human motion, and its corresponding eigenvalue λj is
related to the variance specified by the eigenvector. In our
case, each eigenvector reflects a natural mode of variation of
human gait. To perform dimensionality reduction over the
original data, we consider only the first b eigenvectors that
span the new representation space for this action, hereafter
aSpace [16]. We assume that the overall variance of a new

space approximately equals to the overall variance of the
unreduced space:

λS =
b∑

j=1

λj ≈
b∑

j=1

λj + εb =
37∑

j=1

λj , (4)

where εb is the aSpace approximation error.
Consequently, we use (4) to find the smallest number b

of eigenvalues, which provide an appropriate approximation
of the original data, and human postures are projected into
the aSpace by

ψ̃ = [e1, . . . , eb]T
(
ψ − ψ

)
, (5)

where ψ refers to the original posture, ψ̃ denotes the lower-
dimensional version of the posture represented using the
aSpace, [e1, . . . , eb] is the aSpace transformation matrix that
correspond to the first b selected eigenvectors, and ψ is the
posture mean value that is formed by averaging all postures,
which are assumed to be transformed into the aSpace. As
a result, we obtain a lower-dimensional representation of
human postures which is more suitable to describe human
motion, since we found that each dimension on the PCA
space describes a natural mode of variation of human motion
[16]. Choosing different values for b lead to models of more
or less complexity in terms of their dimensionality. Hence,
while the gross-motion (mainly, the motion of the torso, legs,
and arms in low resolution) is explained by the very first
eigenvectors, subtle motions in the PCA space representation
require more eigenvectors to be considered. In other words,
the initial 37-dimensional parametric space becomes the
restricted b-dimensional parametric space.

The projection of the training sequences into the aSpace
constitutes the input for our sequence synchronization
algorithm. Hereafter, we consider a multidimensional signal
xi(t) as an interpolated expansion of each training sequence

Ψ̃i = {ψ̃1
i , . . . , ψ̃

Fi
i } such as

ψ̃
f
i = xi(t) if t = ( f − 1

)
δ f ; f = 1, . . . ,Fi, (6)

where the time domain of each action performance xi(t) is
[0,Ti).

3. Synchronization Algorithm

As stated before, the training sequences are acquired
under very different conditions, showing different durations,
velocities, and accelerations during the performance of a
particular action. As a result, it is difficult to perform useful
statistical analysis to the raw training set, since we cannot put
in correspondence postures from different cycles of the same
action. Therefore, a method for synchronizing the whole
training set is required so that we can establish a mapping
between postures from different cycles.

Let us assume that any two considered signals correspond
to the identical action, but one runs faster than another (e.g.,
Figure 2(a)). Under the assumption that the rates ratio of
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Figure 2: (a) Non synchronized one-dimensional sequences. (b)
Linearly synchronized sequences. (c) Synchronized sequences using
a set of key-frames.

the compared actions is a constant, the two signals might be
easily linearly synchronized in the following way:

xn(t) ≈ xn,m(t) = xm(αt); α = Tm

Tn
, (7)

where xn and xm are the two compared multidimensional
signals, Tn and Tm are the periods of the action performances
n and m, and x̃m,n is linearly normalized version of xm; hence
Tn = Tm,n.

Unfortunately, in our research we rarely, if ever, have a
constant rate ratio α. An example, which is illustrated in
Figure 2(b), shows that a simple normalization using (7)
does not give us the needed signal fitting, and a nonlinear
data synchronization method is needed. Further in the text
we will assume that the linear synchronization is done and
all the periods Tn possess the same value T.

The nonlinear data synchronization should be done by

xn(t) ≈ xn,m(t) = xm(τ); τ(t) =
∫ t

0
α(t)dt, (8)

where xn,m(t) is the best synchronized version of the action
xm(t) to the action xn(t). In literature the function τ(t) is
usually referred to as the distance-time function. It is not an
apt turn of phrase indeed, and we suggest naming it as the
rate-to-rate synchronization function instead.

The rate-to-rate synchronization function τ(t) satisfies
several useful constraints, that are

τ(0) = 0; τ(T) = T ; τ(tk) ≥ τ(tl) if tk > tl. (9)

One common approach for building the function τ(t)
is based on a key-frame model. This model assumes that
the compared signals xn and xm have similar sets of
singular points, that are {tn(0), . . . , tn(p), . . . tn(P − 1)} and
{tm(0), . . . , tm(p), . . . , tm(P−1)}with the matching condition
tn(p) = tm(p). The aim is to detect and match these singular
points; thus the signals xn and xm are synchronized. However,
the singularity detection is an intricate problem itself, and
to avoid the singularity detection stage we propose a dense
matching. In this case a time interval tn(p + 1) − tn(p) is
constant, and in general tn(p) /= tm(p).

The function τ(t) can be represented as τ(t) = t(1 +
Δn,m(t)). In this case, the sought function Δn,m(t) might
synchronize two signals xn and xm by

xn(t) ≈ xm
(
t + Δn,m(t)t

)
. (10)

Let us introduce a formal measure of synchronization of
two signals by

Dn,m =
∫ T

0

∥∥xn(t)− xm
(
t + Δn,m(t)t

)∥∥dt+μ
∫ T

0

∥∥∥∥
dΔn,m(t)

dt

∥∥∥∥dt,
(11)

where ‖•‖ denotes one of possible vector distances, and Dn,m

is referred to as the synchronization distance that consists of
two parts, where the first integral represents the functional
distance between the two signals, and the second integral is
a regularization term, which expresses desirable smoothness
constraints of the solution. The proposed distance function
is simple and makes intuitive sense. It is natural to assume
that the compared signals are synchronized better when
the synchronization distance between them is minimal.
Thus, the sought function Δn,m(t) should minimize the
synchronization distance between matched signals.

In the case of a discrete time representation, (11) can be
rewritten as

Dn,m =
<P∑

i=0

∣∣xn(iδt)− xm
((
i + Δn,m(i)

)
δt
)∣∣2

+ μ
<P−1∑

i=0

∣∣Δn,m(i + 1)− Δn,m(i)
∣∣,

(12)



EURASIP Journal on Advances in Signal Processing 5

0

0

0

0

0

0

0

0 0

0

0 0

3 3

3

5

5

3

5

5

3

3

0

U U

U

U

U U

U U

U

U

UU

+D

d
d(p)

0

−D
p0 P − 1

Figure 3: The optimal path through the DSI trellis.

where δt is a time sampling interval. Equation (9) implies

∣∣Δn,m
(
p + 1

)− Δn,m
(
p
)∣∣ ≤ 1, (13)

where index p = {0, . . . ,P − 1} satisfies δtP = T .
The synchronization problem is similar to the matching

problem of two epipolar lines in a stereo image. In the
case of the stereo image processing the parameter Δ(t) is
called disparity. For stereo matching a DSI representation
is used. The DSI approach assumes that 2D DSI matrix has
dimensions time 0 ≤ p < P, and disparity −D ≤ d ≤ D. Let
E(d, p) denote the DSI cost value assigned to matrix element
(d, p) and calculated by

En,m
(
p,d

) = ∣∣xn(pδt)− xm
(
pδt + dδt

)∣∣2
. (14)

Now we formulate an optimization problem as follows:
find the time-disparity function Δn,m(p), which minimizes
the synchronization distance between the compared signals
xn and xm, that is,

Δn,m
(
p
) = arg min

d

<P∑

i=0

En,m(i,d(i)) + μ
<P−1∑

i=0

|d(i + 1)− d(i)|.

(15)

The discrete function Δ(p) coincides with the optimal
path through the DSI trellis as it is shown in Figure 3. Here
term “optimal” means that the sum of the cost values along
this path plus the weighted length of the path is minimal
among all other possible paths.

The optimal path problem can be easily solved by using
the method of dynamic programming. The method consists
of step-by-step control and optimization that is given by a
recurrence relation:

S
(
p,d

) = E
(
p,d

)
+ min

k∈0,±1

{
S
(
p − 1,d + k

)
+ μ|d + k|},

S(0,d) = E(0,d),
(16)

where the scope of the minimization parameter k ∈ {0,±1}
is chosen in accordance with (13). By using the recurrence
relation the minimal value of the objective function in (15)
can be found at the last step of optimization. Next, the
algorithm works in reverse order and recovers a sequence of
optimal steps (using the lookup table K(p,d) of the stored
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Pose vectors
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Figure 4: Flowchart of the synchronization method that is based on
DP and PCA approaches.

values of the index k in the recurrence relation (16)) and
eventually the optimal path by

d
(
p − 1

) = d
(
p
)

+ K
(
p,d

(
p
))

,

d(P − 1) = 0,

Δ
(
p
) = d

(
p
)
.

(17)

Now the synchronized version of xm(t) might be easily
calculated by

xn,m
(
pδt
) = xm

(
pδt + Δn,m

(
p
)
δt
)
. (18)

Here we assume that n is the number of the base
rate sequences and m is the number of sequences to be
synchronized.

The dense matching algorithm that synchronizes two
arbitrary xn(t) and xm(t) prerecorded human motion
sequences xn(t) and xm(t) is now summarized as follows.

(i) Prepare a 2D DSI matrix, and set initial cost values E0

using (14).

(ii) Find the optimal path through the DSI using recur-
rence equations (16)-(17).

(iii) Synchronize xm(t) to the rate of xn(t) using (18).

Our algorithm assumes that a particular sequence is
chosen to be a time scale pattern for all other sequences. It is
obvious that an arbitrary choice among the training set is not
a reasonable solution, and now we aim to find a statistically
proven rule that is able to make an optimal choice according
to some appropriate criterion. Note that each synchronized
pair of sequences (n,m) has its own synchronization distance
calculated by (12). Then the full synchronization of all the
sequences relative to the pattern sequences n has its own
global distance:

Cn =
∑

m∈Ak

Cn,m. (19)

We propose to choose the synchronizing pattern
sequence with minimal global distance. In statistical sense
such signal can be considered as a median value over all the
performances that belong to the set of Ak or can be referred
to as “median” sequence.

The flowchart of the synchronization method that is
based on DP and PCA approaches is illustrated in Figure 4.
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Figure 5: (a) Nonsynchronized training set. (b) Automatically synchronized training set with the proposed approach. (c) Manually
synchronized training set with key-frames. (d) Learnt motion model for the bending action.

4. Results of Synchronization

The synchronization method has been tested with many
different training sets. In this section we demonstrate our
result using 40 performances of a bending action. To build
the aSpace representation, we choose the first 16 eigenvectors
that captured 95% of the original data. The first 4 dimensions
within the aSpace of the training sequences are illustrated
in Figure 5(a). All the performances have different durations
with 100 frames on average. The observed initial data shows
different durations, speeds, and accelerations between the
sequences. Such a mistiming makes very difficult to learn
any common pattern from the data. The proposed synchro-
nization algorithm was coded in C++ and run with a 3 GHz
Pentium D processor. The time needed for synchronizing
two arbitrary sequences taken from our database is 1.5 ×
10−2 seconds and 0.6 seconds to synchronize the whole
training set, which is illustrated in Figure 5(b).

To prove the correctness of our approach, we manually
synchronized the same training set by selecting a set of 5
key-frames in each sequence by hand following a maximum
curvature subjective criterion. Then, the training set was
resampled; so each sequence had the same number of
frames between each key-frame. In Figure 5(c), the first
4 dimensions within the aSpace of the resulting manually
synchronized sequences are shown. We might observe that
the results are very similar to the ones obtained with
the proposed automatic synchronization method. The syn-
chronized training set from Figure 5(b) has been used to
learn an action-specific model of human motion for the
bending action. The model learns a mean-performance for
the synchronized training set and its observed variance
at each posture. In Figure 5(d) the learnt action model
for the bending action is plotted. The mean-performance
corresponds to the solid red line while the black solid
line depicts ±3 times the learnt standard deviation at each
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Figure 6: (a) and (b) Mean learnt postures from the action
corresponding to frames 10 and 40 (left). Sampled postures using
the learnt corresponding variances (right).

synchronized posture. The input training sequence set is
depicted as dashed blue lines.

This motion model can be used in a particle filter
framework as a priori knowledge on human motion. The
learnt model would predict for the next time step only those
postures which are feasible during the performance of a
particular action. In other words, only those human postures
which lie within the learnt variance boundaries from the
mean performance are accepted by the motion model. In
Figure 6 we show two postures corresponding to frames 10
and 40 from the learnt mean performance and a random
set of accepted postures by the action model. We might
observe that for each selected mean posture, only similar and
meaningful postures are generated.

Additionally, to prove the advantage of our approach
with respect to DTW we applied our algorithm with the
cut objective function (without smoothness term), which
is coincide with the DTW algorithm. In this case the
synchronization process was not satisfactory: some selected
mean postures were completely outliers or nonsimilar to any
meaningful posture. It means that the smoothness factor μ

in (12) and (16) plays an important role. To find an optimal
value of this parameter a visual criterion has been used (the
manual synchronization that had been done before yields
such a visual estimation technique). However, as a rule of
thumb the parameter can be set equal to the mean value of
the error term E(i,d):

μ = |Λ|−1
∑

i,d∈Λ
E(i,d), (20)

where Λ is a domain of i and d indexes and |Λ| is the
cardinality (or the number of elements) of the domain.

5. Learning theMotionModel

Once all the sequences share the same time pattern, we
learn an action specific model which is accurate without
loosing generality and suitable for many applications. In
this section we consider the waking action and its model is
useful for gait analysis, gait recognition, and tracking. Thus,
we want to learn where the postures lie in the space used
for representation, how they change over time as the action
goes by, and what characteristics the different performances
have in common which can be exploited for enabling the
aforementioned tasks. In other words, we aim to characterize
the shape of the synchronized version of the training set for
the walking action in the PCA-like space. The process is as
follows.

First, we extract from the training set Âk = {ψ̂1, . . . , ψ̂Ik}
a mean representation of the action by computing the mean

performance Ψ
Ak = {ψ1, . . . ,ψF} where each mean posture

ψt is defined as

ψt =
Ik∑

i=1

ψ̂t
i

Ik
, t = 1, . . . ,F. (21)

Ik is the number of training performances for the action
Âk, ψ̂t

i corresponds to the tth posture from the ith training
performance, and finally, F denotes the total number of
postures of each synchronized performance.

Then, we want to quantify how much the training
performances Ψ̂i vary from the computed mean performance

Ψ
Ak of (21). Therefore, for each time step t, we compute the

standard deviation σt of all the postures ψt that share the
same time stamp t, that is,

σt =

√√√√√ 1
Ik

Ik∑

i=1

(
ψ̂t
i − ψt

)2
. (22)

Figure 7 shows the learned mean performance Ψ
Ak (red

solid line) and ±3 times the computed standard deviation
σt (dashed black line) for the walking action. We used b =
6 dimensions for building the PCA space representation
explaining the 93% of total variation of training data.

On the other hand, we are also interested in charac-
terizing the temporal evolution of the action. Therefore,
we compute the main direction of the motion vt for each
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Figure 7: Learned mean performance Ψ
Ak and standard deviation σt for the walking action.

subsequence of d postures from the mean performance Ψ
Ak ,

that is,

vt = 1
d

t−d+1∑

j=t

ψ j − ψ j−1

∥∥∥ψ j − ψ j−1
∥∥∥

; vt = vt
‖vt‖

, (23)

where vt is a unitary vector representing the observed
direction of motion averaged from the last d postures at a
particular time step t. In Figure 8 the first 3 dimensions of
the mean performance are plotted together with the direction
vectors computed in (23).

Each black arrow corresponds to the unitary vector vt

computed at time t, scaled for visualization purposes. Hence,
each vector encodes the mean observed motion’s direction
from time t−d to time t, where d stands for the length of the
motion window considered. Additionally, selected postures
from the mean performance have been sampled at times t =
1, 30, 55, 72, 100, 150, and 168 and overlaid in the graphic.

As a result, the action model ΓAk is defined by

ΓAk =
{
ΩAk ,Ψ

Ak , σt, vt

}
, t = 1, . . . ,F, (24)

where ΩAk is the PCA space definition for action Ak, Ψ
Ak

is the mean performance, and σt and vt correspond to the
computed standard deviation and mean direction of motion
at each time step t, respectively.

Finally, to handle the cyclic nature of the waking action,
we concatenate the last postures in each cycle with the
initial postures of the most close performance according
to a Euclidean distance criterion within the PCA space.
Additionally, the first and last d/2 postures from the mean
performance (where d is the length of the considered
subsequences) are resampled using cubic spline interpolation
in order to soft the transition between walking cycles. As a
result, we are able to compute σt , vt for the last postures of a
full walking cycle.
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Figure 8: Sampled postures at different time steps, and learnt
direction vectors vt from the mean performance for the walking
action.

6. Conclusions and FutureWork

In this paper, a novel dense matching algorithm for human
motion sequences synchronization has been proposed. The
technique utilizes dynamic programming and can be used
in real-time applications. We also introduce the definition
of the median sequence that is used to choose a time-scale
pattern for all other sequences. The synchronized motion
sequences are utilized to learn a model of human motion
and to extract signal statistics. We have presented an action-
specific model suitable for gait analysis, gait identification
and tracking applications. The model is tested for the
walking action and is automatically learnt from the public
CMU motion capture database. As a result, we learnt the
parameters of our action model which characterize the pose
variability observed within a set of walking performances
used for training.

The resulting action model consists of a representative
manifold for the action, namely, the mean performance, the
standard deviation from the mean performance. The action
model can be used to classify which postures belong to the
action or not. Moreover, the tradeoff between accuracy and
generality of the model can be tuned using more or less
dimensions for building the PCA space representation of
human postures. Hence, using this coarse-to-fine representa-
tion, the main modes of variation correspond to meaningful
natural motion modes. Thus, for example, we found that
the main modes of variation for the walking action obtained
from PCA explain the combined motion of both the legs and
the arms, while in the bending action they mainly correspond
to the motion of the torso.

Future research lines rely on obtaining the joint positions
directly from image sequences. Previously, the action model
has been successfully used in a probabilistic tracking frame-
work for estimating the parameters of our 3D model from a
sequence of 2D images. In [5] the action model improved the
efficiency of the tracking algorithm by constraining the space
of possible solutions only to the most feasible postures while
performing a particular action, thus avoiding estimating

postures which are not likely to occur during an action.
However, we need to develop robust image-based likelihood
measures which evaluate the predictions from our action
model according to the measurements obtained from images.
Work based on extracting the image edges and the silhouette
from the tracked subject is currently in progress. Hence, the
pursued objective is to learn a piecewise linear model which
evaluates the fitness of segmented edges and silhouettes to
the 2D projection of the stick figure from our human body
model. Methods for estimating the 6DOF of the human body
within the scene, namely, 3D translation and orientation,
also need to be improved.

Acknowledgments

This work has been supported by EC Grant IST-027110
for the HERMES project and by the Spanish MEC under
projects TIC2003-08865 and DPI-2004-5414. M. Mozerov
acknowledges the support of the Ramon y Cajal research
program, MEC, Spain.

References

[1] T. B. Moeslund and E. Granum, “A survey of computer vision-
based human motion capture,” Computer Vision and Image
Understanding, vol. 81, no. 3, pp. 231–268, 2001.

[2] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of
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