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Bayesian or Maximum a posteriori (MAP) approaches can effectively overcome the ill-posed problems of image restoration
or deconvolution through incorporating a priori image information. Many restoration methods, such as nonquadratic prior
Bayesian restoration and total variation regularization, have been proposed with edge-preserving and noise-removing properties.
However, these methods are often inefficient in restoring continuous variation region and suppressing block artifacts. To handle
this, this paper proposes a Bayesian restoration approach with a novel spatial adaptive (SA) prior. Through selectively and
adaptively incorporating the nonlocal image information into the SA prior model, the proposed method effectively suppress
the negative disturbance from irrelevant neighbor pixels, and utilizes the positive regularization from the relevant ones. A two-
step restoration algorithm for the proposed approach is also given. Comparative experimentation and analysis demonstrate
that, bearing high-quality edge-preserving and noise-removing properties, the proposed restoration also has good deblocking

property.

1. Introduction

1.1. Problem Formulation. As one of the most classical
linear inverse problems, image restoration has its wide
applications in remote sensing, radar imaging, tomographic
imaging, microscopic imaging, astronomic imaging, digital
photography, and so forth [1-4]. For linear and shift-
invariant imaging systems, the transformation from f to g
is well described by following additive linear degradation
model [3, 4]:

g=Ax f+eg (1)

where g, f, and & represent, respectively, the degraded
observed image, the original true image, and the corrupting
white Gaussian noise with variance 0. Point-spread function
(PSF) A is the imaging system and > is the linear convolution
operator. Throughout this paper we assume that the degra-
dation model PSF A and noise variance o2 are known for they
could be numerically estimated or calibrated.

Based on the Gaussian statistics of the additive noise,
maximum log-likelihood (ML) restoration method could be

applied to find the least-squares estimation of f. However,
such ML restoration method often leads to unacceptable
restoration solutions due to the ill-posedness of the inverse
problems. Small changes in the data due to noise can
cause large changes in the solution, and the knowledge
of the degradation model is not sufficient to determine a
restoration result with acceptable accuracy [2-5].

Bayesian or Maximum a posteriori (MAP) approach,
within rigorous Markov random fields (MRFs) framework,
can provide a stable regularized solution through the
incorporation of a priori image information about the
geometrical properties of an image [3-8]. Through modeling
the unknown parameters in the prior probability density
functions, such prior information measures the extent to
which the contextual constraint assumption is violated by
the image or surface. Bayesian approach is able to distinguish
good solutions from less desirable ones by transforming the
original ill-posed problem into a well-posed one. It is also
noted that most regularization restoration approaches can
find their Bayesian interpretation with different forms [6, 7].



We can build following posterior probability P(f | g) for
image restoration

P(f1g) < P(g| f)P(f), 2)

P(g | f) = exp(L(g: /) = exp(~3xllg — 4+ fIP),
3)

P(f)=Z"xexp(—aU(f)) =Z'x exp(—(xz U](f))
i
(4)

Here, P(g | f) is the likelihood distribution and P(f) is the
prior distribution. The partition function Z is a normalizing
constant. U(f) is the prior energy function, and U;(f) is the
notation for the value of the energy function U evaluated on
the fat pixel index j. a is the global hyperparameter that
controls the degree of the prior’s influence on the image f.
The energy function U( f) in (4) attains its minimum and the
corresponding prior distribution (4) attains its maximum
when the image meets the prior assumptions ideally. So from
(2)—(4), we can build the log-posterior energy function as

logP(f 1g) = L(g f) — aU(f)
-~ IMllg-ax AP -aXu(p). ©
J

The reconstructed image f can be obtained through itera-
tively maximizing function y( f).

The simple and widely used quadratic membrane (QM)
prior or the Tikhonov L2 regularization, which smoothes
both noise and edge details equally, leads to a linear inversion
process and tends to produce an unfavorable oversmoothing
effect [5].

To solve this oversmoothing problem, many edge-
preserving Bayesian restoration methods were proposed in
the past twenty years. We generalize them into three main
classes: wavelet Bayesian restoration, Bayesian restoration
with nonquadratic prior energies, and Bayesian restoration
with total variation (TV) prior/regularization.

Wavelet complexity regularization restorations, using a
multiscale stochastic prior model, have also been proposed
for edge-preserving restoration [8-11]. Priors based on
wavelet decompositions and heavy-tailed pdfs along with the
EM restoration algorithm have been proposed in [10]. These
wavelet regularization methods rely on statistical modeling
of the distribution of wavelet coefficients and strategy of
coefficient thresholding. We choose not to include the
comparison of wavelet regularization methods in this paper
for the consideration that they can also be reinterpreted as
some wavelet domain forms for Wiener filters, TV variational
methods, or some Tikhonov regularization procedures [11].

Edge-preserving priors with nonquadratic energies were
also proposed to preserve edge details by assuming a nonlin-
ear inverse-proportional relationship between the existence
of edges and intensity differences [5, 12, 13]. The weighting
matrices in nonquadratic prior Bayesian restoration preserve
edges by turning off or suppressing smoothing at appropriate
locations.
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Another impressive recent advance in this area is the
total variation- (TV-) based image restoration algorithms
[7, 14, 15]. This kind of approach can also be viewed as TV
prior with the half-quadratic regularization prior energy. The
inherent idea of TV methods describes the target images as
consisting largely of zero-gradient regions interspersed with
occasional strong gradient transitions. With no enforced
global image continuity, TV prior restorations often demon-
strate good edge-preserving property.

The nonquadratic priors aim to preserve edges through
determining the regularization degree on each pixel based
on the intensity-difference information within a local
fixed neighborhood. The regularization information of TV
prior also comes from the local neighboring intensity
gradients. Limited by local prior information within local
neighborhoods, these edge-preserving approaches cannot
cope well with realistic complicated images, and tend
to produce blocky artifacts around continuous edges
[16-21].

1.2. Existing Solution and Our Proposed One. A more efficient
edge-preserving restoration model should be more adaptive
to the characteristic structure of the image to avoid or
suppress the unfavorable blocky artifacts. In the past twenty
years some spatially adaptive techniques were proposed to in
this way.

In this way, a line-process [5] or doubly stochastic MRF
model [22] has been proposed. Bouman and Sauer proposed
a generalized Gaussian MRF prior model with a power
parameter controlling the background smoothness and the
edge sharpness in the restored image. However, using line
elements adds to the complexity of the problem by increasing
both the dimensionality of the required optimization and the
complexity of the parameter estimation procedure.

In [16], Mignotte proposed an adaptive region-based
edge-preserving regularization term, which applies a local
smoothness constraint to the preestimated constant-valued
regions by a two-level MRF model. The first level is a low-
level prior model used in the segmentation procedure, and
the second prior model exploits the segmentation result
(a partition into regions extracted from this segmentation
map) as a parameter for the resulting restoration. And
in a similar way but with a different application, Yu and
Fessler devised a boundary-based Bayesian method for
transmission tomography after level-set segmentation [23].
Such boundary or region-based methods rely heavily on the
segmentation operations whose effect in different images is
unpredictable and parameter dependent.

And recently in [18], Chantas et al. proposed a new
hierarchical (two-level) Gaussian nonstationary image prior
with assumption that the residuals of the first-order direc-
tional differences of the image are spatially varying Gaussian
random variables. The local directional variances of these
differences are utilized to capture the discontinuities. The
two main drawbacks of this nonstationary approach are
that the normalization constant for the prior is heuristically
adjusted and also the hyperparameters need to be found
heuristically.
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In this article, based on the work in [24] and our
previous tomographic work [19-21], we propose a spatial
adaptive Bayesian restoration approach. This new restoration
approach utilizes a spatial adaptive (SA) prior, which exploits
the global connectivity and continuity information in the
objective image. It works by adaptively including the useful
relevant neighbor pixels and excluding the negative irrelevant
ones within a large prior neighborhood. The proposed
restoration has good noise-removing and edge-preserving
properties, and, especially, it can effectively restore contin-
uous regions with much less blocky artifacts.

In Section 2, a review of the conventional prior model
and the theory for the proposed SA prior model are both
illustrated. In Section 3, we give the iterative restoration
algorithm for the proposed approach. In Section 4, we
perform restoration using different methods under the pro-
gramming environment of hybrid Matlab and C language.
Relevant visual and quantitative comparisons are also shown.
Conclusions and plans for future work are given in Section 5.

2. Prior Model

In this section, after providing a review of the conventional
prior model, we introduce the theory for the proposed SA
prior model.

2.1. The Traditional Prior Model. Conventionally, the value
of Uj(f) is commonly computed through a weighted sum of
potential functions v of the differences between pixels in the
neighborhood Nj;:

Ui(f) = S wv(fi - f). (6)

beN;

Generally, different choices of the potential function v
lead to different priors. The prior is the familiar space-
invariant QM prior when the potential function has the form
v(t) = £2/2.

Edge-preserving nonquadratic priors could be chosen by
adopting a nonquadratic potential function for v, such as the
Huber potential function:

t2
E) |t‘ = %
v(t) = N (7)

ylt] —%, 1t >y,

where y is the threshold parameter [5, 13, 16]. Such edge-
preserving nonquadratic prior preserves the edge informa-
tion by choosing a nonquadratic potential function that
increases less as the differences between adjacent pixels
become bigger. Weight wy; is a positive value that denotes
the interaction degree between pixel b and pixel j. And
in traditional prior models, it is simply considered to be
inversely proportional to the distance between pixel b and
pixel j. So on a square lattice of image f, in which the 2D
positions of the pixel b and pixel j (b # j) are, respectively,
(by, by) and (jx, jiy), wp; is usually calculated by the geometric

distance 1/\/(bx —jx)2 + (b, —j},)2 or some other simple

forms. Here, for traditional prior models, we illustrate two
widely used normalized weighting maps for eight-element
neighborhood and four-element neighborhood:

/421 1//2
(D) (1/(AXx1+4x1/V/2) x| 1 0 1
1/v/2 1 1/32

(2) (1/(4x 1) x| 101
1

Restorations using Total Variation (TV) prior or regular-
ization often take prior energy as follows:

Urv(f) = Z <A?f>2+ (A}{fy) (8)
j

where A" and AY are linear operators corresponding to
horizontal and vertical first-order differences at pixel j,
respectively [7, 14, 15]. This TV prior energy given by (8)
favors images with bounded variation without penalizing
possible discontinuities since both smooth and sharp edges
have the same TV prior energy.

2.2. The Proposed SA Prior Model. Objects in most images
have edges with coherently varying pixel intensities. Pixel-
scale intensity differences alone are insufficient to charac-
terize objects of multiple scales fully. Traditional quadratic
priors, nonquadratic priors, and TV prior can only provide
fixed local information for image restoration. Through an
averaging alike effect the local QM prior or Tikhonov
regularization is prone to produce an unfavorable over-
smoothing effect to smooth out both noise and details. And
the edge-preserving nonquadratic and TV priors, although
able to preserve some edge information, tend to produce
unfavorable blocky artifacts or false edges because of the
disturbance of noise. In [22], we find that simply enlarging
the prior neighborhood of local prior is ineffective in
improving restoration.

Thus continuous texture information within a larger
scale should be used to discriminate image information
from singularities or noise. This laid the basis of the
proposed method. In the building of the proposed SA
prior model, a large nonlocal neighborhood N is used to
incorporate geometrical configuration information. Other
than calculated as the Gaussian decreasing function of the
difference between the two square comparing neighborhoods
as the methods in [19], the weight w;; for the new selective
nonlocal prior is set to be a 1-0 binary function which
classifies all pixels in neighborhood N into two classes—the
neighbors relevant to the center pixel j and those not. Only
the relevant ones are picked out for the SA prior. The value
of wy; is set to be 0 or 1 when the computed distance dp; is
greater or smaller than a set threshold 6.

Thus, the chosen relevant pixels in the SA prior neighbor-
hood for each center pixel j are not fixed. Both the numbers
and positions of the relevant pixels in neighborhood N
are adjusted spatially and adaptively with the nonstationary
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FiGgure 1: Illustrations of the weight distributions of the adaptive neighborhood system for the proposed SA prior model. The sizes of
neighborhoods N and n are 31 x 31 and 7 X 7, respectively. (a) The weight factors wy; are distributed in the direction of the straight edge line
when the centered pixel j is in a straight alike configuration. (b) The weight factors w;; are distributed in the direction of the edge line when
the centered pixel j is in an oblique edge. (c) The weight factors wy; are adaptively distributed along the pixels in the same structures when
the centered pixel j is in some special structure. (d) The weight factor distributions for the three centered pixels in the two edge regions and

the background region, respectively, are shown.

spatial properties of the objective image. The building of the
proposed SA prior can be formalized as follows:

Un() = S0 =5 3 (ws (- 5)" /8] ),
J

j bEN;
)
1, diSbj < 8,
Wpj = (10)
0, diSbj > (S,

disbj = Hi’lb(f) — l’l](f)HIz5 = Z(ﬁEnb —flenj)zy (11)
I

n(f) = {fi:1€m}, (12)
ni(f) = {fizlemnl. (13)

Here, Us, is the energy function for the proposed SA prior.
wpj, which represents the classification of the neighbor pixels
in the search neighborhood Nj, can be computed via (10)—
(13). [Nr;|, the number of neighbor pixels with nonzero wy;
in the neighborhood Nj;, can function as a normalized factor
of hyperparameter f for the different numbers of relevant
neighbor pixels in each search neighborhood N;. Parameter
§ in (10) is the threshold parameter. The value of the distance
disy; is determined by a distance measurement between the
two translated comparing neighborhoods n, and n;. The
two comparing neighborhoods 1, and n; have same sizes
and are centered at pixel b and pixel j. n, and #; can also
be considered two 2D pixel intensity vectors including all

inner pixels of neighborhoods n, and n;. [ is the index
denoting the two pixels with the same positions related to
the corresponding center pixel b and pixel j in n;, and n;j,
respectively.

Through the computation and thresholding of the dis-
tances between the comparing neighborhoods n centered on
the corresponding pairs of pixels in the large neighborhood
N, the spatial-varying weights of each pair of pixels in N
are distributed across the similar configurations. Thus global
configuration information can be exploited with the negative
disturbance from the irrelevant pixels suppressed.

To make above statement of the spatial adaptive neigh-
borhood model more straightforward and clearer, in Figure 1
we illustrate several simulated weight factors distribution
maps of the tagged pixels for the nonlocal prior. In all
illustrations, the sizes of neighborhoods N and # are set to be
3131 and 7 X 7, respectively. In Figure 1(a), we can see that
the prior weight factors are distributed along the direction
of the straight edge line in neighborhood N when the pixel
is in a straight edge. In Figure 1(b), when the pixel belongs
to an oblique edge, the corresponding prior weight factors
are distributed along the same oblique edge in neighborhood
N. In Figure 1(c), the corresponding prior weight factors are
distributed along the same structures in neighborhood N
when the pixel belongs to one specific structure. Figure 1(d)
illustrates three prior weight distributions for the three pixels
in edge regions and background region, respectively. We
can also see that the SA prior weight factors for the two
pixels in edge regions are adaptively distributed along the
edge regions, while the prior weight factors for the pixel
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in background region are distributed in the corresponding
background region.

Compared to the Gaussian weighting form in [19,
24], this new binary weighting approach, which explicitly
classifies all pixels in neighborhood N, is observed to produce
similar results after optimal parameter settings. Notably,
this binary weighting approach has more straightforward
relating from dj; to wy;, which permits more tractable setting
of threshold §. It can also reduce computation cost by
avoiding calculation of exponential functions in the Gaussian
weighting form.

3. Restoration Algorithm

From (5), Bayesian restoration with the proposed SA prior
model can thus be defined as the search of the global minima
of the following energy function (14) with respect to f:

yp(f 1) = llg — A% fII* + BUsa(f). (14)

Here the energy function contains a fidelity term
llg—A >i<f||2 and a prior energy term Usa. f = a/k is
the regularization parameter controlling the tradeoff of the
two terms.

Obviously the fidelity term [|g — A * f II? given by (14)
is quadratic and convex. Considering the convexity for
quadratic function (f;, — fj)2 in (9), (14) is definitely convex
if the values of all wy; are fixed. With an assumption of fixed
Wej, convergent estimation updates toward global minima
can be easily obtained using Newton-Raphson algorithm
[25, 26]. However, from (9)—(13), we know that every
weighting factor wy; is not fixed and needs to be determined

by the estimated image f each iteration, which makes it
difficult to preserve the global convergence of above Newton-
Raphson iteration. A practical suboptimal alternating two-
step restoration algorithm is as follows. After choosing an
initial image estimate f°, we can update weight w and image
f alternatively using following two-step strategy for every
iteration.

(1) Weight Update. For every pixel pair (fy, f;) in image
f with f” being the estimate of f from the nth iteration,
compute wy; using (9)—(13) and f".

(2) Image Update. We can obtain following closed-form
updating solution using the Newton-Raphson algorithm:

A~ A~ d
ntl _ n ( | )‘ )
fr=7g (af‘Vﬂ 9]

az
/(—alelfﬁ(f | g) ‘ff")’

fn+1 _ fn+ (AT(g_A *f”) —ﬁaanSA(f)> ‘ffn

/(ATA+ﬁaa;2USA(f)) ‘f_fn' (15)

Coordinate Descent (CD) method, which updates one
pixel at a time using the most recent other pixels, can be
combined with this Newton-Raphson algorithm to increase
convergence [26]. Such joint updating restoration algorithm
can be considered as a version of the widely used OSL
(One-Step-Late) iterative algorithm [27, 28]. Though able to
converge to at least a local minimum as the joint algorithm
proposed in [23], this joint updating restoration algorithm
suffers from the lack of strict convergence proof.

To obtain a convergent iteration process when using the
proposed prior with changing wj; that has to be determined

by current estimate f, we choose to fix the values of all wy;
after some iterations. Thus after some above nonconvergent
OSL Newton-Raphson iterations with variable weighting
factors wy;, we fix all wy; and monotonically minimize the
energy function yg(f | g) using the Newton-Raphson algo-
rithm (Image Update). So, in practical experiments, we set a
fixed iteration number I' and apply this updating strategy to
obtain a global solution for the Bayesian restoration using the
proposed prior.

Threshold parameter § in (10) cannot be estimated
exactly, and we manually set the value of § using the dis
(computed by formula (11)) information of the image in
terms of signal-to-noise ratio (SNR) measurements and
visual performance. SNR can be calculated as follows:

SNR = 10log,, (16)

Here M, f, ?, and f denote the total pixel number, the
original image, mean of the original image, and the restored
image, respectively.

One drawback of the proposed approach is the heavy
computation burden due to its complexity in calculating all
the inter weight w between each two translated comparing
neighborhoods # in search neighborhood N over the whole
image region. In practical, we generally do not extend the
neighborhood bounds over the whole images, and choose
suitable 7 X 7 neighborhood N and 7 X 7 n, which is
proved to be large enough to provide effective regularization
in Section4.2. And, considering the symmetry property
that the distance dis,; equals the distance disj;, we can
save one half computation cost by only calculating one of
the two distances disy; and disj;. Furthermore, consider-
ing the inefficiency of cycling operation under Matlab7.5
environment, all of the Matlab codes for weight calculation
are transformed to mixed C language. By applying above
methods, we successfully lowered the CPU computational
costs to around 1/4 of the original costs.

4. Numerical Experiments

In this section, we present simulated experiments with
numerical comparisons. The two metrics used to quantify
the quality of the degraded images, the noise levels in our
degraded images, and the quality of different restoration
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TasLE 1: Image and degradation information for the three test images.

Test images (256 X 256) Intensity ranges

Simulated PSFs Noise properties

“Lena” [—98-117]
“Sailing Boat” [—123-129]
“Parrot” [—73—-1438]

Uniform 9 x 9 PSF
Uniform 7 x 7 PSF
Uniform 7 x 7 PSF

Gaussian noise (o = 0.1663)
Gaussian noise (o = 0.3511)
Gaussian noise (o = 0.3740)

TABLE 2: Optimal parameter settings.

Test images TV prior Huber prior SA prior

“Lena” B = 0.0038 B =0.026, y = 0.35 B =0.015, 8 = 900
“Sailing Boat” B = 0.006 B =0.044, y = 0.45 B =0.015, 8 = 800
“Parrot” B = 0.0085 B =0.025, y = 0.55 B =0.02, 8 =350

results are the SNR and the improvement in signal-to-noise
ratio (ISNR). ISNR is defined as

vy (ff—gf)2

ISNR = 10log,, 5
M
(- 5)

(17)

Here M, f, f, and g denote the total pixel number, the orig-
inal image, the restored image, and the observed degraded
image, respectively.

Restoration experiments with three 256 x 256 images
(“Lena” (Figure 2(a)), “Sailing Boat” (Figure 3(a)), and “Par-
rot” (Figure 4(a)) are performed. Image and degradation
information is listed in Table 1. The three PSFs used in
experiment are all normalized to 1. Observed degraded
images (resp., in Figures 2(b), 3(b), and 4(b)) were simulated
by (1) using corresponding PSFs and white Gaussian noise.
All of the restorations using the three images are shown in
Figures 2, 3, and 4, respectively.

4.1. Results from Different Restoration Methods. In order to
compare the proposed approaches with previous ones, we
implement Wiener filter restoration, Bayesian restoration
using TV prior, and Huber prior. We perform the classical
Wiener filter in the DFT domain using the degraded image
to estimate the image power spectrum and assuming that the
additive noise variance is known. The resulting images are,
respectively, shown in Figures 2(c), 3(c), and 4(c).

The hyperparameter 3 for all Bayesian restorations,
threshold parameter y for Huber prior, and threshold
parameter § for the nonlocal prior are chosen manually
using the SNR criteria. The used parameters for different
restorations are listed in Table 2.

The TWIST [7] and Newton-Raphson algorithm are used
in restorations using TV prior and Huber prior, respectively.
Restored images from above Wiener filter method are used as
the initial images. The iteration number is set to be 500. The
corresponding restored images from TV prior restoration
are, respectively, shown in Figures 2(d), 3(d), and 4(d).
And the corresponding restored images from Huber prior
restoration are, respectively, shown in Figures 2(e), 3(e), and
4(e).

TABLE 3: Signal-to-noise ratio (SNR) of the observed degraded
images and the restored images.

Test Degraded Wiener TV Huber .

est images . . . SA prior
image filter prior prior

“Lena” 6.65 15.06 15.54 15.59 15.86

“Sailing Boat”  6.97 15.76 16.43 16.45 16.91

“parrot” 7.98 16.75 17.25 17.22 17.86

TaBLE 4: Improvement in signal-to-noise ratio (ISNR) of the
observed degraded images and the restored images.

Test Images ~ Wiener filter TV prior Huber Prior SA prior
“Lena” 5.79 8.48 8.76 9.15
“Sailing Boat” 7.12 10.10 10.54 11.13
“Parrot” 8.06 11.45 11.99 12.40

For Bayesian restoration using the proposed SA prior, the
7x7 neighborhood N and the 7x7 comparing neighborhood
n are used. We apply above two-step Newton-Raphson
algorithm with a prefixed iteration number I. Restored
images from the fifth TV iteration are chosen as the initial
images to achieve faster convergence. The total iteration
number is set to be 500 with I' = 200. And the corresponding
restored images are, respectively, shown in Figures 2(f), 3(f),
and 4(f).

Through comparison, we find that all of the three
Bayesian restorations can effectively overcome the annoying
ring effects in Wiener filter restoration. Especially, the block
artifacts, which can be observed in the Bayesian approach
using Huber prior and TV prior, are effectively suppressed
using the proposed method. Restorations using the proposed
SA prior perform better in both noise suppressing and
edge preserving. Using the proposed approach, continuous
regions and details are better restored with much less block
artifacts produced. We can also see in Tables 3 and 4 that the
proposed SA prior restoration approaches can restore images
with higher SNR and ISNR values.

4.2. Study on Neighborhoods N and n of Different Sizes. To
find out the impacts of the sizes of neighborhoods N and n



EURASIP Journal on Advances in Signal Processing

FIGURE 2: (a) Original “Lena” image. (b) Degraded “Lena” image (SNR = 6.65) with 9 x 9 uniform blur and additive white Gaussian noise
(local variance = 0.1663). (c) Wiener filter restoration. (d) TV prior Bayesian restoration. (e) Nonquadratic Huber prior Bayesian restoration.

(f) The proposed SA prior Bayesian restoration.

TasLE 5: Combinations of neighborhoods N and » with different
sizes.

a, N3y3hix b, Nsy3nsys ¢, N3x3hyxy
d, N7x7nixa e, N7x7m3x3 f, Nywrngwg
F$ Niainixa h, Niixi1113x3 i, Niix1117x7

TaBLE 6: SNR for the restorations using the proposed SA prior with
the corresponding neighborhood combinations in Table 5.

a, N3><3n1><1 : 15.55 b, N3><3n3><3 1 15.68
d, N7><7n1><1 : 15.53 e, N7><7n3><3 1 15.72
g Nipsifixa 21543 by Nijxaifaxs @ 15.69

¢, N3y3nzxz : 15.60
f, N7x7h747 + 15.86
i N11><11n7><7 : 15.89

in restoration, we perform restorations of 256 x 256 image
“Lena” using the proposed SA prior with neighborhoods N
and n of different sizes. The total iteration number is set to
be 500 with I' = 200. Same restoration environment as above
is used. The combinations of neighborhoods N and n with
different sizes are illustrated in Table 5.

Considering the fact that the numbers of pixels are
different for different comparing neighborhoods n (49 for
7 x 7 neighborhood n, 9 for 3 x 3 neighborhood #, and 1
for 1 x 1 neighborhood #), parameter ¢ should also change

with restorations using different comparing neighborhoods
n. The values of parameter § for 7X7 n,3x3 n,and 1 X1 nare
set to be 900, 400, and 125, respectively. The hyperparameter
B for the SA prior is chosen by hand under the same strategy
in terms of the SNR criteria.

We can see in Table 6 that higher SNR can be obtained for
larger N and n. When choosing 1 X 1 n with N of different
sizes, the comparing neighborhoods n become one single-
pixel and only single pixel intensities are compared in (11).
In this situation the SA prior becomes a modified version
of local Huber prior. Choosing 7 X 7 N with 7 X 7 n, we
can restore the images with almost the same SNR as those
with larger N. N and n of a suitable size (7 x 7 for both
in this situation) might be large enough to achieve good
restorations.

We also list in Table 7 the CPU time costs for above
restorations using the proposed prior with above different
combinations of neighborhoods. The methods for computa-
tion reduction in Section 3 are used. As predicted, more CPU
time costs are needed for the restorations using the proposed
prior with larger N and n.

4.3. Iteration Monotonicity. We know from the analysis in
Section 3 that the Hessian matrix of the yg(f | g¢) in
(14) is positive definite in each single iteration if the values
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FIGURE 3: (a) Original “Sailing Boat” image. (b) Degraded “Sailing Boat” image (SNR = 6.97) with 7 X 7 uniform blur and additive white
Gaussian noise (local variance = 0.3511). (c) Wiener filter restoration. (d) TV prior Bayesian restoration. (e) Nonquadratic Huber prior
Bayesian restoration. (f) The proposed SA prior Bayesian restoration.

TasLE 7: CPU times in terms of seconds needed for above restorations using the proposed SA prior with the corresponding neighborhood

combinations in Table 5.

a, Naxsnx; @ 58.16 sec
d, Nyxonig 2 73.72 sec
i Nnxllnlxl : 97.62 sec

b, N3><3l’l3><3 : 96.84 sec
e, N7x7m3x3 : 118.30 sec
h, N11X11n3x3 : 148.78 sec

¢, N3xanyxy : 150.72 sec
f, N7><77’l7><7 :224.60 sec
i, N11><11n7><7 : 321.48 sec

of all wy; are fixed. However, before preset I' iterations,
no strict convergence is guaranteed because the posterior
energy function changes with the weighting factors which
are needed to be updated in each iteration. Here, in Figure 5,
we calculate and plot the posterior function energy y(f |
g) with respect to iteration numbers for above restoration
experiment with “Lena” image. The total iteration number
is set to be 1000 with I' = 200 to include a long iteration
process. We can see that the calculated posterior function
energy decreases monotonically during the whole iteration
process.

We thus conclude that, using the proposed algorithm,
monotonic decrement of the posterior function energy can
be achieved after I iterations when the weighting factors
begin to be fixed and fixed posterior energy function is
guaranteed.

5. Conclusions and Future Work Plan

In this paper, based on MRF theory and our previous work,
we proposed a novel spatial adaptive prior Bayesian restora-
tion approach. The proposed method can incorporate the
global connectivity information into image restoration. Not
only capable of suppressing background noise and preserving
details, the proposed restoration is also capable of restoring
continuous regions and suppressing blocky artifacts effec-
tively. An SNR performance comparisons of restorations
using the proposed prior with different combinations of
neighborhoods N and n are also illustrated. We find that
good reconstructions can be obtained with neighborhood
sizes suitably chosen. Compared to the methods in [16-18],
the proposed SA prior model is less complicated and needs
no additional segmentation alike empirical operation.
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FIGURE 4: (a) Original “Parrot” image. (b) Degraded “Parrot” image (SNR = 7.98) with 7 x 7 uniform blur and additive white Gaussian noise
(local variance = 0.3740). (c) Optimal Wiener filter restoration. (d) TV prior Bayesian restoration. (e) Nonquadratic Huber prior Bayesian

restoration. (f) The proposed SA prior Bayesian restoration.

x10%

Posterior energy

0
0 100 200 300 400 500 600 700 800 900 1000

Tteration number

FiGUre 5: Using the proposed restoration algorithm in Section 3,
the calculated posterior function energy with respect to iteration
number is shown.

Nevertheless, although several computation reduction
approaches have been applied, the proposed approach still
needs computations over large neighborhoods and estima-
tions of hand-adjusted parameters (threshold § and the
sizes for neighborhoods N and n), which make it high

computational cost compared to other methods. However,
considering the ever-increasing computing power and the
need for high-quality restoration, the increased computation
cost should not be overblamed.

Further work includes further exploring of more effective
guideline in determining the sizes for neighborhoods N and
n under different noise levels and estimation of threshold
parameter § and in finding effective ways to lower the
computation cost.
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