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With the rapid development of computers and internet applications, copyright protection of multimedia data has become an
important problem. Watermarking techniques are proposed as a solution to copyright protection of digital media files. In this
paper, a new, robust, and high-capacity watermarking method that is based on spatiofrequency (SF) representation is presented.
We use the discrete evolutionary transform (DET) calculated by the Gabor expansion to represent an image in the joint SF domain.
The watermark is embedded onto selected coefficients in the joint SF domain. Hence, by combining the advantages of spatial
and spectral domain watermarking methods, a robust, invisible, secure, and high-capacity watermarking method is presented. A
correlation-based detector is also proposed to detect and extract any possible watermarks on an image. The proposed watermarking
method was tested on some commonly used test images under different signal processing attacks like additive noise, Wiener and
Median filtering, JPEG compression, rotation, and cropping. Simulation results show that our method is robust against all of the
attacks.

1. Introduction

Recently, the production, distribution, and use of digital
media has become very popular. Although these products
have the advantages of high quality, ease of modification,
and quality duplication, they introduce the problems of
copyright protection issues because they can be easily copied
and altered. Watermarking techniques are proposed as a
solution to copyright protection problems of digital media
files. The basic idea in watermarking is embedding a secret
data into a multimedia file. In recent research, new methods
are proposed to watermark audio, image, and video files.

In digital watermarking, a specific information called
watermark is embedded in a multimedia file in such a way
that it can be detected or extracted when necessary. The
watermark may contain information about the digital object
as well as information about the user or owner. As for image
and video files, the watermark can be another image or
signature logo. The watermark may be embedded so that it
is either visible or invisible.

The principle of watermarking is to embed a digital code
(watermark) within the host multimedia document, and
to use such a code to prove ownership, to prevent illegal
copying, to give some indications about the watermarked
data or to enable the access to enhanced versions of the
content or to additional services. The watermark code is
embedded by making imperceptible modifications to the
original data.

A watermarking algorithm in general consists of three
basic components: (i) watermark, (ii) encoder (watermark-
ing algorithm), and (iii) decoder (detection or extraction
algorithm). To be useful a digital watermarking system
must satisfy some basic requirements. First of all, the
embedded watermark should be perceptually invisible. In
other words, its presence should not affect the image
quality. Moreover, the embedded watermark should be
robust against the common signal processing manipula-
tions like additive or multiplicative noise (Gaussian or salt
and pepper (SP) noise), filtering, JPEG Compression, and
rotation.
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Image watermarking algorithms are mainly concentrated
on spatial or spectral domains. Although successful methods
have been presented using both approaches, they also have
limitations and weaknesses. In the spatial domain, the image
area where watermark is embedded is chosen based on
the texture of the original image [1, 2]. In the spectral
approach, watermark is embedded in a transform domain
using discrete cosine transform, discrete wavelet transform,
and so forth. For an invisible and robust watermarking, the
watermark is embedded into middle frequencies range [3–
5]. Watermarking in the frequency domain has advantages
in terms of robustness, but there are limitations like invisible
embedding may be difficult. Some new techniques are
introduced by combining the advantages of both spatial and
spectral domains for robust and invisible watermarking. This
can be done using joint SF representations of images [6, 7].
Watermarking in the joint SF domain provides flexibility in
terms of how much watermark will be embedded in which
image region, and in what frequency band.

A new spatiofrequency- (SF-) based image watermark-
ing algorithm which uses Discrete Evolutionary Transform
(DET) has been presented in our past works [8]. In this
paper, a new approach is presented for embedding water-
mark into SF representation of the image. By using this
approach, more robust, invisible, secure and high capacity
watermarking algorithm is obtained.

The rest of the paper is organized as follows: In
Section 2, we give a brief introduction to DET calculated by
a multiwindow Gabor expansion as a linear time-frequency
representation method. Then we present our SF domain
image watermarking technique based on DET in Section 3.
Watermark extraction algorithm with correlation detector is
given in Section 4. Embedding and extraction performance
tests are given in Section 5, followed by conclusions and
discussion of the results in Section 6.

2. Time-Frequency Analysis by DET

In the following, we briefly explain the Discrete Evolutionary
Transform (DET) as a tool for the time-frequency represen-
tation of image sequences.

Wold-Cramer representation [9], of a nonstationary
random sequence γ(n) can be expressed as an infinite sum of
sinusoids with random and time-dependent amplitudes and
phases, or

γ(n) =
∫ π

−π
Γ(n,ω)e jωndZ(ω), (1)

where Z(ω) is considered a random process with orthogonal
increments. This is a generalization of the spectral rep-
resentation of stationary processes. Priestley’s evolutionary
spectrum [9, 10] of γ(n) is given as the magnitude square
of the evolutionary kernel Γ(n,ω). Analogous to the above
Wold-Cramer representation, a discrete, time-frequency
representation for a sequence x(n) with a time-dependent
spectrum is possible [11, 12]:

x(n) =
K−1∑
k=0

X(n,ωk)e jωkn, 0 ≤ n ≤ N − 1, (2)

where ωk = 2πk/K , K is the number of frequency samples,
and X(n,ωk) is a time-frequency evolutionary kernel. A simi-
lar representation can be given in terms of the corresponding
bifrequency kernel X(Ωs,ωk):

x(n) =
K−1∑
k=0

K−1∑
s=0

X(Ωs,ωk)e j(ωk+Ωs)n, (3)

where ωk and Ωs are discrete frequencies. Discrete evolu-
tionary transformation (DET) is obtained by expressing the
kernels X(n,ωk) or X(Ωs,ωk) in terms of the signal. This
is done by using conventional signal representations [11].
Thus, for the representation in (2) the DET that provides the
evolutionary kernel X(n,ωk), 0 ≤ k ≤ K − 1, is given by

X(n,ωk) =
N−1∑
�=0

x(�)Wk(n, �)e− jωk� , (4)

where Wk(n, �) is, in general, a time and frequency depen-
dent window.The DET can be seen as a generalization of
the short-time Fourier transform, where the windows are
constant. The windows Wk(n, �) can be obtained from either
the Gabor representation that uses nonorthogonal frames, or
the Malvar wavelet representation that uses orthogonal bases.
Details of how the windows can be obtained for the Gabor
and Malvar representations are given in [11]. Here, for the
representation of image pixel sequences in spatiofrequency
domain, we consider DET calculated by multiwindow Gabor
frames.

The multiwindow Gabor expansion is given by [12]

x(n) = 1
I

I−1∑
i=0

M−1∑
m=0

K−1∑
k=0

ai,m,khi(n−mL)e jωkn, (5)

where {ai,m,k} are the Gabor coefficients, and {hi,m,k} are the
Gabor basis functions defined as

hi,m,k(n) = hi(n−mL)e jωkn, (6)

and the synthesis window hi(n) is obtained by scaling a unit-
energy mother window g(n) as

hi(n) = 2i/2g
(

2in
)

, i = 0, 1, . . . , I − 1. (7)

The multiwindow Gabor coefficients are evaluated by

ai,m,k =
N−1∑
n=0

x(n)γ∗i (n−mL)e− jωkn, (8)

where the analysis window γi(n) is solved from the bi-
orthogonality condition between hi(n) and γi(n) [11]. Hence
by comparing the representations of the signal in (5) and (2)
we obtain the DET kernel as

X(n,ωk) = 1
I

I−1∑
i=0

M−1∑
m=0

ai,m,khi(n−mL). (9)

Substituting for the coefficients {ai,m,k}, we obtain that

X(n,ωk) =
N−1∑
�=0

x(�)W(n, �)e− jωk� , (10)
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where we defined a time-varying window as

W(n, �) = 1
I

I−1∑
i=0

M−1∑
m=0

γ∗i (� −mL)hi(n−mL). (11)

Then the evolutionary spectrum of x(n) is given by

S(n,ωk) = 1
K
|X(n,ωk)|2. (12)

We should mention that above evolutionary spectral estimate
is always nonnegative, and normalizing W(n, �) to unit
energy, the total energy of the signal is preserved, thus
justifying the use of S(n,ωk) as a TF energy density for
x(n). Furthermore, DET provides a linear signal represen-
tation where the sequence may be obtained from the TF
representation much easier than it is with the bilinear TF
representations such as Wigner distribution [13]. Hence
DET is appropriate for watermarking applications in the SF
domain where embedding and extracting a watermark will
be easily implemented using linear operations.

3. Watermark Embedding in
the Joint SF Domain

In our SF-based watermarking approach, the rows of the
image to be watermarked are considered as one dimensional
sequences and transformed into the joint SF domain. Water-
mark is embedded onto coefficients which are selected from
these SF representation matrices. Therefore, it is possible to
increase the length of the watermark to high values. Thus, we
can embed more information to image.

Although it is possible to embed the watermark to all
rows of the image, it is embedded only to chosen rows
because of the security reasons. Also the watermark is
embedded to chosen coefficients of the DET matrices. So,
two different keys have to be used. One of them is used for the
chosen rows, and the other one is for the chosen coefficients.
Therefore, a more secure watermarking method is obtained.

There are methods to represent two dimensional images
in the SF domain, but computational complexity and the
dimensionality problems make them difficult to use in
watermarking applications [6]. Recently new methods are
presented where TF distributions (TFDs), usually the Wigner
distribution, of each row of an image is used for embedding a
watermark in the joint TF domain [7, 14]. However, synthesis
of a sequence from its modified bilinear TFD is generally
a difficult problem. Hence, we propose a new SF domain
watermarking where we use the linear DET explained above
to embed the watermark into any row of the image. Then
the watermarked rows are easily obtained by the inverse
transformation. We used multiwindow Gabor expansion
based DET in our approach. However, other linear time-
frequency representations may be used instead. For instance,
the short-time Fourier transform (STFT) may be employed
as well which is a special case of the DET where the window
function is constant. Multiwindow Gabor-based DET is
compared and shown to perform better than the STFT in
many applications in previous studies [8, 12].

Let I(x, y), 0 ≤ x, y ≤ N − 1, be the original image. The
DET of row x of the image,

XI
(
y,ωk

) =
N−1∑
�=0

I(x, �)W
(
y, �
)
e− jωk� (13)

0 ≤ y, k ≤ N − 1, is obtained. The window W(y, �)
is obtained by using Gabor representation. Watermark
sequence, w(n), 0 ≤ n ≤ M − 1 is the copyright or
some other necessary information. M is the length of the
watermark sequence. In this paper, normally distributed
random sequences that have zero mean and unity variance
are used. The lengths of the sequences are chosen as 512.

For the watermark embedding process, the number of
M coefficients are chosen from the DET matrix of image’s
xth row, in chosen space and frequency band. Then, the
watermark is embedded to these coefficients as follows [15]:

ĉ(n) = c(n)[1 + w(n)]. (14)

Here, c(n), 0 ≤ n ≤ M − 1, represents the chosen DET
coefficients. w(n) is the watermark sequence. If it is needed
to decrease the power of the watermark, a weighting constant
can be used.

The places of the watermarked coefficients are saved as
a key, because they are necessary at watermark extraction.
Therefore, the unauthorized persons who does not have
the key, cannot detect the embedded coefficients, and the
safety of the watermark is guaranteed. After the watermark
embedding process in SF domain finished, watermarked
image rows are obtained by using inverse DET (IDET) as
follows:

Î
(
x, y

) =
K−1∑
k=0

X̂I
(
y,ωk

)
e jωk y. (15)

Here, X̂I(y,ωk) is the watermark embedded DET matrix, and
Î(x, y) is the watermarked image matrix.

4. Watermark Extraction

In digital watermarking studies, methods have been pre-
sented for detection and extraction of the watermark by
assuming that some information used in the embedding
is known to the detector [14]. However, there are many
works where blind detection is achieved without using any
extra information. In practical applications such as copyright
protection, the most important goal is the detection of
watermark existence even after the watermarked image
is attacked. In our study, we assume that we have the
original and the watermarked images and try to extract the
watermark.

In this paper, a correlation based detection method is
used. First of all, the DET of the watermarked image row is
calculated by using the key which shows the watermarked
rows of the image. With the help of the second key,
watermarked coefficients are chosen from the DET matrix,
and they are saved as a sequence, ĉ(n). ĉ(n) contains
watermarked and probably attacked coefficients. After that,
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(a) (b)

Figure 1: (a) Watermarked Boats Image, (b) 1000 times magnified difference between the original and the watermarked Boats images.

(a) (b)

Figure 2: (a) Watermarked Barbara Image, (b) 1000 times magnified difference between the original and the watermarked Barbara images.

the DET of the original image’s same row is calculated and
c(n) sequence is obtained again.

Then, ŵ(n) extracted watermark sequence is obtained as
follows:

ŵ(n) = ĉ(n)− c(n)
c(n)

. (16)

The extracted watermark sequence is probably corrupted
because of the attacks. So, it is different from the original
watermark. By using a correlation based detector, the
similarity between the extracted watermark, ŵ(n) and the
series of the possible watermarks, w(n), can be calculated
to determine the embedded watermark. The correlation
t = 〈ŵ(n),w(n)〉 is calculated and then a correlation based
detector is given by

t > η =⇒ true watermark,

t < η =⇒ wrong watermark,
(17)

where η is a threshold which may be derived by using the
Neyman-Pearson criterion

PF =
∫∞
η

fT(t)dt, (18)

and fT(t) is the probability density of t. Assuming all
watermarks are zero mean and Gaussian distributed, we have
that

PF = Q
(
η − μt
σt

)
, (19)

where Q(·) is the standard error function and μt and σt are
the mean and standard deviation of t, respectively. From
above we can obtain that

η = σtQ
−1(PF). (20)

In our simulations, we take σ2
t = 524, PF = 0.01, and η =

0.2029. t takes the highest value when the original and the
extracted watermarks are same. So, we take the variance of
the original watermark as variance of t.

5. Simulations

The proposed watermarking method was tested on some
commonly used test images (Lena, Baboon, Boats, and
Barbara) and the detection performance was investigated.
The sizes of images are 512 × 512. Watermark is chosen as
a zero mean and normal distributed random sequence. We
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Figure 3: Continued.
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Figure 3: Correlation detector response under (a) AWGN (σ2 = 0.025), (b) AWGN (σ2 = 0.85), (c) Salt and Pepper noise, (d) Wiener
Filtering, (e) Median Filtering, (f) JPEG Compression (Q = 10%), (g) JPEG Compression (Q = 50%), (h) Rotation (5◦), (i) Cropping (50
column), (j) Cropping (100 column) attacks.

Table 1: PSNR Values of the watermarked images.

Image Lena Baboon Boats Barbara

PSNR (dB) (25 rows watermarked) 63.0542 59.0494 62.4428 63.0009

PSNR (dB) (All rows watermarked) 49.2935 46.5275 48.4713 49.9196

generate 500 possible watermarks and embed the 250th of
them onto each test image. The watermarked Boats image
and the difference between the watermarked and the original
images can be seen in Figure 1. The difference, shown
in Figure 1, is obtained by magnifying the real difference
image by 1000, so we can see the effects of the embedding
algorithm. Notice that the watermark embedding algorithm
does not cause any visible changes on the image. Peak
signal to noise ratio (PSNR) values are given in Table 1 for
all test images. First column shows the PSNR values for
partial watermarking. In this case, we chose 25 rows of the

image randomly and embedded the watermark in each of
them. Also, second column shows PSNR values for fully
watermarked images. In this case, watermark was embedded
in all image rows.

The watermarked Barbara image and the difference
between the watermarked and the original images can be
seen in Figure 2, where the difference image is also obtained
by multiplying the real difference by 1000. The performance
of the method was also tested under different attacks for the
above images. Additive white Gaussian noise (AWGN), SP
noise, Wiener filtering (WF), Median filtering (MF), JPEG
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Figure 4: The comparison of the proposed method and the methods in [2, 8, 16–18] under (a) AWGN, (b) Median Filtering, (c) JPEG
Compression, (d) Cropping attacks.

Compression, rotation, and cropping attacks are applied.
When we test our method against the cropping attack,
we only eliminated some columns of the image (hence
it is a vertical cropping). This is because the row (or
horizontal) cropping has no effect on our algorithm since
we embed the same watermark into many predetermined
rows. The normalized correlations between the extracted and
the original watermarks are calculated and presented for all
images in Tables 2 and 3. In our simulations, correlations
are calculated for all 25 watermarked rows of the images
separately, then the best result is chosen and shown in tables.

We also tested our watermark detection algorithm
using a test set composed of 500 possible watermarks
which are again zero mean, Gauss distributed random
sequences. The watermark that is in the middle of the set
(number 250) is embedded into the Lena image. Figure 3
shows the correlations between the extracted watermark
and all 500 possible watermarks in the test set. It is
shown in figures that, when the original watermark is
tested with the extracted one, the correlation takes its
maximum value. In above simulations, the worst correlation
value is shown among the 25 rows. We can observe from the
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Table 2: Correlations between the original and the extracted watermarks under Noise and Filtering attacks.

Attack Lena Baboon Boats Barbara

AWGN (σ2 = 0.005) 0.9126 0.8592 0.9443 0.9045

AWGN (σ2 = 0.010) 0.9070 0.8705 0.9383 0.8740

AWGN (σ2 = 0.015) 0.9251 0.9053 0.9165 0.8772

AWGN (σ2 = 0.020) 0.8981 0.9040 0.8372 0.9219

AWGN (σ2 = 0.025) 0.8655 0.8183 0.8875 0.8796

SP Noise (Density = 0.02) 0.9325 0.9354 0.9907 0.9689

SP Noise (Density = 0.04) 0.9189 0.9221 0.9063 0.9291

SP Noise (Density = 0.06) 0.8633 0.8721 0.8849 0.9139

SP Noise (Density = 0.08) 0.8834 0.8712 0.8295 0.8936

SP Noise (Density = 0.10) 0.8777 0.8616 0.8470 0.8737

WF (3× 3) 0.9834 0.9109 0.9923 0.9730

WF (4× 4) 0.9686 0.8851 0.9805 0.9532

WF (5× 5) 0.9687 0.8890 0.9815 0.9565

WF (6× 6) 0.9602 0.8168 0.9701 0.9154

WF (7× 7) 0.9813 0.8011 0.9940 0.9163

MF (3× 3) 0.3004 0.6862 0.3818 0.6111

MF (6× 6) 0.2580 0.3820 0.1761 0.5817

MF (9× 9) 0.4588 0.4429 0.3489 0.5800

MF (12× 12) 0.3975 0.4467 0.3215 0.5643

MF (15× 15) 0.4396 0.4498 0.3368 0.5773

Table 3: Correlations between the original and the extracted watermarks under different attacks.

Attack Lena Baboon Boats Barbara

JPEG (Q = 10%) 0.8909 0.8392 0.8414 0.8763

JPEG (Q = 30%) 0.9422 0.8783 0.9148 0.8798

JPEG (Q = 50%) 0.9480 0.8902 0.9133 0.9126

JPEG (Q = 70%) 0.9384 0.8579 0.9132 0.9356

JPEG (Q = 90%) 0.9543 0.8937 0.9114 0.9516

Rotation (5◦) 0.5481 0.4119 0.7071 0.5505

Rotation (10◦) 0.5041 0.7318 0.5672 0.6447

Rotation (15◦) 0.5184 0.6140 0.5045 0.5467

Rotation (20◦) 0.4918 0.3878 0.4159 0.6098

Rotation (25◦) 0.3894 0.4957 0.4903 0.5161

Cropping (10 column) 0.9873 0.9488 0.9726 0.9612

Cropping (25 column) 0.9845 0.9351 0.9698 0.9550

Cropping (50 column) 0.9354 0.9215 0.9655 0.9293

Cropping (75 column) 0.9556 0.9000 0.9622 0.9423

Cropping (100 column) 0.9614 0.8787 0.9688 0.9382

correlation detector responses that we achieve outstanding
performance for AWGN, SP noise, Wiener filtering, JPEG
compression, and cropping attacks. And also we achieve
satisfactory performance for Median filtering and rotation
attacks.

We finally present the comparison of our proposed
method with some other well-known methods with Spa-
tial domain [2], Discrete Cosine Transform (DCT) [16],
and Discrete Wavelet Transform (DWT) [17, 18] based
embedding algorithms. We also compare the proposed
method with another DET based method presented earlier

in [8]. Simulations are carried out under AWGN, Median
Filtering, JPEG Compression, and Cropping attacks and
results are shown in Figures 4(a)–4(d), respectively. The
proposed method is compared with only published and
accessible results. It is clear from the figures that the
proposed TF based method outperforms other watermark
embedding algorithms under additive noise and cropping
attacks.

As we mention before, there are methods using TF
techniques for watermark embedding in the literature. A
two-dimensional (2D) SF based watermarking approach is
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presented in [6] where a special 2D chirp-type watermark
is presented. The method differs from the watermarking
technique we present in this paper in that the original
image is added this 2D chirp signal, and 2D Radon-Wigner
distribution is used for watermark extraction. Increased
dimensions of the data makes this approach computation-
ally demanding. Another method for embedding a one-
dimensional watermark sequence into the rows of an image
in the joint SF domain by using Wigner-Ville distribution is
presented in [7]. We adopt this idea here, and use a linear
SF representation which is efficiently implemented to embed
and extract any type of watermark sequence into images.

6. Conclusions

In this work, a new watermarking algorithm that is based on
a spatiofrequency transform is proposed. Discrete evolution-
ary transform is used for the SF representation of the rows of
an image. Watermark embedding algorithm is developed to
combine the advantages of both spatial and spectral domain
watermarking techniques. Thus, a more successful method
is proposed than methods that use only spatial or spectral
domain embedding. At the detection end, the watermark can
be extracted by using the original image. The performance of
the method is tested under several attacks and observed that
it is very successful against additive white Gaussian noise,
salt and pepper noise, Wiener filtering, JPEG compression,
and cropping. Furthermore, the proposed algorithm which is
based on a linear representation is computationally simpler
than other bilinear TFD-based methods [7, 14].
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