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There are many spectrum balancing algorithms to combat the deleterious impact of crosstalk interference in digital subscriber
lines (DSL) networks. These algorithms aim to find a unique operating point by optimizing the power spectral densities (PSDs)
of the modems. Typically, the figure of merit of this optimization is the bit rate, power consumption or margin. This work poses
and solves a different problem: instead of providing the solution for one specific operation point, it finds a set of operating points,
each one corresponding to a distinct matrix with PSDs. This solution is useful for planning DSL deployment, for example, helping
operators to conveniently evaluate their network capabilities and better plan their usage. The proposed method is based on a
multiobjective formulation and implemented as an evolutionary genetic algorithm. Simulation results show that this algorithm
achieves a better diversity among the operating points with lower computational cost when compared to an alternative approach.

1. Introduction

Digital subscriber line (DSL) is a technology that exploits
existing telephony metallic loop plants for delivering triple-
play services (voice, video, and high-speed Internet access).
In DSL networks, crosstalk interference is a major impair-
ment for improving data rate and reach of the lines.
This interference results from the electromagnetic coupling
among different copper pairs in the same binder [1]. Aiming
to minimize the crosstalk effects, one efficient alternative
is to use spectrum balancing (SB) algorithms [2–6], which
optimize the power spectrum density (PSD) masks of the
transmitters such that an appropriate operating point is used.

Spectrum balancing is intimately related to dynamic
spectrum management (DSM). In contrast to static spectrum
management (SSM) [7], which typically adopts the same
PSD mask for all modems, in a DSM scenario the PSDs
can be made adaptive and change depending on the line
condition observed by a modem as example. There are many
practical issues to impose a modem’s PSD, and the term DSM

is sometimes applied to the overall procedure of changing
PSDs, while SB denotes the stage of this procedure that finds
the target PSDs. In some works the terms DSM and SB are
used interchangeably.

When compared to the nonoptimized “worst-case” SSM
solutions [8], SB can lead to substantial improvements in
rate and reach. This improvement is prominent, for example,
in “near-far” scenarios, some (near) users receive a strong
DSL signal when compared to others (far users) because
the former users have relatively high gains in their direct
channels [8].

Instead of dealing with the conventional SB problem, this
work solves a different problem: finding a set of operating
points that are both Pareto optimal and diverse. Roughly
speaking, a set is considered diverse if it properly describes
the variety of possible solutions (formal definitions will be
discussed later on). The requirement of diversity is important
because, in a extreme case, all elements of the solution set
could be clustered very close to each other, providing in
practice few (different) options of operation points. The new
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problem is called the diverse set spectrum balancing (DSSB).
It is of practical interest, for example, from the perspective
of a DSL system operator at the stage of planning the
deployment of DSL service. This work proposes a solution to
the DSSB problem, which is implemented as an evolutionary
genetic algorithm (GA) [9] and based on a multiobjective
optimization.

This work is organized as follows. Section 2 describes the
multi-objective formulation and provides an overview of the
diverse set spectrum balancing problem. Section 3 presents
the proposed method to solve the DSSB problem. Section 4
concerns the simulation results obtained by the proposed
method, and the conclusions are presented in Section 5.

2. ProblemDescription

This section describes the DSSB problem. First, it is useful
to redefine the SB problem according to a multi-objective
formulation. This formulation departs from the typically
adopted single-objective optimization in the DSM literature
[2–6]. It is convenient, for example, because it naturally
incorporates the concept of Pareto optimality [9].

2.1. Multi-Objective Spectrum Balancing. It is assumed that
the DSL line code is discrete multitone (DMT) [1]. The
PSD masks of all users are organized in a matrix S = {skn}
of dimension N × K , where N is the number of users, K
is the number of subchannels (tones), and the element skn
represents the PSD value of user n at tone k. The channel
gains (direct and crosstalk) are represented by a three-
dimensional array G of dimension N ×N ×K . For each tone
k, the matrix {gki, j} is the squared magnitude of the transfer
function corresponding to the channel from user i to j. To
determine G in practical scenarios, there are procedures to
estimate the direct channel gki,i,∀k of the ith user [10, 11]
and the far-end crosstalk (FEXT) channels gki, j ,∀k, i /= j [12].
It is assumed that in frequency-division duplex (FDD), the
down- and upstream transmissions reside in nonoverlapping
frequency bands. This way, the near-end crosstalk (NEXT)
can be neglected [1]. Noise sources other than the crosstalk
among the N users are described by a matrix N = {σkn}
of dimension N × K . The element σkn is the value of the
noise PSD at the receiver n at tone k, representing the
combined effect of DSL impairments [13] like, for example,
background noise, radio-frequency interference, and alien
crosstalk.

Hence, the channel information (CI) is assumed to
be described by (N, G). An operating point (S, N, G) is
completely described by the PSDs of all users S and the CI
of the given network. Given (S, N, G), one can calculate [1],
for example, the rate rn = R(S,N,G) and total transmit
power pn = P (S,N,G) of the nth user, where R and P are
the corresponding (many-to-one) mappings. For example,
assuming standard arguments [1], the bit rate of the nth user
is

rn = Fs

K∑

k=1

log2

⎛
⎝1 +

gkn,ns
k
n

σkn +
∑N

m=1,m /=n gkm,nskm

⎞
⎠ (1)

bits per second, where Fs is the symbol rate (typically Fs =
4 kHz in DSL systems).

For convenience, let SZ = {S1, S2, . . . , SZ} denote Z
matrices of dimension N × K corresponding to PSDs, with
S∞ representing the case in which Z → ∞ or Z is unknown.
The multi-objective SB problem is slightly different from the
conventional single-objective SB problem that is discussed,
for example, in [8]. The multi-objective version corresponds

to searching the Pareto optimal PSDs S
†
∞ according to

S
†
∞ = arg max

S
Oi

(
S,N,G

)
, i = 1, . . . ,L,

such that qj(S) ≤ 0, j = 1, . . . ,Q,

tm(S) = 0, m = 1, . . . ,T ,

0 ≤ skn ≤Mk, k = 1, . . . ,K ,

(2)

where Oi (the arguments are omitted for simplicity) is the ith
objective function. The functions qj and tm are, respectively,
inequality and equality constraints imposed to the solution
(to allow imposing the maximum power or minimum bit
rate per user, e.g.). The values Mk correspond to a limiting
PSD mask typically imposed by DSL standards and hardware
limitations.

Each objective function Oi could be eventually maxi-
mized or minimized (such as maximizing the bit rate or
minimizing the total power consumption), but minimizing
a function Oi is equivalent to maximizing −Oi, and having
only maximizations is convenient. A value function can be
also used. For example, if the user has prices defined for
specific rates, a value function can be set to maximize profit.

Some extra definitions are useful to further discuss
(2). A solution S is feasible if the constraints in (2) are
satisfied. The set of all feasible solutions is the feasible
region of the search space S. The L-dimensional vector O =
(O1,O2, . . . ,OL) with the values of all objective functions
is located in a multidimensional space called objectives
space. This is a fundamental distinction with respect to a
single-objective optimization problem, which has a one-
dimensional objectives space. Instead of seeking a unique
solution to the problem, which is typically the case in
conventional single-objective SB optimizations, the solution
to the multi-objective SB problem is a (possibly infinite) set

S
†
∞ of Pareto points.

The solutions of (2) are called Pareto optimal because
an improvement in one objective can only occur with the
worsening of at least one other objective [9]. More formally,
S∗ is Pareto optimal if there does not exist another S that
dominates S∗ (i.e., Oi(S) ≤ Oi(S∗) ∀i = 1, . . . ,L), and the
solution S∗ is strictly better than S in at least one objective
(i.e., O j(S) < O j(S∗) for at least one j = 1, . . . ,L). For a given
system, the Pareto frontier is the set of feasible solutions that
are all Pareto optimal.

Hereafter, without loss of generality, it is convenient to
focus on the rate-adaptive (RA) version of the SB problem,
where the goal is to maximize the bit rate [8]. The proposed
solution is not restricted to the RA setup and is also valid, for
example, when the goal is to minimize power [6].
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A Pareto optimal operating point in the rate-adaptive
version of (2) must belong to the Pareto frontier correspond-
ing to L = N and On = rn. Besides, there are Q = N
inequalitiesand qn = pn − Pmax

n ≤ 0,∀n, which limits the
power per user pn to a maximum value Pmax

n . There are no
equality constraints (T = 0) and no PSD masks limitation,
that is, Mk = ∞. In summary, the solution of the RA version
of the multi-objective SB is

S
†
∞ = arg max

S
rn, n = 1, . . . ,N ,

such that pn ≤ Pmax
n , n = 1, . . . ,N.

(3)

The Pareto frontier of the optimization in (3) is called
rate region because it characterizes all Pareto optimal data
rate combinations among users.

2.2. The Diverse Set Spectrum Balancing Problem. Assuming
that D is the adopted definition of diversity and one is
interested in obtaining Z operating points, the DSSB problem

corresponds to searching for the best S
†
Z according to

S
†
Z = arg max

SZ
D
(
SZ
)

, (4)

where SZ is restricted to contain only Pareto optimal solutions
according to (2) or, alternatively, special cases such as (3). It
remains to formally define D .

There are several alternatives to define the diversity of
a set of Pareto optimal solutions. One relevant example is
spacing [9]. To simplify its description, let Oz

i = Oi(Sz,N,G)
denote the value of the ith objective function for the zth
matrix Sz with PSDs. The spacing diversity is given by

D
(
SZ
)
=
⎛
⎝ 1
Z

Z∑

z=1

(
dz − d

)2

⎞
⎠
−1/2

, (5)

where

dz = min
m=1,...,Z,m /= z

L∑

i=1

∣∣Oz
i −Om

i

∣∣, (6)

and d = 1/Z
∑Z

z=1 dz. This metric corresponds to the inverse
of the standard deviation of dz, and dz represents the smallest
value of the sum of the absolute difference between two
solution points in the objectives space. In other words, dz is
large when there are no solutions too close to the respective
zth solution. The intuition is that a set SZ is diverse when
the solutions have similar values of dz. As an extreme case,
if all Z solutions had the same value d′z, their corresponding
standard deviation would be zero and D(SZ) = ∞.

An example helps discussing the spacing measure. Table 1

lists two different sets of solutions S
a
Z and S

b
Z that will be

compared. Both assume a two-dimensional objectives space
(L = 2) and have Z = 4 solutions. These solutions are
represented in Figure 1. Assume the first set of solutions S

a
Z

in Table 1 and the goal is to obtain d1: the first solution
candidate m = 2 to minimize the accumulated differences

Table 1: Two different sets of solutions S
a
Z and S

b
Z for which L = 2

and Z = 4. They are displayed in Figure 1.

S
a
Z S

b
Z

z O1 O2 O1 O2

1 0 1 0.57 0.82

2 0.51 0.85 0.67 0.75

3 0.88 0.47 0.78 0.63

4 1 0 0.82 0.57

in (6) is |0 − 0.51| + |1 − 0.85| = 0.66. For m = 3, the
accumulated sum is 0.88 + 0.53 = 1.41 and for m = 4 it
is 2. Hence, d1 = 0.66 because it is the minimum value
among 0.66, 1.41 and 2. Similarly, d2 = 0.66, d3 = 0.59
and d4 = 0.59. The standard deviation of these dz values
is σ = 0.035, which leads to D(S

a
Z) = 1/σ ≈ 28.6.

The second set of solutions leads to the following values of

dz = 0.17, 0.17, 0.1, 0.1 which also correspond to D(S
b
Z) =

1/0.035 ≈ 28.6. From this comparison, it can be noted that
the spacing metric does not take into account the spread of
the solutions. There are other definitions of diversity that try
to combat this limitation of spacing [9]. However, for the
application proposed in this work, a new one is adopted.

The diversity definition adopted in this work is based
on computational geometry [14] and can be explained
with the following elements. Assume that the Z points are
the vertices of an L-dimensional convex polytope, which
has (L-1)-dimensional facets. These facets are themselves
polytopes, whose facets are (L-2)-dimensional ridges (also
called subfacets) of the original polytope. Ridges are once
again polytopes whose facets give rise to (L-3)-dimensional
boundaries of the original polytope, and so on. For example,
when L = 2 as in Figure 1, a facet is an edge, that is, a line
segment (the reader may observe a case of L = 3 jumping to
Figure 8, where a facet is a polygon).

The proposed method computes the facet areas Ai, i =
1, . . . ,U of the polytope using an algorithm such as
Quickhull [15] and, after that, the standard deviation

σA =
√

(1/U)
∑U

i=1(Ai − μA)2 of these areas, where μA =
(1/U)

∑U
i=1 Ai, is the empirical mean. The polytope diversity

is then calculated as

D
(
SZ
)
= 1

σA
. (7)

Other heuristics were evaluated for expressing diversity based
on the facet areas, but (7) is simple and conducted to good
results. It is similar to (5) in the fact that it is the inverse of an
empirical standard deviation but uses the facet areas instead
of dz. Equation (5) is simpler to compute than (7) but, taking
in account the role of dz and Ai in the problem geometry,
one can observe that the facet areas lead to a more adequate
definition of diversity for the DSSB problem.

There are still two important details to make (7) work
effectively for the DSSB problem. The first one is the

inclusion of shaping points. For example, in the case of S
b
Z
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Figure 1: Example of two sets of solutions S
a
Z and S

b
Z (see Table 1) that have the same diversity of 28.6 according to the spacing metric of (5).

in Figure 1, a facet would connect points z = 1 and 4 with

an area of
√

(0.57− 0.82)2 + (0.82− 0.57)2 = 0.3536 (in this
2-dimensional case, the facet area corresponds to the length
of the line segment). To avoid this kind of facet and promote
the spread of the solutions over the objectives space, L + 1
shaping points are always added to the Z points in SZ before
obtaining its convex hull. The first point is located at the
origin (0, 0, . . . , 0), and the others have only the ith element
different from zero, i = 1, . . . ,L. For example, when solving
(3), the shaping point (rmax

1 , 0, 0, . . . , 0) is included, where
rmax

1 is the rate obtained by user 1 when all other users are
inactive. The rate rmax

2 of the second user imposes another
shaping point (0, rmax

2 , 0, . . . , 0) and so on. After calculating
the convex hull with the shaping points, all facet areas for
which all vertices are shaping points are excluded from the
calculation of σ ′A.

An example using S
b
Z in Figure 1 is useful to understand

the calculation of the polytope diversity of (7) and the role
of the shaping points. Let us assume that rmax

1 = rmax
2 = 1

such that the three shaping points are (0,0), (1,0), and (0,1).

Note that all 7 points (the original four in S
b
Z and three

shaping points) are in the convex hull of the new polytope.
The inclusion of the shaping points increases the number of
facets from 4 to 7, and their areas are 1, 1, 0.5977, 0.5977,
0.1221, 0.1628, and 0.0721. All vertices of the first two facets
(with area equal to one) are shaping points and these facets
are excluded. The standard deviation of the remaining five

facets is σA = 0.2363, which leads to D(S
b
Z) = 4.23 using (7).

The second detail for making the diversity measure
adequate for practical use in the DSSB problem is to exclude
the solutions in SZ that are not in the Pareto front, that
is, in the convex hull of the polytope. This is important
because, as it will be discussed later, there is a need for
using suboptimal SB algorithms, and these algorithms may
return a set SZ that has only C < Z solutions in the
Pareto front. Strictly, according to (2), if a solution is not
in the Pareto front, it should not be part of the set SZ .
However, this is a consequence of adopting a suboptimal SB
algorithm for decreasing the computational cost. Because of

that, when used in the DSSB problem, the (7) metric should
be modified to penalize the existence of Z − C solutions
that are not in the Pareto front. Other heuristics were tested,
but a simple one obtained good results: first obtain σ ′A, the
standard deviation of areas corresponding to the facets of
the C vertices effectively in the convex hull (i.e., discard the
solutions in SZ that are not part of the convex hull), and
divide σ ′A by the fraction C/Z of Pareto solutions. According
to this procedure, the value of σA to be used in (7) is obtained
by

σA =
(
Z

C

)
σ ′A. (8)

The smaller the fraction C/Z, the more the diversity of (7)
is penalized. For example, assume that a point (0.3, 0.3) not

belonging to the convex hull is included in S
b
Z of Figure 1

to create a new set S
c
Z with Z = 5. The updated value for

the diversity would be D(S
c
Z) = (4/5)4.23 = 3.386. In the

case of S
a
Z , C = Z = 4, the areas are 0.5316, 0.4851, and

0.5304 and σA = σ ′A = 0.0216; hence D(S
a
Z) = 46.2, which

is larger than D(S
b
Z), as desired. Now, counting with a more

adequate definition of diversity, the next section focuses on
the proposed algorithm. It should be noted that (7) will
be used to evaluate the final solution set obtained by the
proposed and baseline algorithms.

3. The Proposed Solution

The DSSB problem of (4) is rather complicated to solve and
a brute force approach is unfeasible due to its high com-
putational cost. In this work, a multi-objective evolutionary
algorithm (MOEA) guides the search.

Most evolutionary algorithms, such as genetic algo-
rithms, are very powerful especially because they are “model-
free”, not requiring convexity or knowing derivatives, for
example, [9]. However, they may have slow convergence
when compared to algorithms that benefit from knowledge
about the specific problem. To solve the DSSB problem (4),
a search based only on pure evolutionary computing seems



EURASIP Journal on Advances in Signal Processing 5

Initial state

Initial state
(size Z)

Selection
(NSGA-II)

Mixed population

Parent population
(size Z)

Stop condition
Yes, return parent population

Final state

No

Crossover

Mutation

Offsprin population
(size Z)

Figure 2: Proposed evolutionary optimization to solve the DSSB problem.
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Figure 3: DSL “master” scenario for all simulations.

again unfeasible. Therefore, this work advocates the adoption
of a hybrid approach, where the evolutionary algorithm
guides the search for a Pareto-optimal and diverse set of
points, while a local search based on an SB algorithm
provides the PSDs upon request of the MOEA.

This hybrid approach allows for any multi-objective
evolutionary and SB algorithms, given that they properly

Central office
(CO)

5 Km

3 Km
RT3

4 Km

Figure 4: DSL scenario with 2-user (N = L = 2).

interface. Obviously, the characteristics of the overall proce-
dure, such as its optimality and computational cost, depend
on this combination of algorithms. This work explores
the following combination, which is called the diverseSB
algorithm: the MOEA is the nondominated sorting genetic
algorithm (NSGA-II) [16] and the SB algorithm is assumed
to adopt the weighted-sum formulation, such as iterative
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Figure 5: Operating points using (a) linear grid, (b) logarithm grid and (c) proposed diverseSB for the 2-user case. All three methods used
144 SB runs and provided Z = 12 points (some points cannot be distinguished visually, such as one pair in (c)). Note that, in this case, the
linear grid was clearly outperformed by the other two methods, while the proposed method is slightly better than the logarithm grid.

SB (ISB) [3] and Successive Convex Approximation for Low
Complexity (SCALE) [4]. The following subsection describes
the motivation for using weighted-sum SB in the context of
rate-adaptive algorithms, and then the proposed algorithm is
discussed.

3.1. Weighted-Sum Rate-Adaptive SB Algorithms. Instead of
solving (2), conventional SB algorithms solve the single-
objective version of the problem. The approach is based
on the fact that a multi-objective optimization can be
converted into a single-objective problem by constructing an
aggregate objective function (AOF) [9]. The AOF combines all
objective functions into a single functional form. A possible
alternative is the “weighted linear sum” of the objectives
or weightedsum, which is widely adopted in SB (see, e.g.,
[17]). In this case, scalar weights ωi can be specified for each
objective Oi to be optimized, and then the weighted sum

of objectives is combined into a function that can be solved
by any single-objective optimizer. The obtained solution will
depend on the values or, more precisely, the relative values,
of the specified weights, which prioritize the objectives.

The conventional weighted-sum rate-adaptive (WSRA)
SB algorithms [2, 4, 5, 17, 18] adopt

O = ω1r1 + · · · + ωNrN (9)

as the AOF and solve

S∗ = arg max
S

N∑

n=1

ωnrn

such that pn ≤ Pmax
n , n = 1, . . . ,N ,

(10)

where S∗ is a single N ×K matrix with PSDs (corresponding
to one operating point). It should be noted that S∗ may
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not be in the Pareto front of (3), that is, maybe S∗ /∈ S
†
∞.

The reason is that most SB algorithms cannot guarantee
optimality nor convergence, in spite of achieving good
solutions in practice. The optimal SB (OSB) algorithm [19]
is too slow for practical use.

The proposed diverseSB assumes the availability of a
WSRA SB algorithm that attempts to solve (10), providing
PSDs (eventually suboptimal) for one operating point, given
the CI and N weights. In practice, one could be concerned
with only N−1 weights because the sum of all weights can be
restricted to one, that is,

∑N
n=1 ωn = 1, or another constant.

It should be noted that a relatively straightforward
solution to find operating points according to (10) is to
systematically vary the values of N weights, invoke the
WSRA SB algorithm for each weight combination, and find
distinct operating points by “navigating” through the rate
region. However, the mapping between weights and objective
functions is typically nonlinear and it is nontrivial to find a
diverse set of optimal solutions by discretizing the space RN

spanned by the weights (i.e., using a grid in the RN space).
A linear or uniform grid consists of the Cartesian product of
the N axes {0,Δ, 2Δ, . . . , (G − 1)Δ}, where G is the number
of points in each axis, and Δ is the step size. Nonuniform
grids can also be used, for example, organizing it according
to a logarithmic scale. However, the computational cost
for obtaining a diverse set using a grid is typically very
high. “For example, as will be detailed later, a brute force
implementation for N = 25 users would require 27 days
using a modern personal computer (this estimate assumes
the SCALE algorithm and a grid with G = 20 points per
user, reducing the resolution to G = 10 still corresponds to
40 hours.)” An alternative method is described in the sequel.

3.2. The Proposed diverseSB Algorithm. This subsection
presents an efficient solution to the DSSB problem. The
exponential cost of the grid search is alleviated by the hybrid

approach, in which the NSGA-II algorithm guides the search
for a Pareto optimal and diverse set of points, while a local
search based on a weighted-sum SB algorithm (e.g., SCALE
or IWF) provides the PSDs for a given set of weights.

The NSGA-II algorithm keeps populations of individ-
uals. Following the principles of natural evolution, the
optimizer iteratively improves the population, generating
new individuals according to mechanisms such as mutation,
crossover and elitism [9].

In the evolutionary algorithm, each individual (also
called chromosome) x represents a set of N weights ωn in (10),
with ωn ∈ [0; 1]. The population size is Z, the number of
operating points specified by the user. The optimizer seeks
solutions in the Pareto frontier. For that, it needs to calculate
the vector O = (r1; r2; . . . ; rN ) with all objective functions
in (10). This calculation requires invoking the adopted SB
algorithm, which receives the weights represented by x and
the CI (N, G) as inputs and outputs the PSDs S. This step
corresponds to obtaining an operating point, which brings
enough information to calculate all objective functions.
The evolutionary algorithm can then improve the current
population until convergence or reaching a pre-specified
maximum number of iterations. The final result is a set SZ
of Z operating points. Figure 2 presents the flowchart of the
diverseSB algorithm.

It should be noted that (7) is used to evaluate the
final solution set. It is not used in the iterations of the
diverseSB algorithm mainly to avoid the computational cost
of computing the convex hull. Another reason is that a
conventional MOEA requires only a metric of individual
diversity (the crowding distance is used in this work) and
would require modifications to take in account the overall
set diversity.

The algorithm begins by creating a random population
P1 (where the subscript denotes the generation counter) with
Z individuals, each one encoding a set of N weights ωn ∈
[0, 1]. These weights can be obtained, for example, from a
uniform random distribution. Then, the first population P1

is submitted to ordinary selection, crossover, and mutation
operators to generate the first offspring P2 (the second
generation). After that, from the population P1∪P2 (elitism),
Z individuals are selected for the next generation P3, taking
in account dominance and individual diversity metrics to rank
the individuals and select the fittest (more details about the
concepts of elitism, dominance and individual diversity in
GAs can be found, e.g., in [9, 16]). This process is repeated
until some stop criterion is met (e.g., maximum number Imax

of generations). An algorithmic description of the procedure
is presented in Algorithm 1.

It should be noted that in this context, the individual
diversity measure aims at helping to rank each solution point
S (PSD matrix), while the spacing and polytope diversity
measures discussed in Section 2.2 are used to evaluate the
whole set of points S. The individual diversity measure used
in Algorithm 1 was the crowding distance [16, 20]. The
crowding distance is calculated by the perimeter of the largest
cuboid enclosing each point in the objectives space without
including any other point. After normalizing the crowding
distance for each nondominated solution, they are sorted in
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Input
(a) Z—desired number of operating points;
(b) sba—a weighted-sum spectrum balancing algorithm;
(c) moea—a multi-objective evolutionary algorithm;
(d) Set of objective functions and constraints;
(e) (N, G)—channel information (CI).

Output: S
†
Z—PSDs

(1) Create an initial population P1 with Z individuals.
(2) t ← 1
(3) repeat
(4) Execute sba for each individual xi to obtain the respective N × K matrix with PSDs Si;
(5) Calculate the objective functions for all individuals;
(6) Execute moea to improve the current Pt , creating a new population Pt+1 of Z individuals, with improved

objective functions and diversity.
(7) t ← t + 1
(8) until convergence;

(9) Convert the final population P† of weights into the corresponding set S
†
Z of PSD matrices

(10) return S
†
Z ;

Algorithm 1: diverseSB.

Central
office
(CO)

5 Km

2 Km 4 Km
RT1

RT3
3 Km4 Km

Figure 7: DSL scenario with 3-user.

ascending order and used in step 6 of Algorithm 1. The next
section presents results obtained by the proposed method
and a comparison with baseline alternatives.

4. Simulations Results

This section presents simulation results to assess the perfor-
mance of the proposed diverseSB algorithm. These results
are compared with two baselines, which correspond to the
adoption of a uniform and a logarithm-spaced grids.

The simulations used DSL scenarios obtained from the
“master” scenario in Figure 3. This scenario consists of
a central office (CO) and three remote terminals (RTs)
transmitting in downstream direction. The simulations were
organized in three: 2-user simulations (involving the CO and
RT3), 3-user simulations (CO, RT1, and RT3) and 4-user
simulations (CO, RT1, RT2 and RT3).

All transceivers are assumed to be ADSL units. The
cable model used was ANSI TP2 24 AWG for all lines. The
diverseSB algorithm used a probability of crossover of 0.7
and probability of mutation of 0.3. The adopted spectrum
balancing algorithm was SCALE [4]. The software Qhull [21]
was adopted for calculating the facet areas when using (7).

The performance metric to compare the computational
cost between the proposed method and grid searches will
be the number of SB runs, that is, the number of times
that the spectrum balancing algorithm was executed. This
assumption is sensible because the cost of other routines,

such as choosing the weights, can be neglected when
compared to the time required to execute an SB algorithm.
For example, when using a grid, the weights vector is simply
updated within the nested loops used to generate the grid.
Excluding the time invested in SB runs, the computational
overhead of the search using an MOEA is higher than using
a grid but this overhead still takes less than 1% of the total
execution time, which is dominated by the number B of SB
runs and denoted as O(B × SBcomplexity), where SBcomplexity

represents the complexity of the adopted SB algorithm.
In spite of both grid and MOEA algorithms having

computational costs that depend linearly on the number B
of SB runs, they differ in the parameters that B depends on.
When using a N-dimensional grid and assuming the same
number G of points in all Cartesian axes, the number of SB
runs is B = GN . For the MOEA, B depends on the population
size Z and maximum number Imax of iterations and is given
by B = ImaxZ. To provide fair comparisons, the simulations
in this work compared algorithms using the same number B
of SB runs, such that their execution times were equivalent.
The next subsection provides results for N = 2 users.

4.1. 2-User Simulations. The scenario for the 2-user simu-
lations, obtained from Figure 3, is depicted in Figure 4 for
convenience.

The simulations conducted for this scenario used the
same number of SB runs (S = 144) and the same number
of final solutions (Z = 12) for all methods. For the linear
grid search, a grid with G = 12 points was used (i.e., a
12 × 12 grid). In order to have a fair comparison, from all
144 operating points obtained by the grid search, a diverse
set of 12 was selected using the crowding distance, the same
measure of individual diversity used along the iterations of
diverseSB. A similar procedure was adopted for a logarithm
grid in the weights space. For the proposed diverseSB
method, simulations were performed with a population size
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Figure 8: Results for the three-user case: (a) linear grid, (b) logarithm grid and (c) proposed diverseSB. All three methods used 1,000 SB
runs and provided Z = 100 points. The shaping points are used for better visualization. Note that, in the 3D case, the performance of the
logarithm grid was relatively worse than its performance in the 2D case.

of Z = 12 individuals and stopping criterion of Imax = 12
generations, also resulting in 144 SB runs. The results are
depicted in Figure 5. By visual inspection, one can notice that
the proposed method outperforms the other two with respect
to diversity (recall that all methods use the same number
of SB runs, which corresponds to approximately the same
computational cost). The diversity values calculated with (7)
lead to the same conclusion as the visual inspection: the
proposed method, linear and logarithm grids have diversities
of 0.82, 0.23, and 0.69, respectively.

Figure 5 indicates that the proposed method is able to
provide a higher diversity for the same computational cost
(i.e., SB runs). These results were obtained for a specific
number of SB runs. It is also interesting to observe how the
diversity behaves when the number B of SB runs is varied.
Figure 6 was obtained varying B in the abscissa and using the
same 2-user scenario (Figure 4). For the proposed method,
we fixed a population size Z = 20 and measured the diversity
for every new generation (up to 20 generations) altogether

with the previous generations computed (no solution is
discarded). For the baseline, a linear grid was obtained
varying from G = 5 to 50, with a step of 5. Figure 6 shows, for
example, that for a diversity D = 10.4 the grid search needed
nearly 1, 600 SB runs, while the proposed method required
535 runs. The next subsection presents results for N = 3.

4.2. 3-User Simulations. The simulated 3-user scenario is
depicted in Figure 7. For the grid simulations, a grid size of
G = 10 points was adopted, which corresponds to 1, 000 SB
runs. For the proposed diverseSB method, a population size
of 100 individuals was used, with 10 generations (also leading
to 1, 000 SB runs). The results are shown in Figure 8. The
diversity calculated with (7) for the proposed method, linear
and logarithm grids are 0.47, 0.15, and 0.06, respectively.

4.3. Simulations for More Than Three Users. This subsection
shows results for N = 4, 5 and 6. The scenario simulated for 4
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Figure 9: Summary of results with the polytope diversities
normalized by the value corresponding to the proposed method.

users is depicted in Figure 3. The proposed diverseSB method
used 10,000 SB runs (500 individuals and 20 generations).
The grid simulations were adjusted to use the same number
of SB runs, with G = 10. The diversities calculated with (7)
for the proposed method, linear and logarithm grids are 0.34,
0.07, 0.09, respectively. Similarly, simulations for scenarios
with 5 and 6 users were performed, generated by adding
more lines to the CO. The grid simulations were adjusted to
use G = 4, leading to 1,024 and 4,096 SB runs, respectively.
In the same way, the proposed method was configured with
Z = 16 individuals and 64 generations (1,024 SB runs)
for the 5-user scenario and Z = 32 individuals and 128
generations (4,096 SB runs) for the 6-user scenario. The
diversities calculated in the 5-user scenario with (7) are
0.0056, 0.0039, and 0.0042, for the proposed method, linear
and logarithm grids, respectively. For the 6-user scenario,
these results were 0.021, 0.0069 and 0.0021.

Figure 9 summarizes the comparison among the three
methods for all five cases (N = 2, . . . , 6). For convenience, the
diversity values were normalized by the one corresponding
to the proposed method in each case. The results indicate
that, in these cases, the proposed method always presented
a diversity larger than the one obtained by the best baseline.

5. Conclusions

This paper presented an efficient solution to the diverse
set spectrum balancing problem. The computational cost
is prohibitive if one adopts a straightforward (brute force)
grid-search algorithm to solve the DSSB problem. This
occurs because the runtime of these algorithms depends
exponentially on N , the number of DSL users. The proposed
solution is based on a multi-objective formulation of the

spectrum balancing problem and solved via an evolutionary
genetic algorithm.

The simulation results showed that, for a given diversity,
the computational cost of solving the DSSB problem using
the proposed diverseSB algorithm can be much smaller
than varying the weights according to a grid. When the
diverseSB and the grid search were forced to have the same
computational cost, the diversity of the former is much
better.
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