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We propose a macro-observation scheme for abnormal event detection in daily life. The proposed macro-observation
representation records the time-space energy of motions of all moving objects in a scene without segmenting individual object
parts. The energy history of each pixel in the scene is instantly updated with exponential weights without explicitly specifying the
duration of each activity. Since possible activities in daily life are numerous and distinct from each other and not all abnormal
events can be foreseen, images from a video sequence that spans sufficient repetition of normal day-to-day activities are first
randomly sampled. A constrained clustering model is proposed to partition the sampled images into groups. The new observed
event that has distinct distance from any of the cluster centroids is then classified as an anomaly. The proposed method has been
evaluated in daily work of a laboratory and BEHAVE benchmark dataset. The experimental results reveal that it can well detect
abnormal events such as burglary and fighting as long as they last for a sufficient duration of time. The proposed method can be

used as a support system for the scene that requires full time monitoring personnel.

1. Introduction

Activity recognition has played an important role in video
surveillance for security, traffic-monitoring, homecare, and
healthcare applications. An activity recognition system gen-
erally involves the following four steps: low-level detection of
moving objects from the background with a still camera, spa-
tiotemporal representation of motions in an image sequence,
extraction of motion features from the representation, and
high-level classification.

There are two major approaches for activity recogni-
tion in video sequences: micro-observation and macro-
observation. The micro-observation approach analyzes the
motions based on the local detailed parts of individual
moving objects. In human motion analysis, this means
the body parts such as head, torso, and limbs must be
identified first, followed by poses assignment based on the
extracted body parts. The poses then construct a specific
action, and finally a sequence of actions gives a meaningful
behavior. This approach requires a bottom-up process to
construct a representation from the low-level primitives

of foreground objects. The macro-observation approach
does not describe the motion of an object by the local
details. Instead, it describes the motion from a global
aspect using an abstract representation of time-space changes
in a video sequence. Human beings have the remarkable
ability to recognize the behavior of a single isolated person,
or the interaction between multiple people from a far
distance without knowing the detailed motions of individual
persons.

In this paper, we propose a fast macro-observation
surveillance scheme that can detect abnormality in our daily
life that involves distinct activities of a single person or
a group of people. A video surveillance system that can
monitor abnormal events in daily life is very complicated to
construct due to unanticipated or indefinable activities.

1.1. Micro-Observation Approach. The micro-observation
approach for activity recognition can well describe the
details of a motion and provides a good discrimination
between individual activities with subtle changes. However,
it generally requires an accurate segmentation of foreground



objects from the background and precise identification of
the individual body parts. An inaccurate extraction and
description of details in a lower level causes the failure in a
higher level process.

Appearance-based methods [1-6] used appearance mod-
els that combine shape, color, and texture to analyze the
moving objects. Model-based methods constructed a human
body as articulated/kinematic or skeleton models [7-13].
The poses identified from the object models were considered
as individual states in space, and then hidden Markov models
(HMMs) [14-18] were generally used to describe the state
changes over time. Bayesian networks and neural networks
[19-21] were also commonly used for high-level activity
recognition. W* [5] is a well-known system using such an
approach to recognize events between people and objects.
This approach is also well applied to gesture recognition
[22, 23] and gait recognition [24, 25]. Shah et al. [26]
presented a surveillance system, called KNIGHT, that used
rule-based algorithms to detect single object activities and
multiobject interactions. Speed, direction, and orientation of
object silhouettes and their interobject distances were used
as features to detect activities such as falling, running, and
meeting.

1.2. Macro-Observation Approach. Spatiotemporal represen-
tation of an image sequence is critical for recognizing differ-
ent activities using the macro-observation approach. Optical
flow [27-30] that describes each pixel in two consecutive
frames by a velocity vector has been popularly used as a
motion representation. Efros et al. [31] recognized human
actions of individuals in a low resolution video sequence.
Their algorithm started by tracking individual human figures
and forming a figure-centric sequence. Then the optical flow
vector field was calculated from the figure-centric sequence,
and a set of motion descriptors were derived from 4 channels
of the optical flow. The K-nearest neighbor classifier was
finally used to recognize various human actions in sport
videos.

Trajectory [32-36] is a commonly-used representation
for describing moving objects from a far distance. In order
to construct the trajectory of moving objects in an image
sequence, object tracking is generally applied first, and then
the centroid of a tracked object is marked as a point on the
trajectory. The position, speed, direction, and curve/shape
of the motion trajectory are used to analyze the intended
behaviors of moving objects in the scene. The trajectory
representation has been mostly applied to traffic monitoring.
Stauffer and Grimson [37] used vector quantization to
cluster trajectories for parking lot monitoring. The clusters
were identified by a hierarchical analysis of the vector
cooccurrences in the trajectories. The trajectory is good for
the representation of a widely open scene, but may fail to
describe the people interaction in a room-sized scene.

Eigenspace [38-41] derived from principal component
analysis is also used for motion representation in video
sequences. Rahman and Ishikawa [42] recognized human
motion using an eigenspace. A 2D spatial image was first
arranged as a column vector. Then, a series of a fixed
number of consecutive images for every possible motion to
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be recognized were organized as a matrix. The eigenvectors
with dominant eigenvalues of the covariance matrix formed
the eigenspace. A human posture in a frame was then
represented by a point in the eigenspace, and a motion was
described by a set of successive points in the eigenspace.
Distance measures were finally used to match the lines of the
observed motions and those of the reference motions. The
eigenspace approach is computationally expensive and can
only describe specific activities.

Motion Energy Image (MEI) and Motion History Image
(MHI), first proposed by Davis and Bobick [43], are a global
spatiotemporal representation of motion. They are treated
as temporal templates for the match of human movement
[44]. MEI is defined as the sum of object silhouettes in
every image frame over a fixed duration. The result of MEI
is a binary image of motion shape. While MEI is used to
record the “shape” of a motion, the intensity of MHI is a
function of recency of motion. The effectiveness of the MEI
and MHI representations is critically determined by the fixed
duration value. Bradski and Davis [45] extended the MHI
for motion segmentation and pose recognition by extracting
additional pose and directional motion information in MHI.
The gradient orientation at each pixel is derived from the
spatial derivatives along the y- and x-axis of MHI. Wong
and Cipolla [46] also used the gradient directions in MHI
for gesture recognition. Davis and Bobick [47] used MHI for
recognizing aerobic movements. The temporal templates of
MEI and MHI were also used for hand gesture recognition
[48]. The temporal template has shown to be a good global
representation of motions. However, it is currently only
verified for simple activities such as hand gestures and
aerobic exercises that have a fairly steady motion duration
and is only tested for single isolated object in a simple
background.

1.3. Unusual Event Detection. There were a few methods
proposed to tackle abnormal/rare event detection in specific
domains. Vaswani et al. [49] presented a system that learned
the pattern of normal activities and detected abnormal events
from a very low-resolution video where the moving objects
were small enough to be modeled as point objects. The
activity of moving objects was modeled by a polygonal
“shape” of the configuration of the tracked points using
Kendall’s statistical shape theory. The expected log likelihood
of the represented Kendall’s shape for an observed sequence
of fixed length was then used as the change detection statistic.
The system was applied to monitor passengers getting out
a plane and moving towards the terminal from a very
far observation distance. It is basically a trajectory-based
method and is only applicable to the monitoring of a widely
open scene. Piciarelli and Foresti [36] proposed an on-line
trajectory clustering for anomalous event detection, and
applied it to traffic behavior monitoring on a highway. The
trajectory is represented by a series of position coordinates
and is matched to the clusters of a training set by a
distance measure. Hu et al. [50] proposed a self-organizing
method to learn activity patterns for anomaly detection and
activity prediction. The activity patterns were represented
by trajectories, where object position, velocity and size were
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used as the features. A fuzzy self-organizing neural network
was then presented to classify the activity patterns. The
system was applied in traffic monitoring to detect abnormal
driving trajectories.

Fleet et al. [51] and Andrade et al. [52] used optical
flow patterns to detect emergency events in crowded scenes.
They first computed the optical flow for the whole frame,
and retained only the flow information in the foreground
region. Principal component analysis was then performed
on the optical flow fields for a series of image frames of
fixed duration. The dominant eigenvectors of the training
data matrix were used to form bases for the projection. The
projected optical flow vectors were then used as features. A
mixture of Gaussian hidden Markov model was trained with
the feature vectors for each video segment in the training
set, and the spectral clustering was used to determine the
number of HMMs to represent various flow sequences.
For day-to-day behavior analysis, an extremely large set of
training image sequences may be required. The covariance
matrix of such a large training set could be prohibitively
large for PCA computation. Adam et al. [53] proposed an
optical flow-based method for unusual event detection in
cluttered and crowded environments. The abnormality was
mainly detected by evaluating the probability distribution
of flow magnitude and direction in the optical flow fields.
An unusual event without radical motion changes cannot be
detected with this method.

Zhong et al. [54] presented a technique for detecting
unusual activities in video sequences. Moving objects in each
image frame were detected first. The simple spatial histogram
of the detected objects was used as image features and,
therefore, the observed activities were location-dependent.
They divided the video into equal-length segments and
classified the extracted features into prototypes. A cooccur-
rence matrix between the video segments and prototype
features was constructed for similarity comparison. The
correspondence between prototypes and video segments was
then solved as a graph editing problem.

The abnormal event detection methods aforementioned
generally consider the motions of objects with a fixed
observation duration (i.e., a predetermined number of image
frames) in video sequences, and require well-controlled
environments or well-defined patterns of activities. Most
of the currently available activity recognition methods only
deal with very simple activities, and are domain specific
such as aerobic exercises [44] and tennis strokes [55]. In
this study, we propose a macro-observation approach to
detect abnormal events observed, especially, in a room-sized
scene from a still camera. The scene of a room may involve
complicated day-to-day behaviors such as an older person
staying alone at home (for homecare monitoring), multiple
people with/without interaction in a nursing home (for
healthcare monitoring), and cashier-customer interaction in
a shop (for security monitoring). The observed objects in
such scenes have moderate sizes in the image. The trajectory
representation of an object as a point may lose meaningful
interaction between people. The proposed method does
not take the micro-observation approach since it requires
complicated object tracking, object segmentation and body

part extraction, and state-space modeling for all possible
events to detect. The abnormal events in a daily life are very
difficult to define semantically, and the normal events are too
numerous to model individual day-to-day activities.

1.4. Overview of the Proposed Method. With the macro-
observation approach, the proposed method first segments
moving objects from the background for each input scene
image. The foreground objects shifting in spatial images
over time are globally represented by an energy map, where
the movement strength of each pixel in the current scene
image is exponentially increased/decreased based on the state
changes of the pixel over time. The length of image frames
for different activities does not have to be explicitly specified,
and the energy map can be promptly updated for each new
scene image. The shape of the energy map and movement
strength of every pixel in the map carry meaningful time-
space interaction of single person or multiple people with
the environment. A set of discriminative features can then be
effectively extracted from the energy map of each new scene
image.

Abnormal event detection in daily life can be considered
as a very special case of one-class classification problem. No
all possible abnormal event in daily life can be foreseen.
It is also very difficult to collect all possible conditions of
a specific abnormal event. Conversely, normal behaviors in
daily life can be easily collected for learning. The behaviors
repeated daily can be grouped into many clusters, and all
clusters belong to the same class, that is, the normality
class. Because the types of normal behaviors in a daily life
could be numerously large and quite different from each
other, the images are randomly sampled from a long image
sequence that can sufficiently represent the cyclical day-
to-day activities of the observed scene. An unsupervised
clustering subject to distance constraints is proposed to
group various normal activities into a manageable number
of clusters so that the computation in the recognition process
can be efficiently carried out and all normal events can
have distances from their cluster centroids within very tight
control limits (distance thresholds). The video images with
distinct feature distances lasting for an extended period of
time are then declared as an abnormal event.

The proposed macro-observation method mimics the
human observer who can easily recognize abnormal events
from a far distance without knowing the detailed move-
ments of individual persons. The global representation of
complicated motions in a scene can well detect abnormal
events as long as they can last for tens of seconds. Since the
detailed motions of individual body parts are not separately
extracted, the proposed method cannot be responsive to the
events with subtle motion changes and the events spanning
only a few seconds. The proposed monitoring system can be
used as a supplement for the personnel that requires intensive
and constant manual monitoring of scenes for unpredictable
events from multiple cameras.

This paper is organized as follows. Section 2 first dis-
cusses the foreground segmentation method to extract
moving objects in video images. The energy map used
to represent the spatiotemporal motion is then described,



followed by the extraction of discriminative features from
the energy map. The proposed clustering mechanism is
then presented to group similar energy maps sampled from
image sequences of normal daily life. Section 3 describes the
experimental results of daily activities in a laboratory over
a long period of observation and the BEHAVE benchmark
dataset [56]. Section 4 concludes the paper and discusses
future work.

2. Abnormal Event Detection

This section discusses the abnormal event detection scheme
that comprises the processes of moving object detection,
exponential energy map for spatiotemporal representation of
motions, extraction of motion features, and the constrained
clustering model for classification.

2.1. Moving Object Detection. The objective of the paper
is to detect abnormal events in daily life in a scene
such as an office or a nursing home, where nonstationary
background changes such as movements of a chair, placing
of cups and newspapers on tables, revolving of ceiling fans,
opening/closing of doors or curtains, and switching on/off
room lights are not uncommon. Since the proposed method
does not rely on the accurate detail parts of moving objects
for the detection, any background subtraction techniques
such as the ones in [3, 57-59] can be directly applied to
foreground segmentation as long as it is computationally
fast.

In background updating models, each pixel of the
background image over time has been simply modeled with
a single Gaussian model [3]. A more robust background
modeling technique is to represent each pixel by a mixture
of Gaussians [37, 57]. In order to promptly detect moving
objects for nonstop monitoring of day-to-day activities, we
adopt a single-Gaussian background updating approach,
instead of the more complicated mixture Gaussian model, to
extract foreground objects with a high processing rate.

In the single Gaussian model for each individual pixel
in the image, the parameters are represented by the gray-
level mean pr(x, y) and standard deviation or(x, y) of the
pixel (x, y) over a limited time duration. Different from the
Gaussian background updating models [3, 57] that estimate
the parameter values by a linear filtering technique, these two
statistical values of the single Gaussian model can be easily
and precisely calculated by deleting the last image in the
series of the historical image frames and adding the current
image frame for nonstop monitoring.

Let {fi(x,y), t = T,T —1,...,T — N + 1} be a series
of N consecutive image frames, where T denotes the current
time frame. The gray-level mean and variance of the single
Gaussian background model for pixel (x, y) at time frame T
is given by

pr(x,3) = ELf (6. )] = 351(9),

03 (x,y) = E[f2(x, 9)] — {E[f (x, )1} (1)

1
= N-S%(x,y) — 1 (%),
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(2)
St(ey) = 2, fii(xy)

Stoi (6 y) = fin(x9) + fi(x,p).

Note that St(x, y) and S3(x, y) can be efficiently updated
by dropping the last image frame fr_y(x,y) in the image
series and adding the current image frame fr(x,y) to the
image series. Therefore, the updating computation involves
only two simple arithmetic operations. A very high process
rate of image frames is achieved accordingly. Note also that
the mean and variance updating processes in (1) are invariant
to the number of image frames N in the series.

In motion detection, the multiple temporal images of
the background will present approximately the same gray
value with a small variance. The gray value of a foreground
pixel will be distinctly different from that of the background.
The upper and lower control limits for foreground-pixel
detection in the current image frame fr(x, y) can be given
by pur—1(x, y) = k - or—1(x, ), where x is a control constant.
If the gray-level of fr(x, y) is out of the control limits, pixel
at (x, y) is then considered as a foreground point. Otherwise,
it is classified as a steady background point. The detection
result is represented by a binary image Br(x, y), where

0 (background), if | fr(x, y) — pr-1(x, )|

BT(x,y) = <K- GT_I(x,y),

1 (foreground), otherwise.

(3)

Since the gray values between foreground and background
points are generally distinctly different, the control constant
x is set at 5 in this study.

2.2. Spatiotemporal Representation. The goal of this sub-
section is to construct a global representation of motion
that can describe the changes in both temporal and spatial
dimensions. The existing spatiotemporal representations of
motions aforementioned generally describe the temporal
context with a fixed duration in a video sequence. The
motion representation from a fixed number of image frames
may not sufficiently capture the salient and discriminative
properties for a large variety of activities encountered in
daily life. Short observation duration cannot describe a full
cycle of an activity. In contrast, excessively long observation
duration may mix two or more different activities or reduce
the significance of a unique activity in the spatiotemporal
representation.

In order to construct a more responsive spatiotemporal
representation for the scene that may involve the motions of
a single person or multiple people with varying time spans
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of activities, we construct the motion energy map using an
exponential time update process, which is defined as

Er(x,y) = Mr+Er_1(x,9) - y, (4)

where v is the energy update rate, 0 < y < 1, and

Tenergy» if Br(x, y) € foreground,

MT(-X’)/) = ‘{ (5)

0, otherwise.

The initial value of energy is set to zero at time frame
0, that is, Eg(x, y) = 0 for all pixels. The energy of a pixel
Er(x, y) will be increased if it remains as a foreground point.
It is only decayed when it becomes a background point. In
(4) above, Tenergy is a predetermined energy constant, and is
assigned to each foreground pixel. Assume that the current
energy value of a pixel (x, y) is E. If pixel (x, y) is a foreground
point and lasts for a period of Ny frames, then the energy at
(x, y) is increased up to

Ny-1 .
Tenergy . z )” +E- )’Nf- (6)

i=0

Conversely, if pixel (x, y) is changed from a foreground point
to a background point and lasts for N}, frames, the energy at
(x, y) is then exponentially decreased to

E - yNe, (7)

The choice of Tenergy value is not critical at all as long as
it is larger than zero for foreground points and equal to zero
for background points. The value of Tenergy affects only the
visual representation of the energy map in the image. It does
not change the detection results.

The exponential energy updating of foreground pixels
assigns larger weights to the most recent image frames. The
energy update rate y gives an exponential decrement of the
energy. A large y value gives a slow decrement of the energy,
and the long-term history of the pixel is taken into account
for spatiotemporal representation. In contrast, a small y
value results in an accelerated decrement of energy, and only
the short-term history of the pixel is used to represent the
motion. The exponential decrement of energy allows flexible
adjustment of the observed period for the historical status of
each pixel. The proposed exponential energy map of motions
prevents the explicit choice of a predetermined number
of image frames for the construction of spatiotemporal
representation. It can be thus effectively used to represent
activities that last for various durations. By detecting each
individual pixel as a foreground or a background point in
the video sequence, the energy of the pixel can be easily
updated according to (4) without knowing its associated
moving part of an object. If the motion of the pixel continues
(i.e., foreground point), the energy of the pixel will be
exponentially accumulated. Otherwise, the energy of the
pixel (i.e., background point) will be decreased. In the
macro-observation approach, two (or multiple) movements
within a scene is simply interpreted as an event in the energy

map. They do not have to be separated into different moving
parts.

Figure 1 displays the motion energy maps of various
video sequences of one single person from daily activities
in a laboratory, in which the energy constant Tenergy is set
at 10 for visual display, and the update rate y is given
by 0.999 for the normal walking speed of people in the
room. The video images were taken at 10 frames per
second. Figure 1(a) shows the original video sequence at
varying time frames. The scenario in the sequence is that
a single person walked towards the door from the lower-
left to the upper-right in the scene. The resulting energy
map is shown in the bottom row of Figure 1, where the
brightness is proportional to the energy value. Figure 1(b)
presents another single person walked from the upper-right
door to the lower-left corner in the opposite direction. By
closely observing the two corresponding energy maps in
Figures 1(a) and 1(b), both display similar representations
in shape. The energy values in the upper-right are higher
than those in the lower-left in the energy map of Figure 1(a),
whereas the energy values in Figure 1(b) show the reverse
trend. Therefore, the representative shape of the energy
map describes various spatiotemporal activities, and the
changes of energy values in the map implicitly indicate
the moving direction. Figure 1(c) displays a single person
working on a computer. The resulting energy map, as seen
in the bottom row of Figure 1(c), shows that only the sitting
area of the person gives bright energy values. The historical
data of the movement from the lower-left to the upper-
right corners were responsively decayed to very small energy
values.

Figure 2(a) shows a group of people discussing in the
middle-right area for a prolonged period of time, and then
walked back to their seats. The bottom row in Figure 2(a)
gives the corresponding energy map, in which the middle-
right area is brighter than the remaining regions in the image
and the energy values for pixels in the walking paths are
larger than those of the background. Figure 2(b) shows two
people chatting around the public desk in the laboratory, and
Figure 2(c) displays two people separately working on the
computers. The corresponding energy maps are presented
in the bottom row of Figures 2(b) and 2(c), which show
that different moving frequencies of multiple people generate
different energy maps. Based on the representative samples in
Figures 1 and 2, the exponential energy maps can represent
different day-to-day activities that involve single or multiple
people.

The proposed exponential energy map can well rep-
resent spatiotemporal activities from a macro-observation
view. It requires no complicated segmentation and object
recognition techniques to identify the detailed parts of
individuals in a group. It can well represent activities
that last a sufficient period of time. In order to prevent
false alarms, it is suggested in this paper that an activity
last for only a few seconds is interpreted as noise. The
restriction of the exponential energy map is that it cannot be
effectively used to describe activities that involve only subtle
movements of the body or last only a very short period of
time.
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(a)

(c)

FiGure 1: Video sequences involving different activities of a single person and their corresponding energy maps: (a) single person walking
from lower-left to upper-right; (b) single person walking from upper-right to lower-left; (c) single person working on a computer. The
corresponding energy map of each column sequence is shown in the bottom row.

2.3. Discriminative Features. The proposed exponential
energy map gives spatiotemporal representation of an activ-
ity. To construct a classification system for identifying abnor-
mal events, we need to design and extract discriminative

features from the energy map. The shape and energy statistics
of the energy map are used as descriptors. Currently, we use
up to 12 discriminative features and they are described in
detail as follows.
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t =200 t =200 t =200

(c)

FIGURE 2: Video sequences involving different activities of multiple people and their corresponding energy maps: (a) a group of people
discussing in the middle-right area; (b) multiple people chatting around the public desk; (¢) multiple people working on the computers. The
corresponding energy map of each column sequence is shown in the bottom row.

Invariant Moments f; to f,. an event in the energy map
forms a specific shape with the energy magnitude of each
pixel as the weight. The extracted features from the energy
map should be independent of location, orientation and size

of an activity in the image. The first seven discriminative
features are, therefore, based on Hu’s invariant moments
[60]. Features fi ~ f; are invariant to position, rotation
and scale changes. The seven invariant moments used in this



study are not merely computed from the binary shape, but
use the energy value Er(x, y) as the density for each pixel in
the energy map.

Entropy f,. let E7(x, y) be the normalized energy value into
integer in the range between 0 and 255 (for an 8-bit display).
Thus

E/ ( ) _ ET (X, )’) - Minu,vET(ua V)
T = Max,, ,Er(u,v) — Min,,Er(u, v)

X 255}.
(8)

Denote by P; the probability that Ep(x,y) = i,i =
0,1,2,...,255. The entropy of the energy map is therefore
defined as

fg = — ZP’ . IOgP,'. (9)

The entropy feature describes the complexity of move-
ments in a scene. A still scene will have an entropy value
approximate to zero. A single person sitting in a chair for
study will yield a small entropy value, whereas a scene
involving interaction and movements of multiple people will
result in a large entropy value.

Maximum Energy f,. the maximum energy is defined as
fo= I\QE;XET (%, 7). (10)

This feature gives the maximum energy value in the
energy map. A foreground object that keeps moving for a
prolonged period of time will have a larger feature value of
fo, compared to that for a short period of time.

Total Energy f,,. the total energy is defined as

fio = 2> Er(x,). (11)

Xy

A scene with a group of people generally yields a larger
total energy value, compared to the scene with a single
person. A person who keeps moving around in the scene will
generate a larger total energy value, whereas a person sitting
for study will result in a smaller total energy value.

Area of Nonzero Energy f,,. this feature is defined as
fll = zzb(x:y)) (12)
Xy
where
Lif Er(x,y) >0
b(x,y) = . (13)
0, otherwise.

A wide moving area will result in a larger feature value of
fi1, even if the movement lasts for only a very short period
of time, whereas a limited moving area will have a smaller
feature value even if the movement lasts for a prolonged
period of time.
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Mean Energy f,,. the mean energy is defined as

f _ ZnyET(x’y) . @
PN S, b(nhy)  fu

This feature gives the mean energy value in the region
of nonzero energy. The total energy fo for highly repetitive
activities in a small limited area may be similar to that for
nonrepetitive activities in a wide area. The mean energy can
be used to describe the relationship between the repetitive
motions and the moving area.

As demonstration examples, Figures 3(al)-3(a3) present
the energy maps of people sitting in chairs for study, Figures
3(b1)-3(b3) display the energy maps of a single person
walking in different directions, and Figures 3(c1)-3(c3)
are the energy maps of the interaction between multiple
people. The corresponding features values of fi ~ fi, for
the individual energy maps are summarized in Table 1. It
shows that similar activities yield similar feature values, and
different activities result in distinct feature values.

(14)

2.4. Classification. The discriminative features extracted
from the motion energy maps can now be used to identify
abnormal events from the normal activities in daily life.
Monitoring of abnormality in daily life is not possible to
be restricted only to the recognition of prestudied and
premodeled events. As aforementioned, there could have
numerous distinct daily-life activities in an observed scene.
It is extremely difficult to apply a supervised classification
system, where each input sample must be manually assigned
a class index. The selected classification system should be
computationally efficient in the detection stage so that it
can be easily implemented for on-line, real-time monitoring.
The fuzzy C-means (FCM) clustering [61] has been a widely
used technique for unsupervised classification. However, the
conventional clustering technique only partitions samples
into clusters such that the weighted mean distance of each
sample to its centroid is minimized. There is no control of
the distance variance in each cluster. It cannot handle clusters
of different sizes and densities. It is extremely difficult to find
a fixed global distance threshold for each cluster to separate
normal and abnormal events in video images.

In this paper, a constrained clustering method is applied
for training with the objective that the distance of every
cluster member to its own cluster center meets adaptively a
distance constraint. In order to collect sufficient represen-
tative samples of daily life under observation, the training
energy maps and, thus, their corresponding discriminative
features are randomly sampled from a video image sequence
that spans the sufficient period for all possible day-to-
day activities. Note that each single input scene image
fr(x,y) has its own corresponding energy map Er(x, y).
Each training sample in this study means the feature
vector (fi, fa,..., fiz) of an energy map. Based on our
experiments, a range between 15% and 20% of the total
image frames in the video image sequence is sufficient to
train the classifier. The classification system involves two
processes, learning process and detection process, which are
individually described in the following two subsections.



EURASIP Journal on Advances in Signal Processing 9

TABLE 1: Feature values for the demonstrative energy maps in Figure 3.

Energy maps in Figure 3

Features

3(al) 3(a2) 3(a3) 3(b1) 3(b2) 3(b3) 3(cl) 3(c2) 3(c3)
h 1.381 1.636 1.466 2.111 2.108 2.136 2.354 2.496 2.476
£ 2.951 3.627 3.260 4.401 4.577 4.553 5.309 5.507 5.588
f 4.678 4.630 4.798 7.227 8.090 8.711 7.555 8.126 8.534
fa 4.922 4.647 4.840 7.081 7.111 8.315 8.738 9.571 9.499
fs 9.752 9.286 9.700 14.238 14.871 16.981 16.993 20.433 20.102
fs 6.402 6.461 6.471 9.285 9.412 10.595 11.454 13.215 12.294
fr 10.175 10.829 10.041 15.189 14.854 16.978 17.089 18.421 18.517
fs 0.717 0.708 0.740 1.085 1.309 1.421 1.603 1.747 1.755
fo 186 256 340 253 249 313 361 325 640
fio 103727 106136 161232 381675 435401 513579 860751 1335763 1281152
fu 13084 13248 14248 13231 17102 20284 20063 20177 21571
iz 7 8 11 28 25 25 42 66 59

(c1)
(a)

FIGURE 3: Demonstration examples of energy maps: (al)—(a3) people sitting in chairs; (b1)—(b3) single person walking in different directions;
(c1)—(c3) interaction between multiple people.

2.4.1. Learning Process. In this paper, we are only interested  there is only one class to identify. However, different normal
in the classes of normal and abnormal events. Since the  activities may have very distinct representations of energy
abnormal events are unpredictable beforehand, all training ~ maps. We would like to group similar activities that have
samples are normal activities collected from a video sequence ~ similar energy maps and, thus, similar feature vectors into
of daily life. They all belong to the same class, that is,  the same cluster. The goal of clustering for this one-class
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classification with distinct patterns problem is to assign
similar training samples to the same cluster so that the
distance of every member in the cluster to the cluster center
meets a minimum distance threshold.

Let X = {x1,X,,...,Xx} be a set of K training samples,
and v; the centroid of cluster i. The distance between sample
x, and the centroid v; is denoted by d(xx,vi) = |Ixx — vilI2.
The objective of the proposed clustering is given by

Min 8
st d(xx,vi) < pg, +f - 04, (15)

if xxev, Vk=12,...,K,

where pg4 and g4, are the mean and standard deviation of
the distances d(xx,v;) for all members in cluster i, and j3 is
a control constant. The upper control limit ug + f - 0y, is
used as an adaptive distance threshold Ty, for each individual
cluster i. Each member in its own cluster must meet the
distance constraint, and the control limit should be as tight
as possible.

In this aper, we use a hierarchical clustering technique to
group similar energy maps into clusters. In each hierarchical
level of the clustering, a small number of clusters C is given,
and then the standard fuzzy C-means clustering process is
carried out. In the resulting clusters, the Euclidean distance
between each assigned member of the cluster and the cluster
centroid is calculated so that the mean pg4 and standard
deviation oy, for each cluster i can be determined. If the
distance is less than the distance threshold Ty, the sample
member is retained in the cluster. Otherwise, it is removed
from the cluster. This procedure is repeated for every cluster.
At the end of the process, all removed samples are considered
as a new set of training data, and the fuzzy C-means
clustering with C as the number of clusters is performed
in the next hierarchical level. The clustering process is
expanded to the lower hierarchical levels until the distance of
every member in individual clusters is less than its distance
threshold Ty, or the maximum total number of clusters Cpax
is met.

At the end of the hierarchical clustering process, the
control constant f will be reduced to tighten the distance
thresholds if the distance constraints for all training samples
under a given total number of clusters Cp,y are satisfied.
Otherwise, it is increased to loosen the distance thresholds.
The hierarchical clustering process is then repeated with the
new control constant. The minimum value of the feasible
control constant 3 can be efficiently obtained by a binary
search. The total number of clusters Cyayx is predetermined,
which is related to the complexity of daily activities in
question. Experiments on various scene scenarios have
shown that the total number of clusters around 50 and
60 is sufficient to represent different patterns of normal
activities in daily life. The number of clusters C in each
hierarchical clustering level is given by 10 in this study.
The detailed algorithm of the constrained clustering model
with minimum adaptive distance thresholds is presented as
follows.
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Input. The number of clusters C in each level, maximum
number of clusters Cpax, and training data set X =
{XI)XZ)- . aXK}~

Step 1. Normalize the feature values.
Letxx = (fi,1> fk25- - -» fi,12) be the feature vector, and f
be the jth feature of sample k, for k = 1,2,...,K

Sl

.= 5> :1,2,...,12, 16
fk,] aj ) ( )
where y; and o; are the mean and standard deviation of
feature j for all training samples.

Letx; = (fi 1> fizs- s frin)-

Step 2. Perform the standard fuzzy C-means clustering.
Let v; be the centroid of cluster i,i = 1,2,...,C, and

K p ’

_ k=1 Wik " X

Vi = <K P
2=1 Wik>

where wi is the weight for training sample k in cluster i, p is

weighting exponent (p = 2 in this study).
In each iteration, wj is updated by

(17)

1
S5 (4o (o))

Wik = (18)

where d(x;,v;) = lIx, —v; 1. Then the centroid v; is updated
using the new assigned weight wi. The updating procedure
is repeated until convergence.

Let V' = {v] }iC:1 be the resulting set of cluster centroids
at hierarchical level r (Initially, set r = 1).

Step 3. (a) Assign sample x; to cluster v}, for k =
1,2,..., K, where i = arg min.d(x;,vl).

(b) Set the distance threshold of each cluster v}, i =
1,2,...,C, to

Ta, = pa, + B - 04, (19)

where p4 and o4 are the distance mean and standard
deviation of cluster i.

(c) Let X! = g and X! = ¢, fori = 1,2,...,C. Given that
X, €vi,k=1,2,...,K,if d(x,v]) < Tg, then assign

x; — x; Uix} (20)
otherwise,
X — X UJ{x]. (21)

At the end of the assignment, X} contains all the members
that meet the distance constraints, that is, d(x;,v]) < Ty, in
cluster i. The centroid of cluster v; is updated by

1 ,
Vir = m Z Xk, (22)

/
x €X]

where | X[ | is the cardinality of cluster X.
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X! records the samples with d(x;,v]) > Ty. Let X =
US, X7, which is the set that contains all the samples that
violate the distance constraints at iteration r. It is passed
along to the next hierarchical level r + 1 as a new training
set.

Step 4. Cluster in the lower hierarchical level.
Take X" as the set of new training data. Let r — 7 + 1.
Repeat Steps 2 and 3 until 7 - C > Cpax (max. number of
clusters is violated), or X" = ¢ (all samples meet the distance
constraints).

Step 5. Find the minimum control constant .
If 7 - C > Cpax and X" # ¢, the current control constant f3
is too tight, and must be increased by setting

B — %(ﬁ +ﬁupper>» (23)

else setting

ﬂ — %(ﬁ +ﬁlower)- (24)

Repeat Steps 2 to 5 unit A < 0.1, where AS is the
difference between the old and the new f values. Currently,
the lower bound and upper bound of f3 are set at Sjgwer = 0.0
and Bupper = 2.0.

The proposed clustering model can effectively assign
similar activities into the same cluster that all adaptively meet
a tight distance threshold. It is expected that normal activities
similar to the sampling ones in the training set will also have
a corresponding cluster that meets the distance threshold,
whereas an abnormal event (the one not observed in the
training set) will not find any cluster that yields a distance
less than the threshold.

2.4.2. Detection Process. Let QO = |J, V" be the set of the
final cluster centroids obtained from the training process.
For a new scene image at current time frame T with the
feature vector X7 = (fx1, fx2---» fx12), the feature value is
first normalized with respect to the mean y; and standard
deviation o; for each feature j of the training samples, that is,

f,;j=M, i=12...,12, (25)
, o;
and let x7 = (f{ 1> fe2>---> fu12). The minimum distance of
X7 to the cluster centroids in ) is given by

d(xr,vir) = gleig{HX'T —vill*}, (26)

where v« = arg min,,eqd(x7, vi).

In the training process, the distance threshold T, of
each cluster i is adaptively given by pg + f8 - 04. In the
detection process, the same distance threshold of each cluster
is also applied to detect abnormal events. If d(x7,vi) >
Ty, a suspected abnormal event is declared. Otherwise,
it is classified as a normal activity in daily life. Since an
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abnormal event will generally last for an extended period
of time, a single alarm of x7 is treated as noise. When the
motion energy maps have d(x7,v;+) > Ty and prolong for a
sufficient duration, an abnormal event is evidently detected.
Since the detection process involves only simple Euclidean
distance computation from a small set of cluster centroids, it
is computationally very fast.

3. Experimental Results

This section evaluates the performance of the proposed
abnormality detection scheme from two image sequences,
one involving the scene of a laboratory and the other
obtained from the BEHAVE benchmark dataset. The pro-
posed algorithms were implemented using the C++ language
on a Pentium 4, 3.0 GHz personal computer. The test images
in the experiments were 200 X 150 pixels wide with 8-bit
gray levels. The total computation time from foreground
segmentation to abnormality detection for an input image
is 0.132 seconds, of which the computation of the seven
invariant-moments takes 0.121 seconds. It achieves a mean
of 7.6 fps for real-time detection of abnormal events.

The first activity monitoring example is the daily work
in a laboratory, which involves various activities of a single
person and multiple people. Some of the demonstration
activities in the laboratory are displayed in Figures 1 and 2.
The training image sequences were collected for two days,
and there are a total of 100,216 energy maps. 15% of the total
energy maps were randomly sampled, which corresponds to
15,030 energy maps used in training. In the experiments, the
two parameters used to construct the motion energy maps
were set With Tenergy = 10 and y = 0.999 for the relatively
slow activities in the laboratory. The total number of clusters
Crnax 1s given by 50. The resulting minimum feasible value of
the control constant $is 0.1.

In the experiments, we simulated three abnormal events
including burglary, fighting and moving furniture out of the
room. All these three activities are very difficult to define
explicitly and model beforehand. Scenario 1 involves only
the actions of a single person. Scenarios 2 and 3 involve
interactions between two people. For the burglary scenario,
a person was asked to find a wallet hidden in the room as fast
as possible. No further instructions on how to find the wallet
were given to the pretended burglar. Figure 4(a) displays
the original video sequence at varying time frames for the
burglary scenario, and Figure 4(b) shows the corresponding
energy maps. It can be seen that the energy in the map is weak
in the early stage of the burglary activity. The energy is then
accumulated and the shape in the map becomes stable after a
sufficient period of time.

For the fighting scenario, two people were fighting each
other in the room. Figures 5(a) and 5(b) present, respectively,
the video sequence and the corresponding energy maps for
the fighting scenario. For the moving furniture scenario,
two people sequentially moved a chair, a computer monitor
and other laboratory objects out of the room. Figures
6(a) and 6(b) show, respectively, the video sequence and
the corresponding energy maps for the moving furniture
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(a) (b)
FIGURE 4: Abnormal event of a burglary scenario: (a) discrete image
frames in the sequence; (b) corresponding energy maps. (symbol ¢
represents the frame number in the sequence with fps = 10).

scenario. The energy is accumulated and the shape becomes
clear in the map as the activity proceeds.

When the training is done, 85% of the untrained image
frames (a total of 85,186 frames) from the two-day video
sequence are used to test for the similarity measurement.

(a) (b)

FIGURE 5: Abnormal event of a fighting scenario: (a) discrete image
frames in the sequence; (b) corresponding energy maps.

In the total of 85,186 frames, only 27 events that have
distances d(xr, vi«) larger than the threshold Ty, are falsely
alarmed, and the detection results are displayed in Figure 7.
Since each individual input image xr has its own corre-
sponding cluster i* and, thus, different distance threshold
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(a) (b)

FIGURE 6: Abnormal event of a moving-furniture scenario: (a)
discrete image frames in the sequence; (b) corresponding energy
maps.

Ta,., the plot in Figure 7 displays only the difference between
the distance d(xr,vi+) and the threshold Ty., that is,
Ad(x7,vi+) = max{d(xy,vi+) — T4, ,0}. In the figure, the x-
axis presents the event number and the y-axis is the excessive
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FiGure 7: Excessive distances Ad over the threshold Tx; for the
27 detected events with distances beyond the control limits in the
normal 2-day laboratory video sequence. (The length of each event
in the x-axis represents the event duration.)

—_

Ad
SYSTNCNE

KBurglaryy|  |[&— Fighting —>I K Moving >

furniture
FIGURE 8: Excessive distances Ad of the three abnormal events in
the laboratory: burglary, fighting and moving furniture out of the
room. (Note that the duration scales in the x-axis of both Figures 7
and 8 are the same.)

distance Ad. The results show that most of the 85,186 frames
have the distances within the control limits. All the falsely
detected events last only a very few frames (as seen in the
x-axis) and the excessive distance Ad is very small and less
than 2 (as seen in the y-axis). The duration for the 27 falsely-
detected events is from a minimum of 0.2 seconds (1 frame)
to a maximum of 4 seconds (20 frames) with a mean of
0.72 seconds (3.6 frames). Because an activity must last for
some duration (i.e., a sufficient number of consecutive image
frames), the isolated image frames can be classified as noise.

Figures 8 illustrates the measured distances over time for
the three abnormal events of burglary, fighting and moving
furniture. The plot only displays the distance differences
Ad(xr,vi=). The scale on the x-axis in Figure 8 is exactly
the same as that in Figure 7, that is, the length of an event
in the x-axis of the figure represents also the duration of
the activity. The results show that the abnormal activity at
the beginning gives small distance values. As the abnormal
activity continues, the resulting distances become distinctly
large and prolong for a long duration, as seen in the x-axis
and the y-axis in Figure 8. Table 2 summarizes the resulting
statistics of duration and excessive distance Ad for the 2-day
normal image sequence and the three abnormal events. It
again reveals that the proposed detection scheme can well
identify the prolonged abnormal activities with distinctly
large distances Ad. The falsely-alarmed events give only
a very short duration with very small excessive distances
and therefore, can be effectively eliminated by introducing
additional decision rules based on the event duration.

In order to further test the robustness of the proposed
method for abnormal event detection in daily life, the
same laboratory scene was continuously monitored for
31 days. There are a total of 26,784,000 images frames
observed. The trained cluster centroids based on the two-
day sampled images, as described previously, are also used for
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TABLE 2: Statistical analysis for the two-day normal video sequence of the laboratory scene and the three abnormal events.

Image sequence Total events detected

Excessive distance Ad Alarm duration (sec.)

Mean Std. Min. Max. Aveage
Normal image sequences for 2
0.33 0.39 0.2 4 0.72
days (85,186 frames) 27
Abnormal image sequence 3 3.75 2.18 71.4 182 96
16 TaBLE 3: False positive measures under varying event durations for
14 A * the 31-day laboratory video sequence.
12 1 NFAPA MTBFA
10 4 % Category of eventduration Mean time
8 (seconds) I\lIumber of t:;llse between false
= 4
© alarms (per day) alarms (hours)
61 . Event duration > 1 3.6 6.6
47 * Event duration > 5s 2.3 10.4
21 Event duration > 30's 1.4 17.1
0 | Event duration > 60's 1.0 24.0
Fuzzy C-means The proposed method Event duration > 90 0.7 34.2
Event duration > 120 0.6 40.0

FIGURE 9: Box-plots of g, for the 50 clusters from the constrained
clustering model and the conventional FCM.

abnormal event detection in this long-observation sequence.
The performance of the proposed method on the 31-
day image sequence is measured by the false positive rate
(false alarms of normal events) given that all the three
abnormal events (burglary, fighting and moving furniture)
are correctly identified. Because the distances are calculated
for individual image frames and an event lasts a number of
consecutive image frames, the false positive rate is therefore
measured by the mean number of false alarms per day
(NFAPD) and its corresponding “mean-time-between-false-
alarms (MTBFA)” MTBFA is the average time between
two consecutive events alarmed by the monitoring system.
The higher the MTBFA is, the higher the reliability of the
monitoring system. Table 3 summarizes NFAPD and MTBFA
measures for the 31-day image sequence. The detected
events are grouped into 6 categories according to their time
durations. For the detected events lasting longer than 5
seconds, the mean number of false alarms is only 2.3 events
per day. It indicates the mean time between false alarms is
10 hours, and is quite tolerable for a monitoring support
system. By analyzing the falsely detected events in detail
according to their durations in seconds, we found that the
falsely detected events with prolonged durations are generally
traceable, that is, there are assignable causes to those events,
such as installing a new air conditioner in the laboratory,
assembling new computer equipment by a vendor, and tour
visit to the laboratory. None of them were observed in the
two-day video sequence used in training.

In order to show the effectiveness of the constrained
clustering model with respect to the standard fuzzy C-means
(FCM) method, the distances d(x7, v;+)’s of the two methods
for the 15,030 training image frames described previously

TaBLE 4: The definition of nine activities in the BEHAVE dataset.

Activity Definition

In-Group The people are in a group and not moving very
much

Approach Two peop_le or groups with one (or both)
approaching the other

Walk Together  People walking together

Ignore Ignoring of one another

Split Two or more people splitting from one another

Following Being followed

Meet Two or more people meeting one another

Fight Two or more groups fighting

Run together The group is running together

are evaluated. The total number of clusters was 50 for both
methods. Let o4 be the standard deviation of d(xr, v;+ ) for all
members in a cluster. The value of g; should be as small as
possible for a more reliable monitoring. Figure 9 presents the
box-plot that shows the maximum, minimum, median, and
the lower and upper quartiles of o4 values for the resulting 50
clusters of individual methods. It indicates that the standard
FCM method generates a high variation of distances (with a
mean g4 of 2.93) and the proposed clustering model results
in a smaller and more stable variation (with a mean o, of
0.93).

Surprisingly, the laboratory work can be trained in two
days with a very limited number of sampled images, and the
trained cluster centroids can be used to describe most of the
daily work in the laboratory for over a month. It is believed
the false positive rate can be further improved by including
more sampling images from sufficient observation days in
the learning process.
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(b1) Meet

(b2) Fight

15

(b3) Run together

FIGURE 10: Activity examples in the BEHAVE dataset: (al)—(a6) scenarios in the Sequence 0; (b1)—(b3) three activities in Sequence 5, which

are abnormal with respect to Sequence.

TasBLE 5: The scenarios of the learning and testing sequences for the BEHAVE dataset.

Video clips Scenarios Frame number Video length
Sequence 0 In-Group, Approach, Walk Together, Ignore, Split, Following 1-11200 7 min. 27 sec.
Sequence 5 In Group, Approach, Walk Together, Split, Meet, Run Together, Fight 47300-58400 7 min. 24 sec.
Meet Fighting 20
209 e k—— o 15
15 Fighting Running = 0 Noise
|
310 Together 5 H
5 L l 0 | it
0 " . . NS 473 493 513 533 553 573 584
473 493 513 533 553 573 584 Frame number X102
Frame number x10

FiGURE 11: Excessive distances Ad of the four abnormal events in
Sequence 5 of the BEHAVE dataset.

The second evaluation dataset is a street scene obtained
from the BEHAVE Interactions Test Case Scenarios [56].
BEHAVE is funded by the UK’s Engineering and Physical
Science Research Council project. It involves nine different
activities such as Walk Together and Run Together in the
image sequences. The definitions of these nine activities
are listed in Table 4. The BEHAVE dataset has eight video

FIGURE 12: Detection results with the 7 moment-based features f;

to f7.

sequences, each containing a different combination of activ-
ities. The training image sequence is Sequence 0 from the
BEHAVE dataset, which contains six activities of In-Group,
Approach, Walk Together, Ignore, Split, and Following. The
demonstration images for these six activities are shown in
Figure 10(al)-10(a6). The testing video is Sequence 5 that
contains seven events of Approach, Ignore, Walk Together,
Split, Meet, Run together, and Fight. In Sequence 5, the three
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473 493 513 533 553 573 584
Frame number x10?
(a) All features excluding fi>
20
15
S 10
5
0 , S . - . .
473 493 513 533 553 573 584
Frame number x10?

(b) All features excluding fio and fi;

FIGURE 13: Detection results based on: (a) all features excluding fi»;
(b) all features excluding fip and fi;.

Incomplete
duration of
Meet fighting
20 > .
15 |H| | | Fighting Mis-
~ detected
3 10 l event
; K
0 ﬁ 1
473 493 513 533 553 573 584
Frame number x10?

FIGURE 14: Detection results by K-means for Sequence 5 in the
BEHAVE dataset.

activities of Meet, Fight, and Run Together are not included
in the training sequence 0. Therefore, these three activities
are treated as abnormal events. The demonstration images
of these three abnormal events are shown in Figure 10(b1)-
10(b3).

The BEHAVE video images are captured at 25 frames
per second. The activities and video lengths of the training
and testing sequences are listed in Table 5. There are a total
of 11,200 frames (7 minutes and 27seconds) in Sequence
0, of which 50% (i.e., 5,600 image frames) are randomly
sampled and used as the training samples. The update rate
y is set at 0.999 to construct the motion energy maps. The
total number of clusters Cpax is given by 40. The resulting
minimum control constant  from the training process is 0.1.
The test video of Sequence 5 has a total of 11,100 frames (7
minutes and 24 seconds).

When the training is done, the whole video images of
Sequence 5 are used to test for the detection performance.
Figure 11 illustrates the testing result of Sequence 5. In the
figure, the x-axis presents the frame number and the y-axis
is the excessive distance Ad. The results show that all the
normal activities of In-Group, Approach, Walk Together, and
Split in Sequence 5 are within the control limits. There are
four major abnormal events detected in Sequence 5, that
is, one long fighting event, one short fighting event, one
meeting event and one running together event. The resulting
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distances of the four abnormal events are distinctly large
and prolong for their corresponding durations, as seen in
the x-axis and the y-axis in Figure 11. The running together
event includes many discrete running activities where people
abruptly enter and exit from the street scene and, therefore,
the resulting distances Ad are not continuous.

We have also conducted additional experiments on the
BEHAVE dataset with various combinations of features.
Figure 12 shows the detection results using only the seven
moment-based features. It fails to detect the subtle activity
of Running Together. Noise is also created. The long Fighting
activity is not alarmed at the beginning of the duration,
and the overall discrimination magnitudes for the abnormal
activities are reduced.

Since feature 12 is the ratio of fip and fi;, we also
evaluate the detection performance without including f;, in
the feature set. As seen in Figure 13(a), the four abnormal
activities Meet, long Fighting, short Fighting and Running
Together are also well detected without the use of feature
fi2. Comparing the detection results between Figures 11 and
13(a), the use of 12 full features gives higher discrimination
magnitudes, especially in the case of short Fighting. We
have also performed the detection task by excluding features
fio and fi; (and retaining all the remaining 10 features
for classification). Figure 13(b) shows the detection results.
The Running Together event is misdetected, and the whole
duration of the long Fighting is not fully detected.

We have also used principal component analysis (PCA)
for feature selection. It finds the eigenvalues of the 12
features, and sorts the features in descending order of
their corresponding eigenvalues. Then 12 feature sets,
each containing the dominant features from 1 to 12, are
individually evaluated. The detection results consistently
indicate that the use of 12 full features generates the highest
discrimination magnitudes. The discrimination power is
significantly reduced when less number of features is used
for classification.

In order to evaluate the clustering performance between
Fuzzy C-means and K-means, we have also used K-means
for clustering and classification, and tested it on the BEHAVE
dataset. We replicated 10 times with different random initial
solutions for both FCM and K-means. Figure 14 shows
representative detection results of sequence 5 in the BEHAVE
dataset. The K-means technique is less responsive to abnor-
mal activities. Compared to the detection results of FCM
in Figure 11, K-means clustering procedure misdetects the
subtle activity of Running Together. The duration of the long
Fighting activity is not fully detected, and the discrimination
magnitude of the short Fighting is less significant. Under the
same termination criterion, K-means needs additional 40%
computation time to converge.

4. Conclusions

Analysis of events has been conventionally based on the
recognition of a set of predefined activities. In a scene of
daily life such as home and office, it is extremely difficult to
define and model every possible activity in advance. In this
paper, we have proposed a macro-observation approach to
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detect abnormal events such as burglary and fighting in daily
life. The proposed motion energy map can simultaneously
represent both spatial context and temporal context of an
activity. All historical image frames are taken into account
with exponential weights to construct the energy map. It
alleviates the limitation on the use of a fixed duration
for various activities with different paces. The constrained
clustering model can effectively divide numerous activities
in daily life into groups based on their similarity in energy
maps. By training a sufficient number of randomly sampled
energy maps in a video sequence that spans sufficient
repetition of day-to-day activities, all normal events can be
effectively represented by the cluster centroids. It allows fast
computation of similarity measure for each new scene image.
The proposed method can therefore be applied for on-line,
real-time monitoring of unpredictable abnormal events in
daily life.

The merit of this paper is to show the feasibility of
the easily-implemented macro-observation approach for
abnormality detection in daily life. The proposed scheme
in its present form can well detect abnormal events with
prolonged durations, especially those lasting tens of seconds
or more. It is not highly responsive to the events that last
only a few seconds. It is worth further investigation on the
spatiotemporal representation and similarity metric for the
analysis of short-term activities in daily life.
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