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The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A
novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity,
the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from
existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm,
a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained.
The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the
validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of
patients with Estrogen Receptor positive (ER+) status and Estrogen Receptor negative (ER−) status, respectively.

1. Introduction

Response of cells to changing endogenous or exogenous con-
ditions is governed by intricate networks of gene regulations
including those by, most notably, transcription factors (TFs)
[1]. Understanding how transcription regulatory network
(TRN) defines cellular states and eventually phenotypes is a
major challenge facing systems biologists.

Computational reconstruction of gene regulation and
phenotype prediction based on microarray profiles is a
current research focus in computational systems biology
[2–7]. Many models have been proposed to infer the
transcriptional regulation by TFs including, mostly notably,
ordinary differential equations, (probabilistic) Boolean net-
works, Bayesian networks, information theory, and associa-
tion models. Ideally, TF protein activity is needed for exact
modeling but it is usually difficult to obtain. Currently, due
to low protein coverage and poor quantification accuracy
of high throughput technologies including protein array
and liquid chromatography-mass spectrometry (LC-MS), TF
protein abundance measurements are hardly available. As a

compromise, most of aforementioned models conveniently
yet inappropriately assume the TF’s mRNA expression as its
protein activity. Given the fact that gene mRNA expression
and its protein abundance are poorly correlated, these
models cannot accurately model the transcriptional cis-
regulation and reveal at the best TF trans-regulation. In
contrast, work based on factor models [8–12] points to
a natural and promising direction for TF cis-regulation
modeling, where TF activities is directly modeled as the
unknown, latent factors, and microarray gene expression is
modeled as a linear combination of unknown TF abundance,
where the loading matrix in this FA model indicates the
strength and the type (up- or downregulation) of regulation.
However, due to distinct features of TRNs, conventional
FA model is not readily applicable. First, since many TFs
can share the same protein complex, regulate each, or get
involved in the same biological process, the factors should
be correlated; while in the existing FA models, factors are
typically assumed independent, which, although true in
many applications, is not a realistic assumption for TRNs.
Secondly, since a TF only regulates a small subset of genes,



2 EURASIP Journal on Advances in Signal Processing

the loading matrix should be sparse. While with con-
structions of TF databases, such as TRANSFAC [13], the
knowledge of TF-regulated genes becomes more complete
and increasingly available and should be included in the
model. The inclusion of prior for sparsity naturally calls
for a Bayesian solution. As an added advantage, having this
prior knowledge actually resolves the factor order ambiguity
of the conventional factor analysis. Thirdly, as suggested in
[14–16], the abundance of genes (or TFs) are naturally non-
negative, and also a non-Gaussian factor model should be
in place.

In a response to meet these requirements of TRNs, we
proposed here a novel Bayesian sparse correlated rectified
factor model (BSCRFM). Different from conventional factor
analysis models, BSCRFM consists of a sparse loading matrix
and a set of correlated nonnegative factors. The sparsity of
the loading matrix is constrained by a sparse prior [17]
that directly reflects our existing knowledge of TF regulation
that is, if a gene is known to be regulated by a TF, then
the prior probability that this regulation exists is high,
or otherwise, very low due to the generic sparsity nature
of the loading matrix. Since TFs can regulate each other,
share the same protein complex, or get involved in the
same biological process, the factors in this BSCRFM model
are considered to be correlated. To model the correlation
between factors, a Dirichlet process mixture (DPM) prior
[18] was placed on the factors. DPM imposes a natural
nonparametric [19] clustering effect on TFs, which, enables
automatic determination of the optimal number of clusters.
Moreover, since the activities of TFs are nonnegative, they
are assumed to follow a (nonnegative) rectified Gaussian
distribution [20]. A Gibbs sampling solution is proposed to
effectively infer all the relevant variables.

The proposed factor model is different from nonnegative
matrix factorization (NMF) [14, 16, 21, 22], which has been
reported to be a powerful tool for gene expression data. NMF
enforces the constraint that both the loading matrix and the
factor matrix must be nonnegative, that is, all elements must
be equal to or greater than zero; however, in our method,
only the factor matrix is constrained to be nonnegative,
and the elements of loading matrix can be either positive
or negative, which corresponds to up- or downregulations,
respectively.

2. Bayesian Sparse Factor Modeling of
Transcription Regulation

Let yn ∈RG×1 for n = 1, . . . ,N represent the nth microarray
mRNA expression profile of G genes under a specific context.
In practice, microarray data yn register the log 2-scaled (fold
change of) the expression gene levels under the context of
interest relative background expression levels obtained often
as the average expression levels among a variety of contexts
such as different cell lines and tumors [23, 24]. We assume
that the log-scaled expression level yn is due to the linear
combination of scaled TF protein expressions, or activities
and modeled by the following factor model:

yn = Axn + en, (1)

where

xn the nth sample vector of the scaled activities of
L TFs of interest. Particulary, the nonnegativity
of xn is modeled by applying the componentwise
rectification (or cut) function cut to a vector pseudo
factors sn such that the lth element of xn is expressed
as

xl,n = cut
(
sl,n
) = max

(
sl,n, 0

)
. (2)

Since the TFs may share the same protein complex,
regulate each, or get involved in the same biological
process, the activities of TFs should be correlated.
Therefore, pseudofactors sn are modeled by a Dirich-
let Process Mixture (DPM) of the Gaussian distribu-
tions as

sl,n ∼ N
(
μl,n, σ2

l,n

)
,

(
μl,n, σ2

l,n

)
∼ G,

G ∼ DP
(
α, NIG

(
μ0, κ0,α0,β0

))
,

(3)

where, N (μl,n, σ2
l,n) represents the Gaussian distribu-

tion with mean μl,n and variance σ2
l,n, DP denotes the

Dirichlet process, and NIG is short for the conju-
gate normal-inverse-gamma (NIG) distribution. This
DPM model implies a clustering effect on sn such that

sl,n | γl,μγl ,n, σ2
γl ,n ∼ N

(
μγl ,n, σ2

γl ,n

)
, (4)

θγl ,n ∼ NIG(λ0), γl ∼ GEM(α), (5)

where θ.n = {μ.n, σ2
.n}, λ0 = {μ0, κ0,α0,β0}, γl ∈ Z

represents the cluster label of the lth factor and is
governed by a discrete GEM distribution [18], which
defines the stick breaking process with parameter α;
this implies that the elements of sn are correlated.
Based on (2) and (4), we have

xl,n | γl, θγl ,n ∼ N R
(
μγl ,n, σ2

γl ,n

)
, (6)

where, N R denotes the rectified Gaussian distribu-
tion [20]. Since θγl ,n and γl are still defined in (5)
by the DP, xn is hence modeled by the DPM of
the rectified Gaussian distributions and the elements
of xn are accordingly correlated. In contrast to the
conventional mixture model, the DPM model enables
the number of clusters to be learnt adaptively from
the data instead of being predefined.

A the G × L loading matrix, whose element ag,l repre-
sents the regulatory coefficient of the gth gene by the
lth TF. Since a TF is known to regulate only small
set of genes, A should be sparse. In our model, the
elements of A are assumed to be independent and
with the a priori distribution [17]

p
(
ag,l

)
=
(

1− πg,l

)
δ
(
ag,l

)
+ πg,lN

(
ag,l | 0, σ2

a,0

)
,

(7)

where πg,l is the a priori probability of ag,l to be
nonzero. For instance, if a TF regulates a total of 500
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Figure 1: Graphical Model.

genes among the 20000 genes in the human genome,
then πg,l is equal to

πg,l = 500
20000

= 0.025. (8)

In most cases, πg,l are likely to be smaller than 0.1.
In practice, databases such as TRANSFAC [13] and
DBD [25] provide information of experimentally
validated or predicted target genes of TFs, and this
knowledge can be incorporated in the model by
setting, for instance, πg,l = 0.9, if TF l is known to
regulate gene g; or otherwise πg,l = 0.025.

en the G × 1 white Gaussian noise vector with the
covariance matrix Σ defined by

Σ = diag
(
σ2
e,1, . . . , σ2

e,G

)
. (9)

The overall graphical model is shown in Figure 1. The goal is
to obtain the posterior distributions and hence the estimates
of A, xn for all n, and Σ given the microarray profile yn for
all n and TF binding database. Since the analytical solution
is intractable for the proposed model, we propose in the
following a Gibbs sampling solution. For convenience, Θ,
y1:N , and x1:N are introduced to denote the sets of all these
unknowns, all the observations, and all the factor activities,
respectively. Note that the total number of factor clusters K
and θk for all k are also unknown but treated as nuisance
parameters by the proposed Bayesian solution.

3. The Proposed Gibbs Sampling Solution

The proposed BSCRFA model is high-dimensional and
analytically intractable, so the authors proposed a Gibbs
sampling solution. Gibbs sampling devises a Markov Chain
Monte Carlo scheme to generate random samples of the

unknowns from the desired but intractable posterior dis-
tributions and then approximate the (marginal) posterior
distributions with these samples. The key of Gibbs sampling
is to derive the conditional posterior distributions and then
draw samples from them iteratively. The proposed Gibbs
sampler can be summarized as follows:

Gibbs Sampling for BSCFA.
Iterate the following steps and for the tth iteration:

(1) Sample a(t)
gl for all g, l from p(ag,l | Θ−ag,l , y1,N );

(2) for l = 1 to L

Sample γ(t)
l from p(γl | Θ−xl ,γl , y1:N ); Set K = K + 1 if

γ(t)
l = k;

Sample x(t)
l from p(xl | Θ−xl , y1:N ) given γ(t)

l ;

Sample s(t)
l,n from p(sl,n | Θ−sl,n , y1:N ) given γ(t)

l ;

(3) Sample σ2
e,g for all g from p(σ2

e,g | Θ, y1:N ).

(4) Remove empty clusters and reduce K accordingly.

Note that θk for all k are marginalized and therefore
does not need to be sampled. The algorithm iterates until
the convergence of samples, which can be assessed by the
scheme described in [26, chapter 11.6]. The samples after
convergence will be collected to approximate the marginal
posterior distributions and the estimates of the unknowns.

The required conditional distributions of the above pro-
posed Gibbs sampling solution are detailed in Appendix A.

4. Result

4.1. Simulation

4.1.1. Test on Small Simulated System. The proposed
BSCRFM algorithms was first tested on a small simulated
microarray expression profiles of 40 genes and 10 samples.
The genes were regulated by 6 TFs that belong to 2 clusters
and the noise variance was 0.1. To ensure identifiability,
each TF must regulate at least 1 gene, that is, there should
be no all zero column in A. Moreover, the sparsity of the
loading matrix was set to 20%, that is, a TF regulates an
average of 4 genes and a gene is regulated on average by
about 1 TFs. The prior πg,ls of the nonzero elements were
assumed to be determined from some database. To mimic the
reality that database-recorded regulations may not exist in
the specific experiments and unknown regulations could also
exist, the precision and the recall of the database records were
introduced and both set to 0.9, from which the prior πg,l can
be obtained. To diagnose the convergence of Gibbs sampler,
the scheme described in [26, chapter 11.6] was adopted,
where 10 parallel chains were monitored simultaneously.

Figure 2 visually depicts an example that the 10 sample
chains of x1,1 converges after around 500 iterations. The
chains can be seen to converge after around 500 iterations.
The estimates of x1,1 and a1,1 based on the samples after
burn-in are summarized in Table 1. Similar results were
obtained for other xs and as. Overall, the proposed algorithm



4 EURASIP Journal on Advances in Signal Processing

0

1

2

0 200 400 600 800 1000

Iteration

1200 1400 1600 1800 2000

Figure 2: 10 Independent sampling chains of x1,1.

1
0.5

1.5

N
u

m
be

r
of

cl
u

st
er

s

2
2.5

3
3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

Figure 3: Nonparametric learning of number of clusters.

Table 1: Estimation of parameters x1,1 and a1,1.

variable true mean median mode 97.5% 2.5% variance

x1,1 1.08 1.05 1.04 0.97 1.61 0.55 0.07

a1,1 0 0.0007 0 0 0 0 0.0005

can successfully recover the loading matrix and factor
activities under the given settings.

Figure 3 also shows the number of clusters at each
iterations for the 10 chains, which were learned according
to the DPM adaptively. As mentioned before, the TFs
embedded fall into 2 clusters. It can be seen from Figure 3
that the proposed BSCRFM approach can learn the number
of clusters automatically by generating new clusters and
eliminating actually nonexisting cluster. After 500 iteration,
the chains stay at 2 clusters most of time. In order to
systematically evaluate the clustering result in the following
tests, a Van Rijsbergen’s F metric [27] that combines the
BCubed precision and recall [28] was implemented as
suggested in [29].

More specifically, let L(e) and C(e) be the category and
the cluster of an item e. Then, the correctness of the relation
between e and e′ is defined by

Correctness(e, e′) =
⎧
⎨

⎩

1, iff L(e) = L(e′) ←→ C(e) = C(e′),

0, otherwise.
(10)

That is, two items are correctly related when they share the
same cluster. Moreover, the BCubed precision and recall are
formally defined as

Precision BCubed

= Avge
[

Avge′·C(e)=C(e′)[Correctness(e, e′)]
]

,

Recall BCubed

= Avge
[

Avge′·L(e)=L(e′)[Correctness(e, e′)]
]

,

(11)

These two metrics can be further combined using Van
Rijsbergen’s F metrics

F(R,P) = 1
0.5/P + (1− 0.5)/R

= 2RP
R + P

. (12)

The F metrics will satisfy all the 4 formal constraints defined
in [29], including cluster homogeneity, cluster completeness,
rag bag, and cluster size versus quantity. We will use the F
metrics to evaluate the clustering result in the following tests.

4.1.2. Test on Larger Simulated System. The proposed
BSCRFM model was then tested on a larger simulated system,
in which the microarray data consists of the expression
profiles of 250 genes with 10 samples, which are regulated by
20 TFs that fall into 3 clusters. The sparsity of loading matrix
was 10%, which means on average each gene is regulated by
2 TFs, and each TF regulates 25 genes. The precision and
recall of the prior knowledge were still set equal to 0.9 each,
indicating again that the recorded regulations may not exist
in the experiment, and the unknown regulations could exist.
Since this is a relatively large data set involving sampling of
many variables, instead of examining convergence based on
[26, chapter 11.6], we adopted a more practical strategy by
running a single MCMC chain for 10000 iterations with a
burn-in period of 2000 iterations [30].

In the first experiment, we tested the impact of noise on
the performance of the algorithm, and the result is shown
in Figure 4. It can be seen from the Figure that as noise
increases, the bias of the minimum mean square estimates
(MMSE) of X increases (Figure 4(a)), the mean squared
error (MSE) of the MMSE of X also increases (Figure 4(b)),
and the clustering performance worsens (Figure 4(c)). In
general, the performance increases as the noise decreases.
However, due to high-dimensionality of the proposed model,
the posterior distribution is of multiple modes. When noise
is very small, it is more difficult for the sample chains to
travel between different modes and instead the sample chains
become easily trapped in a local mode [31, 32], resulting
in a poor clustering result (Figure 4(c)). Similar result can
be observed for the MMSE of A (Figures 4(d) and 4(e)).
Finally, the prediction result of the nonzero elements in
A or targets were evaluated by the precision and recall
curve (Figure 4(f)). Since the prior precision and recall are
relatively high, the performance of target prediction is similar
under all the tested noise conditions; but still, the result is
slightly superior when noise is small.

In the last experiment, we tested the impact of prior
knowledge. In practice, prior knowledge can be acquired
from various databases, and very likely, this information may
be imprecise and nonspecific, that is, recorded regulations
may not happen in this experiments, and the unknown
regulations could also exist. Here, we evaluated the perfor-
mance of the BSCRFM when prior knowledge is incomplete
and with error; the result is shown in Figures 5 and 6. It
can be seen from the figures that, as the precision or recall
of prior knowledge increases, the MMSE of X and A, the
clustering result and target prediction all improves. Noted
that when the precision of prior knowledge is equal to 1,
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Figure 4: Performance of BSCRFA when noise is different.

that is, all recorded regulation exist in the text experiment,
and the corresponding elements in loading matrix must be
nonzero. This may overwhelmingly constrain the loading
matrix, resulting the MCMC chain gets trapped in a local
mode (Figure 6(c)).

In the next experiment, we test the impact of the sparsity
of loading matrix, and the result is shown in Figure 7. It can
be seen, the more sparse the loading matrix is, the better the
performance is. Since in the experimental setting each TF
must regulated at least 1 gene, the more sparse the loading
matrix is, a gene is regulated by less number of TFs and thus
can be more easily partitioned into the contribution of less
number of factors.

In this experiment, we test the impact of the number of
genes, and the result is show in 8. When all the other setting
are unchanged, the more genes we have, the better estimation
result we can get. This is because, the algorithm relies on gene
observations to estimate the factors. The more targets a TF
has, the better its estimator can be. As the estimation of factor
improves, the estimation of loading matrix also improves,
but not as significantly Figures 8(b) and 8(d).

4.2. Test on Real Data. The proposed algorithm was then
applied to the breast cancer microarray data published in

[33–36]. Particularly, we applied the algorithm to two groups
of samples independently, that is, 74 samples from patients
of Estrogen Receptor positive (ER+) and 68 samples of
Estrogen Receptor negative (ER−) status. All samples came
with gene microarray expression, ER status, and survival
time information. For the settings of the algorithm, we first
manually selected a total of 11 TFs that are known to highly
relevant to breast cancer (see Appendix B) and then retrieved
a total of 191 regulated genes (see Appendix C) by these TFs
from TRANSFAC database [13] (Release 2009.4). We also
assume that TRANSFAC record has a 90% precision and
90% recall, suggesting that the known regulations may be
context-specific and unknown regulations could exist. From
the precision and the recall, the prior probability of the
loading matrix can be determined.

The uncovered GRNs were shown in Figures 10 and 11,
with each color corresponding to the predicted regulations
oriented from a TF. (Please refer to Appendices B and C
for the detailed annotations). It can been seen from Figure 9
that, BSCRFA recovered a total of 295 and 287 regulations
respectively from ER+ and ER− patient samples, among
which 120 are the same. 34 regulations that are recorded
in prior knowledge were found in none of the two data
sets, and 15 regulations that are not previously recorded
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Figure 5: Performance of BSCRFA when recall of prior knowledge is different.

were founded in both data sets, indicating the ability of
BSCRFA to recover context-specific and new regulations
from microarray expression profiles.

Along with the recovered regulations, the activities of
TFs are also estimated and depicted in Figures 12 and 13. In
each case, three TF clusters were determined. Interestingly, in
both case JUN and FOS were clustered together; this agrees
with the fact that JUN and FOS belong to the same TF
complex called AP1 and need to regulated collaboratively.
The differential activity of each TF in ER+ and ER− were
investigated using the t-test. The ER transcription factor is
the most significantly upregulated TF among the tested 11
TFs in ER+ samples over ER− samples (P = 10−5.62); also,
TFs FOXA1, NFKB, FOS, JUN are shown upregulated in ER+

samples, while P53, CREB are upregulated in ER− samples.
For each ER condition, the patients were further classified

in two 2 groups according to whether a particular TF is up-
(+) or down- (−) regulated, and the survival statuses of each
group were estimated by the Kaplan-Meier estimator; the
estimated survival curves obtained and compared using the
logrank test [37]. The significance levels of the logrank test
(not corrected for multiple hypothesis tests) are shown in
Table 2. It can be seen from Table 2 that, FOXA1 activities
are significant in predicting good survival patients from

Table 2: Significance level of the logrank test.

TF ER+ ER− TF ER+ ER−

ER 0.34 0.30 NFκB 0.48 0.28

FOXA1 0.04 0.38 Fos 0.08 0.49

GATA3 0.08 0.39 Jun 0.19 0.47

FOXO3 0.32 0.04 ATF2 0.26 0.38

MyC 0.48 0.25 CREB 0.45 0.47

P53 0.45 0.05

the poor survival in ER+ samples (P = .04); while those
of FOXO3 are significant predictors in ER− samples (P =
.04). Their survival curves are plotted in (Figure 14). As a
comparison, survival analysis was also performed on the
microarray expression of FOXA1 and FOXO3 (Figure 15),
and it was determined that they are not significant. These
results indicate that the TF activities estimated by the
proposed BSCRFM are better predictors for the survival of
patients than the mRNA expression, suggesting a potentially
more informative and accurate avenue to study phenotypes
based on TF activities.
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Figure 6: Performance of BSCRFA when precision of prior knowledge is different.

5. Discussion

5.1. Features. BSCRFM is a new approach to reconstruct
direct transcriptional regulation from microarray gene
expression data. We discuss next a few distinct features of it.

First, in accordance with the fact that a TF only regulates
a number of genes in the the genome, the loading matrix of
BSCRFM model is constrained by a sparse prior [17], which
directly reflects our existing knowledge of the particular
TF regulation that is, if the regulation exists according to
prior knowledge, then the probability of the corresponding
component in the loading matrix to be nonzero is large; oth-
erwise, very small. The introduction of sparsity significantly
constrains the factor model, enabling the inference of a set of
correlated TF activities.

Second, since the activities of TFs cannot be negative, the
factors in BSCRFM are modeled by a nonnegative rectified
Gaussian distribution [20], which not only eliminated the
sign ambiguity of the factor model, but also is conjugate
to the likelihood function, thus greatly facilitating the

computation. Noted that a rectified Gaussian distribution
N R is different from a truncated Gaussian N T in that

p(x = 0) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∼ N T
(
μ, σ2

)
,

Φ
(
−μ

σ

)
if x ∼ N R

(
μ, σ2

)
,

(13)

which indicates that the rectified Gaussian model can also
describe the possible suppressed state of TFs, which cannot
be modeled by the truncated Gaussian distribution. A
comparison of Gaussian, rectified Gaussian and truncated
Gaussian is shown as Figure 16. In our model, the non-
negativity is constrained only on the factor matrix X; and the
elements of loading matrix A can be either positive or nega-
tive, which models the corresponding up- or downregulation
of TFs.

Third, since TFs can share the same protein complex,
regulate each other, or get involved in the same biological
process, the factors are assumed correlated and constrained
by a Dirichlet process mixture (DPM), which can learn
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Figure 7: Performance of BSCRFA when the sparcity of loading matrix is different.

Table 3: Transcription factor list.

ID Name Aliases

TF1 ER ER;ERALPHA;ESR1;ESTRADIOLRECEPTOR;ESTROGENRECEPTOR;NR3A1

TF2 FOXA1 FOXA1;HEPATOCYTENUCLEARFACTOR3ALPHA;HNF3A

TF3 GATA3 GATA3;GATABOXBINDINGFACTOR3;GATA3;NFE1C(CHICK)

TF4 FOXO3 FOXA1;HEPATOCYTENUCLEARFACTOR3ALPHA;HNF3A

TF5 MyC CMYC;MYC;VMYCMYELOCYTOMATOSISVIRALONCOGENEHOMOLOG(AVIAN)

TF6 P53 ASP53;LFS1;NSP53;P53;P53AS;RSP53;TP53;TRP53;TUMORPROTEINP53

TF7 NFκB NFKAPPAB;NUCLEARFACTORKAPPAB

TF8 Fos FOSLIKEANTIGEN1;FOSL1;FRAI

TF9 Jun AP1;JUNDPROTOONCOGENE;JUND;JUND;TRANSCRIPTIONFACTORJUND

TF10 ATF2 ACTIVATINGTRANSCRIPTIONFACTOR2;ATF2;CREBP1;HB16;TREB7

TF11 CREB ATF47;CREB;CREB341;CREBA;CREBISOFORM1;CREB1;CREBALPHA;X2BP

automatically the optimal number of TF clusters from data.
A sparse Bayesian factor model was proposed in [14], which
employs a Dirichlet mixtures to model the correlation of
the same factors between samples. In contrast, the proposed
BSCRFA model models the correlation between different
factors, which is intended to describe the correlation of
activities of TFs explicitly. This correlation is a prevalent

characteristics in the context of transcriptional regulation,
since TFs may share the same protein complex, regulate each
other, or get involved in the same biological process. Such
modeling has not been investigated in the past and is a
modeling focus of this paper. Modeling the additional sample
correlations of the same TFs will be a focus of our future
research.
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Table 4: Gene list.

ID Symbol ID Symbol ID Symbol ID Symbol

G1 C3 G51 LTF G101 GADD45A G151 PTTG1

G2 CXCR4 G52 TNF G102 EXO1 G152 MITF

G3 MSH2 G53 TP53INP1 G103 PLAU G153 APP

G4 GCLM G54 CYP11B1 G104 DKK1 G154 CD1A

G5 FOS G55 TNFRSF10B G105 PTH G155 SFN

G6 MT2A G56 MMP1 G106 CDK4 G156 FAS

G7 CCNG2 G57 CD82 G107 POLB G157 TGM1

G8 IL5 G58 HLA-DRA G108 ID1 G158 KIR3DL1

G9 DUSP1 G59 VIP G109 HOXA10 G159 STAT4

G10 DBH G60 INS G110 PENK G160 CD8A

G11 CHEK1 G61 PTGS2 G111 EBAG9 G161 TFF1

G12 SCN3B G62 JUN G112 COL1A2 G162 APC

G13 ITGAX G63 GSTP1 G113 ZNF268 G163 IL6

G14 EIF4E G64 CCND1 G114 TNFRSF10A G164 IFNB1

G15 TGFB2 G65 CASP1 G115 AMBP G165 PTK2

G16 TSHB G66 TRIM22 G116 TNFRSF10C G166 SPP1

G17 CDC25A G67 HBB G117 PDK4 G167 NPPA

G18 F3 G68 MDM2 G118 CXCL3 G168 TP73

G19 IL2RA G69 RB1 G119 MICA G169 SLC3A2

G20 BDNF G70 NDRG1 G120 TRA@ G170 IL1B

G21 WEE1 G71 NQO1 G121 HLA-DPB1 G171 APOB

G22 CYP11A1 G72 BRCA1 G122 TP53 G172 IL8

G23 NR4A2 G73 SERPINB5 G123 SOX9 G173 VEGFA

G24 TRH G74 BCL2 G124 PCNA G174 PBK

G25 CAV1 G75 BAX G125 NFKB1 G175 TACR1

G26 MUC1 G76 CYP1B1 G126 IL2 G176 RPL10

G27 PGR G77 TGFA G127 CRHBP G177 IVL

G28 GNAI2 G78 ATF2 G128 ERVWE1 G178 FCGR2A

G29 ADRB2 G79 FN1 G129 CRH G179 MACROD1

G30 GCLC G80 COX7A2L G130 FANCC G180 ERBB2

G31 OPRM1 G81 BCL2L1 G131 RFWD2 G181 CCL2

G32 EPO G82 GSS G132 EPHX1 G182 BBC3

G33 ACTA2 G83 TF G133 YBX1 G183 TP63

G34 KLRC1 G84 GYPB G134 ATF3 G184 AGER

G35 IFNG G85 CXCL1 G135 APAF1 G185 SESN1

G36 BCL2A1 G86 CSNK1A1 G136 CYP19A1 G186 GJA1

G37 SLC9A3R1 G87 IL4 G137 CX3CL1 G187 NAT1

G38 CCL5 G88 NR3C1 G138 KRT16 G188 SELE

G39 BCAS3 G89 EGR1 G139 CGA G189 FASLG

G40 ICAM1 G90 IRF4 G140 SFTPD G190 HRAS

G41 PSENEN G91 EDN1 G141 HIF1A G191 BRCA2

G42 IER2 G92 PRL G142 CTSD

G43 HSD17B1 G93 IGFBP3 G143 DDB2

G44 GNRHR G94 CFTR G144 TPT1

G45 LTA G95 EGFR G145 IRS2

G46 TERT G96 MYC G146 DDX18

G47 OLR1 G97 CYBB G147 CCNA2

G48 MMP2 G98 F8 G148 IL13

G49 APOE G99 TSC22D3 G149 CDKN1A

G50 ODC1 G100 LOR G150 ESR1
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Figure 8: Performance of BSCRFA when the number of genes is different.

Forth, other types of data, such as ChIP-chip data [38–
40] and DNA methylation data [41] can be conveniently inte-
grated with gene expression data [42] under the proposed
BSCRFM by setting a slightly different prior probabilities to
the loading matrix. Integrating more data types can poten-
tially improve the performance of the proposed method and
will be our future work.

5.2. Limitations. First, this model cannot capture regulation
from TFs that are not specified in the prior knowledge
database. In reality, it is possible that TFs that are not
specified in the prior knowledge actually regulate the gene
transcription. However, it is possible to further extend the
proposed factor model to capture the contribution of missing
factors.

Second, relatively complete and accurate prior knowl-
edge should be present for the approach to be implemented.
Since the proposed BSCRFM model assume correlated
factors, it is important to have sufficient prior knowledge to
constrain the structure (zero and nonzero elements) of the
loading matrix. To effectively estimate the relevant variables,
relatively complete and accurate prior knowledge must be

115 95

ER+ ER−

15

105

60

Prior
34

72

Figure 9: Common and specific recovered regulation.

present. In the absence of such prior knowledge, for example,
when studying the transcriptional network of less-studied
species, the proposed method is not recommended.

Third, the algorithm may not converge in a reasonable
number of iterations on a large data set, thus cannot be
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Figure 10: Transcriptional regulatory network in ER+ samples.

applied to genome wide dataset. Because the model parame-
ters are high-dimensional and highly correlated, the speed of
convergence may significantly slow down on a large data set
[43, 44]. Moreover, when parameter distribution is bimodal
(or multimodal), the Gibbs sampling iterations can easily get
trapped in one of the modes, thus reducing the probability
of reaching convergence [31, 32]. Even when convergence
can be achieved under the criteria defined in [26, chapter
11.6], the narrow mode in the distribution may still not
be detected, leading to overestimation of the posterior
variance [45]. Currently, the proposed model is intended for
analyzing a subset of TFs, for which additional knowledge

about their binding and biological relevance is available.
Through integrating the prior knowledge, more informative
and reliable results can be achieved. In addition, the prior
knowledge also makes the interpretation of results easier. We
demonstrate in Section 4, how such analysis can be carried
out starting from a whole genome microarray data. With
the advancement in ChIP-seq technology and increasing
knowledge of TFs biological functions, the proposed model
could be applied for a genome-wide study in the future.

Forth, prior knowledge may still need to be properly
evaluated. If the prior knowledge is considered an estimation
of the true TRN, when the precision p, recall r of prior



12 EURASIP Journal on Advances in Signal Processing

TF−1

TF−2

TF−3

TF−4

TF−5
TF−6

TF−7

TF−8

TF−9

TF−10

TF−11

G− 1

G− 2

G− 3

G− 4

G− 5

G− 6

G− 7

G− 8

G− 9

G−10

G−11

G−12

G−13

G−14

G−15

G−16

G−17

G−18

G−19G−20

G−21

G−22

G−23

G−24

G−25

G−26

G−27

G−28

G−29

G−30

G−31

G−32

G−33

G−34

G−35G−36

G−37

G−38

G−39

G−40

G−41

G−42

G−43

G−44 G−45

G−46

G−47

G−48

G−49

G−50

G−51

G−52

G−53

G−54

G−55

G−56
G−57

G−58

G−59

G−60
G−61

G−62

G−63

G−64

G−65

G−66
G−67

G−68

G−69

G−70

G−71

G−72

G−73

G−74

G−75

G−76

G−77

G−78

G−79

G−80

G−81

G−82

G−83

G−84
G−85

G−86

G−87
G−88

G−89

G−90

G−91

G−92

G−93

G−94

G−95

G−96

G−97

G−98

G−99

G−100

G−101

G−102

G−103

G−104

G−105

G−106

G−107

G−108

G−109

G−110

G−111

G−112

G−113

G−114

G−115

G−116

G−117

G−118

G−119

G−120

G−121

G−122

G−123

G−124

G−125

G−126

G−127

G−128

G−129

G−130

G−131

G−132

G−133

G−134

G−135

G−136

G−137

G−138

G−139

G−140

G−141

G−142

G−143

G−144

G−145

G−146

G−147
G−148

G−149

G−150

G−151

G−152

G−153

G−154

G−155

G−156

G−157

G−158

G−159

G−160

G−161
G−162

G−163

G−164

G−165

G−166

G−167

G−168

G−169

G−170

G−171

G−172

G−173

G−174

G−175

G−176

G−177

G−178

G−179

G−180

G−181

G−182

G−183

G−184

G−185

G−186

G−187

G−188

G−189

G−190

G−191

Figure 11: Transcriptional regulatory network in ER− samples.

information and the sparsity of the loading matrix s is given,
the prior probability of the gth gene to be a target of the lth
TF πg,l can be calculated as follows:

πg,l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p, recorded regulation,

sp(1− r)
p − sr

, not recorded regulation.
(14)

However, the precision or recall of the prior knowledge
database is not available. In practice, the quality of prior
knowledge should be evaluated first before more reasonable
prior probabilities of regulations can be assigned.

6. Conclusion

A Bayesian factor model with sparse-loading matrix and
correlated nonnegative factors was proposed to unveil the
latent activities of transcription factors and their targeted
genes from observed gene mRNA expression profiles. By
naturally incorporating the prior knowledge of TF-regulated
genes, the sparsity constraint of the loading matrix, and
the non-negativity constraints of TF activities, both context-
dependent regulation and TF activities can be estimated. A
Gibbs sampling solution was proposed. The effectiveness and
validity of the model and the proposed Gibbs sampler were
evaluated on simulated systems and on real data. The results
demonstrated that BSCRFM provides a viable approach to
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Figure 12: Estimated TF activities in ER+ patients samples. The samples (columns) are arranged according to hierarchical clustering and the
TFs (rows) according to the estimated clusters by the Gibbs sampling algorithm.
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Figure 13: Estimated TF activities in ER− patient samples. The samples (columns) are arranged according to hierarchical clustering and the
TFs (rows) according to the estimated clusters by the Gibbs sampling algorithm.
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Figure 14: Kaplan-Meier survival estimates for FOXA1 in ER+ and FOXO3 in ER− are significantly different.

estimate TF’s protein activities and studying phenotypes
based on TF’s protein activities could yield more informative
and accurate results.

Appendix

A. Conditional Distributions of the Proposed
Gibbs Sampling Solution

The required conditional distributions of the proposed Gibbs
sampling solution are detailed.

A.1. p(ag,l | Θ−ag,l , y1,N ). Let ŷgl = [ ŷgl,1, . . . , ŷgl,N ]� with

ŷgl,n = yg,n −
∑L

i=1,i /= l ag,ixi,n and xl = [xl,1, . . . , xl,n]�. It then
follows ŷgl ∼ N (xlag,l, σ2

e,gIN ) and

p
(
ag,l | Θ−ag,l , y1,N

)

= p
(
ag,l | xl, ŷgl, σ2

e,g

)

= Z0p
(

ŷgl | xl, ag,l, σ2
e,g

)
p
(
ag,l

)

= Z0

[(
1− πg,l

)
N
(

ŷgl | xlag,l, σ2
e,gIN

)
δ
(
ag j
)

+πg,lN
(

ŷgl | xlag,l, σ2
e,gIN

)
N
(
ag,l | 0, σ2

a,0

)]

=
(

1− π̂g,l

)
δ
(
ag,l

)
+ π̂g,l f

(
ag,l

)
,

(A.1)

where Z0 is a normalizing constant, π̂g,l = πg,l/[(1 −
πg,l)BF01+πg,l] is the posterior probability of ag,l /= 0 and BF01

is the Bayes factor of model ag,l = 0 versus model ag,l /= 0

BF01 =
p
(

ŷgl | xl, ag,l = 0, σ2
e,g

)

p
(

ŷgl | xl, ag,l /= 0, σ2
e,g

) =
N
(

ŷgl | 0, σ2
e,gIN

)

N
(

ŷgl | 0, Cy,gl

) ,

(A.2)

with Cy,gl = xlx�l σ
2
a,0 + σ2

e,gIN ; f (ag,l) is the posterior
distribution for ag,l /= 0 and defined by

f
(
ag,l

)
= N

(
ag,l | μ̂a,gl, σ̂2

a,gl

)
, (A.3)

where, μ̂a,gl = σ̂2
a,glx

�
l ŷgl/σ2

e,g and (σ̂2
a,gl)

−1 = (σ2
a,0)−1 +

x�l xl/σ2
e,g ; πg,l is the prior knowledge of the probability of ag,l

to be nonzero. When πg,l = 0.5, that is, a noninformative
prior on sparsity is assumed, π̂g,l depends only on BF01 and
π̂g,l < 0.5 when BF01 > 1. Since model selection based BF01

favors ag,l = 0, it suggests that this Bayesian solution favors
sparse model even when πg,l = 0.5.

A.2. p(γl | Θ−xl ,γl , y1:N ). It should be noted that γl does
not depend on xl in the distribution. It is intended that
samples of γl from this distribution are not affected by the
immediate sample of xl, thus achieving faster convergence of
the sample Markov chains. To derive this distribution, first let
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ŷl,n = yn −Axn + alxl,n with al being the lth column of A and
hence ŷl,n ∼ N (alxl,n,Σ). Then,

p
(
γl | Θ−xl ,γl , y1:N

)

= p
(
γl | γ−l, ŷl,1:N

)

=
∫

p
(
γl, xl | γ−l, ŷl,1:N

)
dxl

= 1
Z0

∫

p
(

ŷl,1:N | xl
)
p
(

xl, γl | x−l, γ−l
)
dxl

= 1
Z0

⎛

⎝
K∑

k=1

N−l,kgl,kδ
(
γl − k

)
+ αgl,kδ

(
γl − k

)
⎞

⎠,

(A.4)

where k denotes a new cluster other than the existing K ,
S−l,k = {i | i /= l, γi = k} represents the set of the pseudo
factors besides sl that also belong to cluster k, N−l,k is size of
S−l,k

Z0 =
K∑

k=1

N−l,kgl,k + αgl,k,

gl,k =
N∏

n=1

(

N
(

ŷl,n | 0,Σ
)
Φ

(−μ̂l,n
σ̂l,n

)

+N
(

ŷl,n | μŷl,n ,Σŷl,n

)
Φ

(
μ̂xl,n
σ̂xl,n

))

,

(A.5)

with

μŷl,n = al μ̂l,n,

Σŷl,n = ala�l σ̂
2
l,n + Σ,

μxl,n = μ̂l,n + σ̂2
l,na�l

(
ala�l σ̂

2
l,n + Σ

)−1(
ŷl,n − al μ̂l,n

)
,

σ2
xl,n = σ̂2

l,n − σ̂2
l,na�l

(
ala�l σ̂

2
l,n + Σ

)−1
al σ̂2

l,n,

μ̂l,n =
μ0κ0 +

∑
i∈S−l,k si,n
κ

,

κ = κ0 + N−l,k ,

σ̂2
l,n =

(κ + 1)β
κ
(
α0 + N−l,k/2− 1

) ,

β = β0 +

∑
i∈S−l,k s

2
i,n + κ0μ

2
0 − κμ̂2

l,n

2
.

(A.6)

Noted that for a new cluster, k = k, S−l,k = φ and N−l,k = 0,
and gl,k can be derived from gl,k for k = k.

A.3. p(xl | Θ−xl , y1:N ). This distribution can be expressed as

p
(

xl | Θ−xl , y1:N
)

= p
(

xl | γ−l, s−l, y1:N ,Σ
)

= Z0

N∏

n=1

p
(
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)
p
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)
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p
(
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)×

⎛
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p
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)
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(A.7)

where

π̂l,n

= N
(

ŷl,n | 0,Σ
)
Φ
(−μ̂l,n/σ̂l,n

)

N
(
ŷl,n |0,Σ

)
Φ
(−μ̂l,n/σ̂l,n

)
+N

(
ŷl,n |μŷl,n ,Σŷl,n
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Φ
(
μxl,n /σxl,n

) .

(A.8)

A.4. p(sl,n | Θ−sl,n , y1:N ). According to the graphical model,
given xl,n, the conditional distribution of sl,n does not
depend on y1:N ; therefore this conditional distribution can
be expressed as

p
(
sl,n | Θ−sl,n , y1:N

)
= p

(
sl,n | xl,n, s−l,n, γ−l, γl

)

∝ p
(
xl,n | sl,n

)
p
(
sl,n | s−l,n, γ

)
.

(A.9)

To obtain the predictive density p(sl,n | s−l,n, ), first notice,
based on the DPM of Gaussian model of sl,n that the joint
conditional distribution of sl,n, and γl is

p
(
sl,n, γl | s−l,n, γ−l

)

=
∑K

k=1 N−l,k p
(
sl,n |si,n∀i∈S−l,k, γl

)
δ
(
γl−k

)
+αp

(
sl,n
)
δ
(
γl−k

)

(α + L− 1)
(A.10)

The distribution (A.10) demonstrates the correlation
between pseudo factors—sl,n depends only on other pseudo
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Figure 15: Kaplan-meier survival estimates for the encoding gene of FOXA1 in ER+ and the encoding gene of FOXO3 in ER−.
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Figure 16: Comparison of the Gaussian, rectified Gaussian, and truncated Gaussian.

factors belonging to the same cluster. As such, the predictive
density p(sl,n | s−l,n, γl) is shown to be a Student-t
distribution, which can be conveniently approximated as a
normal distribution when N−l,k is large

p
(
sl,n | s−l,n, γ

) ≈ N
(
μ̂l,n, σ̂2

l,n

)
, (A.11)

where denotes a vector of all γl; k ∈ {1, 2, . . . ,K , k}
Moveover, p(xl,n|sl,n) can be shown as

p
(
xl,n | sl,n

) = δ
(
xl,n
)
U
(−sl,n

)
+ δ
(
xl,n − sl,n

)
U
(
sl,n
)

= π̃xl,nδ
(
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)

+
(

1− π̃xl,n
)
δ
(
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)
,

(A.12)

where

π̃xl,n = U
(−sl,n

)
. (A.13)

Taking together, the conditional distribution can be
shown as

p
(
sl,n | xl,n, s−l,n, γ−l, γl

)

= πxl,nδ
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(A.14)
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where

πxl,n =
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(A.15)

Samples of sl,n can be generated from (A.14).

A.5. p(σ2
e,g | Θ, y1:N ). Let E = Y− AX, and thus

eg ∼ N
(

0, σ2
e,gIN

)
. (A.16)

Given the conjugate Inverse-Gamma prior, we have

p
(
σ2
e,g | Θ, y1:N

)
= p

(
σ2
e,g | eg

)

= IG
(
αg ,βg

)
,

(A.17)

where IG represents the Inverse-Gamma distribution and

αg = α0 +
N

2
,

βg = β0 +
N∑

n=1

e2
g,n

2
.

(A.18)

B. Transcription Factor List

See Table 3.

C. Gene List

See Table 4.
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