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Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber
length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution
is usually determined early in the development process, as conventional methods require a destruction of the sample component.
In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber
reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together
with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected
automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach
is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of
the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the
segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

1. Introduction

Fiber reinforced polymers (FRPs) are used increasingly in
the aerospace and automotive industry, since those com-
ponents facilitate the cost-effective building of lightweight
but rigid components. One manufacturing method for
the construction of fiber reinforced polymers is the long
fiber reinforced thermoplastics (LFRP-D) process, where a
matrix material, for example consisting of polypropylene
and additives, is heated and mixed with fibers, for example
carbon or glass fibers. This process happens directly, that
is, without the usage of an intermediate semifinished part.
Thereby, components can be manufactured that are capable
of acting as supporting elements with respect to rigidity and
stability. Due to these properties, many parts made of LFRP
are already used in the automotive industry, for example for
frontends, underbody casing, supporting elements, or parts
of an engine compartment.

The length of the fibers has a strong influence on the
strength, stiffness, and impact resistance of the component

[1]. From measurements, it is known that 95% of the
maximal possible material stiffness is reached at a fiber length
of 1 mm. However, the desirable length of fibers within a
certain component is strongly dependent on the purpose of
the product [2]. Moreover, since fibers can be damaged and
divided by the production device during the creation process,
there is not only one single fiber length but a distribution
of the fiber lengths within a component. Furthermore, the
opposite can happen if the cutting of the fibers by the cutting
unit does not work well, which results in longer fibers than
expected [3]. Because of this uncertainty of the actual fiber
length within the component, it is important to determine
the distribution of the fibers and their lengths after the
production process in order to estimate the quality of the
resulting product.

In this paper, a novel method for the determination of the
fiber length distribution is proposed using high resolution
computed tomography as scanning method. Therefore, the
3D CT image is processed in order to segment the fibers.
Subsequently, the length of each segmented fiber can be



Figure 1: CT scan of a LFRP component with an isotropic voxel
size of 4.36 ym.
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FiGure 2: CT scan of a sample component. The tight packing of
fibers in the material can be clearly seen.

calculated and their distribution can be quantified. As a
consequence, the presented method avoids destruction of
the test sample and makes an inspection of in-use products
feasible.

The remaining sections of this paper are structured as
follows. Section 2 briefly discusses the current methods
in fiber length distribution determination. Following in
Section 3, our algorithm for automatic fiber segmentation
and length calculation on high-resolution CT images of
components is explained. The results achieved by applying
this method to artificial and real datasets are presented in
Section 4. The concluding Section 5 contains a discussion of
the presented method and gives an outlook to planned future
research topics in this area.

2. Previous Work

The established method for the determination of a fiber
length distribution within a component is to pyrolyze its
matrix [4, 5]. Therefore, the component is put into an oven
which is heated to about 450°C. After about 90 minutes,
the matrix component is reduced to ashes and the skeleton
of the fibers remain. In order to determine their length
distribution, several methods are possible and in use. One
mechanical process is to sieve the fibers with different sieve
sizes. However, this method does not work satisfactory with
long fibers that are strongly felted. Another common method
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FIGURE 3: Preprocessing of the CT data. In (a) the original image
can be seen. In (b) the result of subtracting the eroded image from
the original image is shown.

TN
|

V3

Vi

NS

Figure 4: The model of the ideal fiber including the coordinate
system around a center point.

is the usage of scanners or high-resolution CCD-cameras
and flash devices [5]. For this method, the fibers have to be
singularized in order to reduce measurement errors caused
by fiber crossings and fiber entanglements. Subsequently, the
fibers are segmented with a digital image analysis system and
the length of the segmented fibers is determined.

The main disadvantage of these approaches is that the
component has to be destroyed in order to determine
fiber lengths. Consequently, these methods can only be
applied during the development process for the first article
inspection or the evaluation of spot samples. Therefore, it
would be strongly desirable to have methods that allow
for the non-destructive evaluation of in-use products or
parts thereof for quality assessment. However, currently there
are only limited non-destructive evaluation technologies
available or under active research [6].

The use of Micro-CT (uCT) technology allows for three
dimensional imaging of structures with a very high spatial
resolution (up to 700 nanometers). Therefore, it is possible
to acquire high-quality images of the inside of components
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FIGURE 5: Scheme of the tracing procedure along a single fiber.
New center points are determined by tracing along the minimum
eigenvector in two directions. Additionally, a circular area is filled
using the other eigenvectors as a basis with a previously known
radius.
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FIGURE 6: Schematic view of the fiber crossing problem. The
currently used minimum eigenvector is pointing into a different
direction than the previous one. This can lead to a wrong
segmentation result.

built with fiber reinforced polymers, since these fibers exhibit
diameters of well below 0.1 mm. A corresponding 3D view of
a pCT scan of a LFRP sample is shown in Figure 1.

Due to high resolution scanning technology combined
with a high image quality, the development of non-
destructive evaluation algorithms becomes more and more
practical. In the following section, a model-based approach
for the automatic detection and segmentation of fibers from
such image data is presented.

7

FIGURE 7: Schematic view of the fiber gap problem. Due to image
noise or crossing fibers, tracing may terminate early and produce
gaps in the segmentation. This can lead to multiple segmentation of
the same fiber and therefore to wrong length distributions.

FIGURE 8: Schematic view of the solution to the gap problem. Dur-
ing the tracing, critical voxels are detected (red). In a subsequent
pass, different fibers containing the same critical voxels are merged
into a single fiber.

3. Fiber Segmentation

A model of an ideal fiber is the foundation of the following
segmentation approach. It is reasonable to assume that a
general fiber is cylindrically shaped. Furthermore, in the
high-resolution scans acquired the grey value profile of the
fibers exhibited a clear maximum at their centers. Moreover,
all fibers of a common class usually have constant and
previously known diameters [5]. As a consequence, these
characteristic features can be exploited by using a model-
based segmentation approach. The segmentation algorithm
itself is modeled as a multistep process. Firstly, the whole
image is filtered and reduced by a closing operation in order
to achieve a good fiber separation in the image data. Then,



FIGURE 9: The three artificially generated datasets. (a) Very short
fibers, wide spacing. (b) Medium length fibers, tighter spacing. (c)
Varying length fibers, very tight spacing.

the image is scanned for fiber-center voxels by the means of
a discrimination function based on eigenvalue analysis. The
detected center points are then used as starting seeds for the
tracing algorithm. Model-based segmentation of a center-
axis representation is performed by tracing fiber-center
points along the direction determined during eigenvalue
analysis.

Using the a-priori known radius of the fibers, a segmen-
tation mask is generated in order to remove the correspond-
ing fiber from the input data. These steps, as explained in
detail below, are repeated until the input dataset is fiber-free,
that is the algorithm cannot find any remaining cylindrical
structures in the image data. Finally, the length of each fiber
can be determined and a distribution graph can be created.

3.1. Preprocessing. One major problem for the automatic
segmentation method is that the fibers contained within a
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FiGure 10: Real product sample one. Fiber length is high and the
fibers are packed very tightly, including some overlap. However, the
shape of the fibers is quite clear and approximating the ideal case.

scanned product sample are usually tightly packed (Figure 2).
Therefore, it is difficult to apply standard segmentation
algorithms, such as region growing [7], since fiber borders
may be partly unclear and unwanted flooding may occur. It
is, however, possible to preprocess the data so that the edges
of the single fibers can be greatly enhanced.

In order to enhance the fiber borders, a morphological
erosion filter [7] is applied to the original image I which
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FIGURE 11: Result of the automatic segmentation algorithm on
dataset one. (a) Slice image with the segmentation mask overlaid.
(b) 3D view of the extracted fibers. It can be seen that almost all
fibers have been segmented accordingly.

yields the image I,. As a consequence, dark image areas, such
as fiber borders, become enlarged in I.. Subsequently, the
work image I, is created by subtracting the eroded image
from the original image, that is

I,=1-1. (1)

The result of this operation is shown in Figure 3. It can
be observed that single fiber borders show more contrast
after the filtering procedure. However, another result of this
operation is that fibers which lie close together are now
merged to a single fiber in the image. Thereby, fibers are
lost during the preprocessing step. Since the original image is
processed repeatedly, however, the lost fibers will be detected
in a subsequent pass. All of the following operations are
carried out exclusively on the work image I,,.

3.2. Center Point Determination. For the segmentation of
fiber structures from the image, starting seed points have to
be determined. Therefore, image voxels have to be checked
whether they belong to a fiber or not. Frangi et al. [8]
presented a discrimination function for model-based shape
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FIGURE 12: Resulting fiber-length distribution of dataset one. As
expected from the visual inspection, the majority of the detected
fibers are rather long.

extraction on 3D data, which allows for the association of
voxel grey values to estimated shapes.

Originally applied to magnetic resonance image data,
it turns out that this model applies well to the extraction
of cylindrical shapes from CT data. The discrimination
function is based on an eigenvalue analysis of the structure
that is to be segmented. For each voxel, the Hessian matrix
containing the partial second order derivatives of the data is
computed as

o S B |
0x0x 0xdy 0x0z
2l A I
dyox dydy dJyoz
2l 0’ I
0zox 0zdy 0z0z

H(x,y,z) = (2)

Since the Hessian is a symmetric matrix, it can be rearranged
to yield

I I I
0x0x 0xdy 0x0z
e B |
0xdy dydy dJyoz
Pl 0 9
0x0z 0ydz 0z0z

H(x,y,z) =

This order facilitates the calculation of the eigenvalues and
eigenvectors of this matrix. We have

A 0 0
H(x,y,2) =V| 0 A 0 [VT, (4)
0 0 A

where V is the matrix containing the eigenvectors vy, v, and
vs as its columns and A1,A;,1; are the eigenvalues corre-
sponding to the eigenvectors. For the numerical solution of
these equations, the reader is referred to [9].

The eigenvalues of the Hessian calculated from the image
voxel data contain information about the gray value change
in the image neighborhood. Since for cylindrical shaped
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FIGURE 13: Real product sample two. Fiber length is medium to
short. The fibers are packed more loosely than in dataset one, but
exhibit a higher curvature and show a high amount of overlap.

objects a specific change pattern is likely, this analysis allows
for the determination of the starting seed points. Moreover,
since the eigenvectors belonging to the eigenvalues of the
voxel span an orthogonal coordinate frame, the direction and
extent of the fiber can be estimated.

In [8], an overview of different shape interpretations
based on the computed eigenvalues is given. For example,
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(b)

FIGURE 14: Result of the automatic segmentation algorithm on
dataset two. (a) Slice image with the segmentation mask overlaid.
(b) 3D view of the extracted fibers. Despite the high curvature of
the fibers and the high overlap rate, most of the fibers have been
segmented correctly.
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FIGURE 15: Resulting fiber-length distribution of dataset two. As
expected from the visual inspection, many short fibers are detected.

finding all eigenvalues to be of high magnitude and positive
value indicates a spherical shape. For the purpose of fiber
extraction, the most practical combination is the one given
for bright tubular structures and is denoted as {L, H—, H—}
for the three eigenvalues 1;,1,,13. Hence, A, is expected to
be of low magnitude, whereas A, and A3 should expose high
magnitude and should be negative.

The relation of the cylindrical structure to the eigenvec-
tors of the Hessian is shown in Figure 4. It can be seen that
high values for the eigenvalues A, and A5 are associated with
a high gray value change in the direction of the cylinder
boundary. Consequently, for the image data this indicates a
high gradient magnitude towards the borders which is typical
for the expected shape.
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In order for a voxel to be located inside a cylindrical
structure, the following criteria have to be met.

(1) If A1l < [A2] < |A3], then A; should be as small as
possible (0 would be ideal),
(2) A, and A3 should have great magnitude and should be

almost equal.

These properties can be combined into a discrimination
function introduced in [8]

with
D(x) = [1 - e’Rﬁ/z“z]e*Ré/Zﬁz [1 _ e—sz/zcz]’ ©6)
where
A
R, = %
A1

Re = onr @

The parameters a, 8, and ¢ can be used to tune the sensitivity
of the function to deviations. For the ideal fiber, the
maximum of F(x) is reached at the fiber center, while its
value decays smoothly towards the border of a cylindrical
structure. Consequently, this discriminator can be used to
detect image voxels which exhibit the greatest likelihood of
belonging to a fiber center. These points are then used as
starting seeds for the model-based fiber tracing.

Since performing eigenvalue analysis and evaluating the
discrimination function for each voxel is computationally
very expensive, our implementation includes some optimiza-
tions. Firstly, only relevant voxels are taken into account
when carrying out the calculations, that is voxels whose
grey values exceed a predefined threshold 7. This approach
is useful, as every dataset contains many elements which
cannot be part of a fiber, for example background voxels and
low valued image noise. Furthermore, since the eigenvalue
analysis of the image data is an independent process for
each individual volume element, this part of the algorithm is
ideally suited for a parallel implementation. Consequently, it
was implemented running on a high-end consumer graphics
card using NVIDIA’s CUDA technology [10].

3.3. Fiber Tracing. Having detected possible fiber center
point candidates, the algorithm starts the tracing process in
order to extract a centerline from the fibers. Since the fiber
shape is known a-priori, a model-based cylinder approxi-
mation scheme is used. For this purpose, one candidate is
selected as a starting point and the fiber is traced along
the minimum eigenvector v; in both, positive and negative,
directions. As known from previous analysis, this vector is

directed along the central axis of the cylindrical structure
(Figure 4).

As a result of the fiber tracing, a center point list is
generated. Subsequently, the remaining two eigenvectors and
the generated center points can be used in order to segment
a circular shape (Figure 5). Using the remaining eigenvectors
as a coordinate frame basis, all voxels within the circle
centered at the center point and the a priori known fiber
radius are segmented.

Since the radius of the fibers is material dependent
and known beforehand, this segmentation approach is very
robust to the presence of image noise on the fiber borders.
Once a fiber is fully segmented, it is used as a mask on the
original data in order to remove it from the image entirely.
The process is repeated until no more fibers can be found in
the image. However, due to the nature of the data, there are a
few special cases that have to be dealt with, namely crossing
fibers and partial fiber segmentation.

3.3.1. Crossing Fibers. When two or more fibers are overlap-
ping within the image data (Figure 6), one or more voxels
usually belong to several different fibers. As a consequence,
a sudden change of direction during tracing along the mini-
mum eigenvector is very likely. Hence, this results in a wrong
fiber segmentation. In order to solve this issue, the angle
between two consecutive direction vectors of fiber center
points is restricted to be lower than 45°. This ensures an
approximate C!-continuity of the extracted fiber centerline.
If the angle between consecutive center point candidates is
found to lie above this threshold, the neighborhood of this
voxel is searched for a better fitting one and the tracing is
continued in the detected direction.

Furthermore, if a voxel is encountered that allows more
than one propagation direction, it is again added to the
seed point list. Thereby, the voxel is not marked as already
segmented and can be reused while tracing the crossing fiber.
If no adequate continuation direction is found, the tracing
process stops. This can lead to partial fiber segmentation,
another possible problem.

3.3.2. Partial Fiber Segmentation. Due to the imposed con-
tinuity restriction or image noise, it is possible that a fiber
is only partially segmented (Figure 7). Consequently, during
the tracing process, the condition of the discrimination
function will not be satisfied anymore and the algorithm
terminates. As a direct result, gaps within a single fiber
may occur. Another possibility is that a previously partially
segmented fiber gets completely segmented when starting a
subsequent iteration at a different seed point. However, this
would lead to a double detection of the fiber, which is also
not desirable.

In order to solve this problem, a binary volume is created
during fiber tracing. For each successfully segmented voxel,
the bit at the corresponding position in the binary volume is
set. Furthermore, during the tracing process, each new center
voxel which is about to be segmented is checked against
this binary volume. If it is already contained in the volume,
the corresponding position is marked as a critical point and



TasLE 1: Correlation between the real length of the artificial fibers
and the automatic detection results.

Dataset Correlation in %
1 97.29%
2 98.03%
3 97.87%

tracing in the current direction terminates. Once a fiber has
been extracted, it is checked for critical points. If it contains
a critical point, a search on the already extracted fibers is
started for the ones containing the same critical point. If one
or more fibers containing equal critical points are found, they
are merged in order to create a single fiber mask (Figure 8).
Having extracted all fibers from the dataset, their length
computation is straightforward. Since the number of center
points is known and the voxel size is isotropic, in the case of
axis-aligned center points a simple calculation yields

L; = ns, (8)

where # is the number of voxels of the fiber i and s is the voxel
size.

4. Results

For the evaluation of the presented method, two types of
data were used. First of all, artificial test datasets were
created. They contained varying types of fibers with different
densities and lengths. The major advantage of this data type
was that the length of each individual fiber was known
beforehand and thus allowed an exact evaluation of the
produced results.

Moreover, the algorithm was also evaluated on CT scans
of real plastic components. Two of them will be presented
in this paper. The first component was built of straight and
long cylindrical fibers, approximating the ideal fiber very
closely. The second dataset, however, was more difficult to
deal with. It contained mostly short, curved, and heavily
overlapping fibers. Nevertheless, good segmentation results
were achieved in all cases.

4.1. Artificial Test Data. Three datasets containing ideal fiber
models were created for evaluation (Figure 9). In order to
simulate a real CT scan, random noise was added to the
image data before processing.

During the detection phase, all fibers from the test
data were found and have been segmented correctly. The
correlation with the known results is very high in all cases, as
shown in Table 1. In summary, the accuracy of the detection
process over the three test cases was about 98%. Due to the
presence of the artificial image noise, the small detection
error is tolerable. Tests without addition of the extra noise
yielded a fiber-length correlation of 100%.

4.2. Real Test Data. From the evaluation on real fiber
reinforced polymer components, two selected examples are
presented. 3D and slice views are shown in Figures 10 and 13,
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respectively. Dataset one had a dimension of 66 x 51 X 135
in X, Y, and Z directions and an isotropic voxel size of
3.96 ym. As can be obtained from the figures, the fibers in the
component exhibit a mostly straight cylindrical structure.
Moreover, the fibers are very long with respect to the size of
the dataset.

The dimensions of dataset two were 138 x 413 x 129
with an isotropic voxel size of 8.73 yum. The fibers in this
component are less tightly packed, shorter in size with
respect to the dataset size and they exhibit a curved structure
which indicates a more problematic segmentation task for
the presented algorithm.

The segmentation results of the real product samples
have been evaluated by manual inspection of the dataset,
since pyrolizing the sample components was not yet possible.
However, the results of applying our algorithm to dataset one
were found to be very good as can be seen in Figure 11.
All relevant fibers have been segmented correctly in terms
of size and radius. Therefore, it is reasonable to assume that
the resulting length distribution is correct within acceptable
statistical deviations. Figure 12 shows a plot of the calculated
length distribution. As expected, the majority of the detected
fibers are very long (450-550 ym), with only a few fibers to
be found in the low to mid-sized range.

On dataset two, most of the fibers were also segmented
correctly (Figure 14). This indicates that the model-based
segmentation approach is robust even in the presence
of curved fibers. However, the number of gaps between
the fibers on this type of dataset is higher than for the
straightforward case. The resulting length distribution of
dataset two is shown in Figure 15. As expected, the majority
of the detected fibers are very short with respect to the dataset
size (up to 0.1 mm).

5. Conclusion

In this paper, a novel, model-based approach for the
automatic detection, segmentation, and length distribution
calculation of fibers in CT data of fiber reinforced polymers
was presented. Since fiber length distribution within the
material is essential for the stability of an assembly, having
a non-destructive evaluation method is highly desirable.

The presented approach uses a segmentation scheme
which was shown to be robust even in the presence of
curved fibers and image noise. The algorithm is also able
to handle tightly packed and crossing fibers, though the
accuracy suffers in these cases, as not all fibers may be
detected fully or gaps may occur within single fibers. In order
to estimate a systematic error in this situations, more datasets
have to be investigated and the automatic results have to be
compared to the outcome of a pyrolysis analysis. Moreover,
current yCT scanning devices are still restricted to scanning
small sample sizes only, which currently limits the practical
applicability of this method.

However, the results show that the presented algorithm
can achieve a reasonably good segmentation and thus can act
as a basis for further research on this topic. Further research
will include the acquisition of reference data by pyrolizing
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the investigated sample components. Moreover, distribution
statistics and error measurements of real samples have to be
included in the evaluation of our material testing approach in
order to devise a systematic error measurement. These steps
are important for an intense evaluation and will be carried
out in the near future.

With the current advent of high-resolution ¢CT scanning
devices that are capable of taking images of bigger structures,
the presented method could become a valuable tool for broad
inspection of varying material. This could be especially useful
in industries where material function is vital and undetected
wearout could have severe impacts.
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