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Multiple-input multiple-output (MIMO) systems hold the potential to drastically improve the spectral efficiency and link
reliability in future wireless communications systems. A particularly promising candidate for next-generation fixed and mobile
wireless systems is the combination of MIMO technology with Orthogonal Frequency DivisionMultiplexing (OFDM). OFDM has
become the standard method because of its advantages over single carrier modulation schemes on multipath, frequency selective
fading channels. Doppler frequency shifts are expected in fast-moving environments, causing the channel to vary in time, that
degrades the performance of OFDM systems. In this paper, we present a time-varying channel modeling and estimation method
based on the Discrete Evolutionary Transform to obtain a complete characterization of MIMO-OFDM channels. Performance of
the proposed method is evaluated and compared on different levels of channel noise and Doppler frequency shifts.

1. Introduction

The major challenges in future wireless communications
systems are increased spectral efficiency and improved link
reliability. The wireless channel constitutes a hostile propaga-
tion medium, which suffers from fading (caused by destruc-
tive addition of multipath components) and interference
from other users. Diversity provides the receiver with several
(ideally independent) replicas of the transmitted signal and
is therefore a powerful means to combat fading and inter-
ference and thereby improve link reliability. Common forms
of diversity are space-time diversity [1] and space-frequency
diversity [2]. In recent years the use of spatial (or antenna)
diversity has become very popular, which is mostly due to the
fact that it can be provided without loss in spectral efficiency.
Receive diversity, that is, the use of multiple antennas on
the receiver side of a wireless link, is a well-studied subject
[3]. Driven by mobile wireless applications, where it is
difficult to deploy multiple antennas in the handset, the
use of multiple antennas on the transmitter side combined
with signal processing and coding has become known under
the name of space-time coding [4] and is currently an

active area of research. The use of multiple antennas at
both ends of a wireless link (multiple-input multiple-output
(MIMO) technology) has been demonstrated to have the
potential of achieving extraordinary data rates [5]. The
corresponding technology is known as spatial multiplexing
[6] or BLAST [7] and yields an impressive increase in
spectral efficiency. Most of the previous work in the area
of MIMO wireless has been restricted to narrow-band sys-
tems. Besides spatial diversity broadband MIMO channels,
however, offer to higher capacity and frequency diversity
due to delay spread. Orthogonal frequency division multi-
plexing (OFDM) significantly reduces receiver complexity in
wireless broadband systems. The use of MIMO technology
in combination with OFDM, that is, MIMO-OFDM [6],
therefore seems to be an attractive solution for future
broadband wireless systems [8, 9]. However, intercarrier
interference (ICI) due to Doppler shifts, phase offset, local
oscillator frequency shifts, and multi-path fading severely
degrades the performance of OFDM systems [10]. Most
of the channel estimation methods assume a linear time-
invariant model for the channel, which is not valid for the
next-generation, fast-moving environments [11]. Recently
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a time-frequency varying MIMO-OFDM channel estimation
approach is presented where discrete prolate spheroidal
sequences are used to obtain a robust time-varying channel
estimator that does not require any channel statistics [12].
A time-varying model of the channel can be obtained by
employing time-frequency representation methods. Here we
present a time-varying MIMO-OFDM channel estimation
based on the discrete evolutionary representation of the
channel output. The Discrete Evolutionary Transform (DET)
[13] provides a time-frequency representation of the received
signal bymeans of which the spreading function of themulti-
path, fading, and frequency selective channel can be modeled
and estimated.

The rest of the paper is organized as follows. In
Section 2, we give a brief summary of the wireless parametric
channel model used in our approach and the MIMO-
OFDM communication system. Section 3 presents time-
varyingmodeling and estimation ofMIMO-OFDM channels
via DET. A time-frequency receiver is also given in Section 3
for the detection of data symbols using estimated channel
parameters. In Section 4, we give some simulation results
to illustrate the performance of our algorithm for different
levels of channel noise and Doppler frequency-shifts and
compare with other existing methods. Conclusions are
drawn in Section 5.

2. MIMO-OFDM SystemModel

In this section we give a brief introduction to the time-
varying, parametric communication channel model used in
our work and the MIMO-OFDM signal model.

2.1. Parametric Channel Model. In wireless communications,
the multi-path, fading channel with Doppler frequency-
shifts may be modeled as a linear time-varying system with
the following impulse response [14–16]:

h(t, τ) =
Lp−1∑

p=0
γp(t)δ

(
τ − τp

)
, (1)

where γp(t) are independent Gaussian processes with zero
mean and σ2p variance, {τp} are delay profiles describing the
channel dispersion with τmax as the maximum delay, and Lp

is the total number of paths. The variance σ2p is a measure of
the average signal power received at path p, characterized by
the relative attenuation of that path, αp. Assuming that the
sampling frequency is high enough, so the delays are integer
multiples of the sampling interval, a discrete-time channel
model can be obtained as [15, 17]

h(m, �) =
Lp−1∑

p=0
αpe

jψpmδ
(
� −Np

)
, (2)

where m is the time index, ψp represents the Doppler
frequency-shift, αp is the relative attenuation, and Np is the
delay in path p. The Doppler frequency shift ψ, on the carrier

frequencyωc, is caused by an object with radial velocity υ and
can be approximated by [15]

ψ ∼= υ

c
ωc, (3)

where c is the speed of light in the transmission medium. In
the new generation wireless mobile communication systems,
with fast moving objects and high carrier frequencies,
Doppler frequency-shifts become significant and have to be
taken into consideration. The channel parameters cannot
be easily estimated from the impulse response; however the
estimation problem can be solved in the time-frequency
domain by means of the so called spreading function.

The spreading function is related to the generalized
transfer function and the bifrequency function. The gener-
alized transfer function of the linear, time-varying channel is
obtained by taking the DFT of h(m, �) with respect to �, that
is,

H(m,ωk) =
Lp−1∑

p=0
αpe

jψpme− jωkNp , (4)

where ωk = (2π/K)k, k = 0, 1, . . . ,K − 1. Now, the channel
bi-frequency function is found by computing the DFT of
H(m,ωk) with respect to time variable,m:

B(Ωs,ωk) =
Lp−1∑

p=0
αpe

− jωkNpδ
(
Ωs − ψp

)
, (5)

where Ωs = (2π/N)s, s = 0, 1, . . . ,N − 1. Calculating the
inverse DFT of B(Ωs,ωk) with respect to ωk (or by taking
the DFT of h(m, �) in (2) with respect to m), we have the
spreading function of the channel as

S(Ωs, k) =
Lp−1∑

p=0
αpδ

(
Ωs − ψp

)
δ
(
k −Np

)
(6)

provided that the Doppler frequency shifts are integer multi-
ples of the frequency sampling interval Ωs. S(Ωs, k) displays
peaks located at the time-frequency positions determined by
the delays and the corresponding Doppler frequencies, with
αp as their amplitudes [17]. In our approach, we extract
this information from the spreading function of the received
signal and then detect the transmitted data symbol.

2.2. MIMO-OFDM Signal Model. In an OFDM communi-
cation system, the available bandwidth Bd is divided into
K subchannels. The input data is also divided into K-bit
parallel bit streams and then mapped onto some transmit
symbols Xn,k drawn from an arbitrary constellation points
where n is the time index, and k = 0, 1, . . . ,K − 1, denotes
the frequency or subcarrier index.

Some pilot symbols are inserted at some preassigned
positions (n′, k′), known to the receiver: (n′, k′) ∈ P =
{(n′, k′) | n′ ∈ Z, k′ = iS + (n′ mod (S)), i ∈ [0,P − 1]},
where P is the number of pilots, and the integer S = K/P
is the distance between adjacent pilots in an OFDM symbol
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[10]. The nth OFDM symbol sn(m) is obtained by taking K-
point inverse DFT and then adding a cyclic prefix (CP) of
length LCP where LCP is chosen such that L ≤ LCP + 1, and L
is the time-support of the channel impulse response. This is
done to mitigate the effects of intersymbol interference (ISI)
caused by the channel dispersion in time.

A MIMO-OFDM system with Ntx transmit and Nrx

receive antennas is depicted in Figure 1. The incoming bits

are modulated to form X (i)
n,k, where i is the transmit antenna

index. After parallel-to-serial (P/S) conversion, the signal
transmitted by the ith antenna becomes

s(i)n (m) = 1√
K

K−1∑

k=0
X (i)
n,ke

jωkm, (7)

where m = −LCP,−LCP + 1, . . . , 0, . . . ,K − 1, ωk = (2π/K)k,
and each OFDM symbol is N = K + LCP sample long. The
channel output suffers from multi-path propagation, fading
and Doppler frequency shifts:

y
( j)
n (m) =

Ntx∑

i=1

⎛
⎜⎝
L
(i, j)
p −1∑

�=0
h(i, j)(m, �) s(i)n (m− �)

⎞
⎟⎠

=
Ntx∑

i=1

⎛
⎜⎝
L
(i, j)
p −1∑

p=0
α
(i, j)
p e jψ

(i, j)
p m s(i)n

(
m−N

(i, j)
p

)
⎞
⎟⎠

=
Ntx∑

i=1

⎛
⎜⎝

1√
K

K−1∑

k=0
X (i)
n,k

L
(i, j)
p −1∑

p=0
α
(i, j)
p e jψ

(i, j)
p me jωk(m−N (i, j)

p )

⎞
⎟⎠

=
Ntx∑

i=1

⎛
⎝ 1√

K

K−1∑

k=0
H

(i, j)
n (m,ωk) e jωkm X (i)

n,k

⎞
⎠,

(8)

where (·)( j) denotes the jth receiver. (·)(i, j) is indexing for the
wireless time-varying channel between the ith transmitter
and the jth receiver antennas. The transmit signal is also
corrupted by additive white Gaussian noise η( j)(m) over the
channel. The received signal for the nth frame can then be

written as r
( j)
n (m) = y

( j)
n (m) + η

( j)
n (m). The receiver discards

the Cyclic Prefix and demodulates the signal using a K-point
DFT as

R
( j)
n,k =

1√
K

K−1∑

m=0

[
y
( j)
n (m) + η

( j)
n (m)

]
e− jωkm

=
Ntx∑

i=1

⎛
⎜⎝

1√
K

K−1∑

s=0
X (i)
n,s

L
(i, j)
p −1∑

p=0
α
(i, j)
p e jωs(m−N (i, j)

p )

×
K−1∑

m=0
e jψ

(i, j)
p m e j(ωs−ωk)m +N

( j)
n,k

⎞
⎠,

(9)

where N
( j)
n,k is the Fourier transform of the channel noise

at the jth receiver. If the Doppler effects in all the channel

paths are negligible, ψ
(i, j)
p = 0, for all i, j, then the channel

is almost time-invariant within one OFDM symbol. In that
case, above equation becomes

R
( j)
n,k =

Ntx∑

i=1
X (i)
n,k

L
(i, j)
p −1∑

p=0
α
(i, j)
p e− jωkN

(i, j)
p +N

( j)
n,k

=
Ntx∑

i=1
H

(i, j)
n,k X (i)

n,k +N
( j)
n,k ,

(10)

whereH
(i, j)
n,k is the frequency response of the channel between

the ith transmitter and jth receiver antenna, and if there are
large Doppler frequency shifts in the channel, then the time-
invariance assumption above is no longer valid. Here we
consider modeling and estimation of the channels frequency

responses H
(i, j)
n,k and approach the problem from a time-

frequency point of view [17].

3. Time-Varying Channel Estimation
for MIMO-OFDM Systems

In this section we present a time-frequency procedure to
characterize time-varying MIMO-OFDM channels. We also
propose a time-frequency receiver that uses the estimated
channel fading, delay, and Doppler parameters to recover
the transmitted symbols. In the following, we briefly present
the Discrete Evolutionary Transform (DET) as a tool for
the time-frequency representation of time-varying MIMO-
OFDM channels.

3.1. The Discrete Evolutionary Transform. Wold-Cramer rep-
resentation [18] of a nonstationary random signal γ(n) can
be expressed as an infinite sum of sinusoids with random and
time-varying amplitudes and phases, or

γ(n) =
∫ π

−π
Γ(n,ω)e jωndZ(ω), (11)

where Z(ω) is considered a random process with orthogonal
increments. This is a generalization of the spectral rep-
resentation of stationary processes. Priestley’s evolutionary
spectrum [18, 19] of γ(n) is given as the magnitude
square of the evolutionary kernel Γ(n,ω). Analogous to
the above Wold-Cramer representation, a discrete, time-
frequency representation for a deterministic signal x(n) with
a time-dependent spectrum is possible [13, 20]:

x(n) =
K−1∑

k=0
X(n,ωk)e jωkn, 0 ≤ n ≤ N − 1, (12)

where ωk = 2πk/K , K is the number of frequency samples,
andX(n,ωk) is a time-frequency evolutionary kernel. A simi-
lar representation can be given in terms of the corresponding
bi-frequency kernel X(Ωs,ωk):

x(n) =
K−1∑

k=0

K−1∑

s=0
X(Ωs,ωk)e j(ωk+Ωs)n, (13)
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Figure 1: MIMO-OFDM System Model.

where ωk and Ωs are discrete frequencies. Discrete evolu-
tionary transformation (DET) is obtained by expressing the
kernels X(n,ωk) or X(Ωs,ωk) by means of the signal [13].
Thus, for the representation in (12) the DET that provides
the evolutionary kernel X(n,ωk), 0 ≤ k ≤ K − 1, is given by

X(n,ωk) =
N−1∑

�=0
x(�)wk(n, �)e− jωk� , (14)

where wk(n, �) is, in general, a time- and frequency-
dependent window.

The DET can be seen as a generalization of the short-
time Fourier transform, where the windows are constant.
The windows wk(n, �) can be obtained from either the
Gabor representation that uses nonorthogonal frames or the
Malvar wavelet representation that uses orthogonal systems.
Details of how the windows can be obtained for the Gabor
and Malvar representations are given in [13]. However, for
the representation of multipath wireless channel outputs,
we consider windows that are adapted to the Doppler
frequencies of the channel.

3.2. MIMO-OFDM Channel Estimation by Using DET. We
will now consider the computation of the spreading function
by means of the evolutionary transformation of the received
signal. The output of the channel, after discarding the cyclic
prefix, for the nth OFDM symbol can be written using (8) as

y
( j)
n (m) =

Ntx∑

i=1

⎛
⎜⎝

1√
K

L
(i, j)
p −1∑

p=0

K−1∑

k=0
α
(i, j)
p e jψ

(i, j)
p me jωk(m−N (i, j)

p )X (i)
n,k

⎞
⎟⎠

= 1√
K

L
(i, j)
p −1∑

p=0
H

(i, j)
n (m,ωk)e jωkmX (i)

n,k,

(15)

where we ignore the additive channel noise η( j)(m) for
simplicity. The equation above can be rewritten in matrix
form as

y(j) = H(j)x, (16)

where

y( j) =
[
y
( j)
n (0), y

( j)
n (1), . . . , y

( j)
n (K − 1)

]T
;

x =
[
x(1), x(2), . . . , x(Ntx)

]T
,

x(i) =
[
X (i)
n,0,X

(i)
n,1, . . . ,X

(i)
n,K−1

]
;

H(i, j) = [am,k
]
K×K , am,k = H

(i, j)
n (m,ωk)e jωkm√

K
;

H( j) =
[
H(1, j),H(2, j), . . . ,H(Ntx, j)

]
.

(17)

The input-output relation for the whole system results as

y = Hx, (18)

where

H =

⎡
⎢⎢⎢⎢⎣

H(1)

H(2)

...
H(Nrx)

⎤
⎥⎥⎥⎥⎦
, y =

⎡
⎢⎢⎢⎢⎣

y(1)

y(2)

...
y(Nrx)

⎤
⎥⎥⎥⎥⎦
. (19)

If H is known and then input symbols can be estimated by
the following relation,

x̂ = H−1y. (20)

Now calculating the discrete evolutionary representation of

y
( j)
n (m), we get

y
( j)
n (m) =

K−1∑

k=0
Y

( j)
n (m,ωk)e jωkm. (21)
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Comparing the representations of y
( j)
n (m) in (21) and (15),

we get the kernel as

Y
( j)
n (m,ωk) =

Ntx∑

i=1

(
1√
K
H

(i, j)
n (m,ωk)X

(i)
n,k

)
. (22)

above relation is also valid at the preassigned pilot positions
k = k′ :

Y
( j)
n (m,ωr) = Y

′( j)
n (m,ωk′)

=
Ntx∑

i=1

(
1√
K
H

′(i, j)
n (m,ωk′)X

(i)
n,k′

)
,

(23)

where r = 1, 2, . . . ,P and H
′(i, j)
n (m,ωk′) is a decimated

version of the H
(i, j)
n (m,ωk). Note that P is again the number

of pilots, and S = K/P is the distance between adjacent pilots.
Finally if the pilot symbols are chosen to be orthogonal to
each other, the decimated frequency response of the channel
between the ith transmitter and the jth receiver antennas
may be obtained as

H
′(i, j)
n (m,ωr) =

√
K∥∥∥X
′(i)
n,r

∥∥∥

〈
Y

′( j)
n (m,ωr) ,X

′(i)
n,r

〉
. (24)

Taking the inverse DFT of H
′(i, j)
n (m,ωr) with respect to ωr

and DFT with respect to m, we obtain the downsampled
spreading function S′(Ωs, �),

S′(i, j)n (Ωs, �)= 1
S

L
(i, j)
p −1∑

p=0
α
(i, j)
p δ

(i, j)
n

(
Ωs−ψ(i, j)

p

)
δ
(i, j)
n

⎛
⎝�−N (i, j)

p

S

⎞
⎠.

(25)

By comparing S
′(i, j)
n (Ωs, �) and S

(i, j)
n (Ωs, �), we observe that

the channel parameters α
(i, j)
p ,N

(i, j)
p , and ψ

(i, j)
p calculated from

S
(i, j)
n (Ωs, �) can also be estimated from the downsampled

spreading function S
′(i, j)
n (Ωs, �).

In the following, we present a method to estimate
the spreading function of the MIMO channel from the
received signal. The time-frequency evolutionary kernel of
the channel output in the jth receiver is obtained as

Y
( j)
n (m,ωk) =

K−1∑

�=0
y
( j)
n (�)wk(m, �)e− jωk�

=
Ntx∑

i=1

⎛
⎜⎝

1√
K

K−1∑

s=0
X (i)
n,s

L
(i, j)
p −1∑

p=0
α
(i, j)
p e−ωsN

(i, j)
p

×
N−1∑

�=0
wk(m, �)e j(ψ

(i, j)
p +ωs−ωk)�

⎞
⎠.

(26)

We consider windows of the form wr(m, �) = e jψr (m−�),
for 0 ≤ ψr ≤ π presented in [17] that depends on the
Doppler frequency ψr . This window will give us the correct

representation of Y
( j)
n (m,ωk) only when ψr = ψ

(i, j)
p ; in

fact, using the window wr(m, �) = e jψ
(i, j)
p (m−�), the above

representation of Y
( j)
n (m,ωk) becomes,

Y
( j)
n (m,ωk) =

Ntx∑

i=1

√
KH

(i, j)
n (m,ωk)X

(i)
n,k, (27)

which is the expected result multiplied by K . In our
estimation procedure, we use windows wu(m, �) = e jωu(m−�)

where ωu is chosen in a discrete set with certain increments,
ωu = πu/U ,u = 0, 1, 2, . . . ,U − 1. When ωu coincides with
one of the Doppler frequencies in the channel, the spreading
function displays a large peak at the time-frequency position

(N
(i, j)
p ,ψ

(i, j)
p ), corresponding to delay and Doppler frequency

of that transmission path, with magnitude proportional to

attenuation α
(i, j)
p . When ωu does not coincide with any of

the Doppler frequencies, the spreading function displays a
random sequence of peaks spread over all possible delays.
Then it is possible to determine a threshold that permits us
to obtain themost significant peaks of the spreading function
corresponding to possible delays and Doppler frequencies. In
our experiments we observed that peaks having amplitudes
larger than 65% of the maximum peak are due to an actual
transmission; otherwise they are considered as noise. Thus,
by searching in the possible Doppler frequency range, we are
able to estimate all the parameters of a multi-path, fading,
and time-varying MIMO-OFDM channel via the spreading
function of the channel.

According to (27), we need the input pilot symbols Xn,k′

to estimate the channel frequency response. Here we consider
simple, uniform pilot patterns; however improved patterns
may be employed as well [11].

3.3. Time-Frequency Receiver. After estimating the spread-
ing function and the corresponding frequency response

H
(i, j)
n (m,ωk) of the channel, data symbols X (i)

n,k can be
detected using a time-frequency receiver given in (20). On
the other hand, the channel output in (9) can be rewritten as

R
( j)
n,k =

Ntx∑

i=1

⎛
⎝ 1
K

K−1∑

s=0

⎧
⎨
⎩

K−1∑

m=0
H

(i, j)
n (m,ωk) e j(ωs−ωk)m

⎫
⎬
⎭X

(i)
n,s

⎞
⎠ +N

( j)
n,k

= 1
K

K−1∑

s=0
B
(i, j)
n (ωk − ωs,ωs)Xn,s +Nn,k

=
Ntx∑

i=1

⎛
⎝ 1
K

K−1∑

s=0
B
(i, j)
n (ωk − ωs,ωs) X (i)

n,s

⎞
⎠ +N

( j)
n,k ,

(28)

where B
(i, j)
n (Ωs,ωk) is the bi-frequency function of the

channel during nth OFDM symbol, and the above equation
indicates a circular convolution with the data symbols. Based
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on aforementioned equality it is possible to write theMIMO-
OFDM system consisting of Ntx transmitter and Nrx receiver
antennas in a matrix form as
⎡
⎢⎢⎣

r(1)

...
r(Nrx)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

B(1,1) · · · B(Ntx,1)

... · · · ...
B(Nrx,1) · · · B(Ntx,Nrx)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(1)

...
x(Ntx)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

z(1)

...
z(Nrx)

⎤
⎥⎥⎦

(29)

or

r = Bx + z, (30)

where B(i, j) = [bs,k]K×K = B
(i, j)
n (ωk − ωs,ωs) is a K ×

K matrix; r, x, and z are K × 1 vectors defined by

r( j) = [R
( j)
n,1,R

( j)
n,2, . . . ,R

( j)
n,K ]

T
, x( j) = [X

( j)
n,1 ,X

( j)
n,2 , . . . ,X

( j)
n,K ]

T
,

and z( j) = [N
( j)
n,1 ,N

( j)
n,2 , . . . ,N

( j)
n,K ]

T
, respectively. Finally, data

symbols X
( j)
n,k can be estimated by using a simple time-

frequency receiver: x̂ = B−1r.
The exhaustive search for the channel Doppler fre-

quencies may seem to increase the computational cost of
the proposed method. However, considering the carrier
frequencies and maximum possible velocities in the envi-
ronment, Doppler frequencies lie in a certain band which
can be easily covered by the algorithm. Furthermore, our
channel estimation approach does not require any a priori
information on the statistics of the channel as in the case of
many other channel estimation methods [11].

In the following, we demonstrate time-varying MIMO-
OFDM channel estimation performance of our time-
frequency-based approach by means of examples.

4. Simulations

In the experiments, a 2-input, 2-output MIMO-OFDM
system is considered, and the wireless channels are simulated
randomly; that is, the number of paths, 1 ≤ Lp ≤ 5, the
delays, 0 ≤ Np ≤ LCP − 1, and the Doppler frequency
shift 0 ≤ ψp ≤ ψmax (p = 0, 1, . . . ,Lp − 1) of each
path are picked randomly. Input data is QPSK coded and
modulated onto K = 128 subcarriers, 16 of which are
assigned to pilot symbols. The Signal-to-Noise Ratio (SNR)
of the channel noise is changed between 5 and 35 dB, for two
different values of themaximumDoppler frequency. Figure 2
depicts an example of the estimated spreading function for
a 2 × 2 MIMO system, during one OFDM symbol. In our
simulations, we use Doppler frequencies normalized by the
subcarrier spacing [21]:

fD = υ fc
c
TsN. (31)

The performance of our channel estimation method is
investigated and compared with that of a recently proposed
time-frequency varying MIMO-OFDM channel estimation
approach [12]. This method applies the discrete prolate
spheroidal sequences to obtain a robust time-varying chan-
nel estimator that does not require any channel statistics,
similar to our proposed method.
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Figure 2: An example of estimated spreading function for the 2× 2
MIMO-OFDM system.
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Figure 3: MSE for proposed channel estimation and the method
presented in [12] for 2× 2 MIMO-OFDM system for fD = 0.2 and
fD = 1.

We show the mean square error (MSE) of our chan-
nel estimation approach and the 2D Slepian-based two-
dimensional channel estimation method [12] for different
channel noise levels and for normalized Doppler frequencies
fD = 0.2 and fD = 1 in Figure 3. As seen from the graphs, our
method outperforms the Slepian-based approach in terms
of both estimation error and robustness against increased
Doppler frequencies. Note that our method is capable
of estimating and compensating for large Doppler shifts
yielding a similar MSE for both fD = 0.2 and fD = 1.

We then investigate the bit error rate (BER) versus
SNR of the channel noise performance of both channel
estimation approaches for different numbers of the pilot
symbols in one OFDM block, P = {8, 16, 32} and show the
results in Figure 4. Notice that for a fixed number of pilots,
proposed TF-based approach achieves the same BER with
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Figure 4: BER versus SNR performance of the TF-based and 2D
Slepian-based method presented in [12] for 2 × 2 MIMO-OFDM
system for 8, 16, and 32 pilots.

about 15 dB less SNR than the Slepian-based method. Note
also that increasing the number of pilots improves the BER
performance in both methods.

Finally the effect of the number of channel propagation
paths is investigated. BER is calculated for both TF and
Slepian-based channel estimation approaches by changing
the number of paths from 3 to 25 and for P = 8 and
16 pilots. Results given in Figure 5 show that for the same
number of paths, proposed TF-based approach achieves
approximately 100 times less BER than the 2D Slepian-based
channel estimation method. Also notice that the BER per-
formance goes down rapidly for the number of paths larger
than 12.

5. Conclusions

In this work, we present a time-varying estimation of
MIMO-OFDM channels for high-mobility communication
systems by means of discrete evolutionary transform. The
main advantage of the proposed method is that it does not
assume any statistics on the communication channel. The
parametric channel model used in this approach allows us
to obtain a two-dimensional representation for the channel
and estimate its parameters from the spreading function. We
observe that the method is robust against large variations
on the channel frequency response, that is, fast fading.
Simulations show that our time-frequency-based method
has considerably better channel estimation and bit error
performance compared to a similar time-frequency varying
channel estimation approach [12].
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Figure 5: BER versus the number of channel paths for the TF-based
channel estimation and the method presented in [12] for 8 and 16
pilots and 15 dB SNR.
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