Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 560512, 6 pages
doi:10.1155/2010/560512

Research Article

Simultaneous Observation Data of GB-SAR/PiSAR to
Detect Flooding in an Urban Area

Manabu Watanabe,! Masayoshi Matsumoto,' Masanobu Shimada,” Tomohito Asaka,’

Hajime Nishikawa,*> and Motoyuki Sato!

TCNEAS, Tohoku University, Sendai 980-8576, Japan
2EORC/JAXA, Tsukuba 305-8505, Japan
3 Department of Civil Engineering, Nihon University, Narashino 275-8575, Japan

Correspondence should be addressed to Manabu Watanabe, mwatana@cneas.tohoku.ac.jp
Received 1 June 2009; Revised 29 August 2009; Accepted 4 November 2009
Academic Editor: Carlos Lopez-Martinez

Copyright © 2010 Manabu Watanabe et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR) and airborne SAR (PiSAR) over
a flood test site at which a simple house was constructed in a field. The PiSAR ¢° under flood condition was 0.9 to 3.4 dB higher
than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component
and a double bounce component from the house. GB-SAR showed that the ¢° difference between the flooding and nonflooding
conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue
decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that ¢° and entropy
are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also
conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial

resolution.

1. Introduction

Synthetic aperture radar (SAR) can provide important
information for calculating the extent of flooding, since it
is not limited by weather or time of day. The extent is
calculated from SAR data taken before and after flooding.
But it is sometimes difficult to distinguish the flooded area
just from SAR backscattering, because waves caused by wind
cause a bright reflection and thus misclassification. The
simultaneous use of optical sensors or GIS data has been
proposed for reducing misclassification [1-3].

ALOS/PALSAR, launched in 2006, could be useful for
flood monitoring. Several emergency observations of flood
disaster sites have been done, including in Myanmar (Burma)
on 2008 May 6, and in New Brunswick, Canada, on 2008 May
5. Although several floods in open areas have been examined
[4], little attention has been given to flooding in urban areas.
This is because it is difficult to get verification data in urban
areas, and there have been few observations by satellite or
airborne SAR during such floods.

On the other hand, several ground-based (GB) SAR
systems have been developed as tools for monitoring agri-
culture and large built structures and for terrain mapping.
Pieraccini et al. [5] proposed the GB interferometric SAR
technique for terrain mapping. Tarchi et al. [6] described
an innovative application of radar interferometric techniques
aimed at monitoring structural deformation of buildings
in cultural heritage surveys. GB-SAR might supplement
satellite/airborne observation, which has relatively low spa-
tial resolution and limited chance of observation. But few
simultaneous observations using satellite/airborne SAR and
GB-SAR have been carried out.

Here, we analyze the results of full polarimetric data
taken with GB-SAR and airborne SAR in an artificially
made urban flood area. We discuss the scattering process
as measured in L-band full polarimetry mode, introduce
the PiSAR and GB-SAR system, and describe a preliminary
experiment and observation of the area with PiSAR and GB-
SAR.



2
TaBLE 1: Characteristics of PISAR and GB-SAR.

PiSAR (L-band) GB-SAR

Frequency 1.27 GHz 0.5-6.3 GHz (antenna)
0.05-20.05 GHz (VNA)

Band width 50 MHz Variable
Resolution 2.5m ~10cm
Polarization Full polarimetry

VNA: vector network analyzer.

TaBLE 2: 0° derived from double scattering of asphalt wall and metal
sheet with GB-SAR.

0°uH 0 nv 0 vy
Asphalt wall (dB) —36.0 —47.3 -38.9
Metal sheet wall (dB) —33.1 —43.1 -33.9
Diff. (dB) 2.9 4.2 5.0

2. PISAR and GB-SAR

Characteristics of PiSAR and GB-SAR are summarized in
Table 1. PiSAR is a Japanese airborne SAR that carries an
L-band SAR from the Japan Aerospace Exploration Agency
(JAXA) and an X-band SAR from the National Institute of
Information and Communication Technology (NICT). We
used the L-band SAR data. The GB-SAR system consists of a
vector network analyzer (VNA), a double polarized diagonal
horn antenna with the size of 47 cm, an antenna positioner
unit, and a PC-based control unit. The VNA, operated
in stepped-frequency continuous-wave mode, generates the
transmitting signal and detects signals scattered in both
amplitude and phase.

We tested the polarimetric radiometric performance
of the GB-SAR system by using the reflections from a
metal plane. The channel imbalance, o°vyv/0°un, was less
than 1dB; crosstalk, 0°yv/0°uu, was about —45 dB. Other
characteristics are presented by Zhou [7].

To test the suitability of GB-SAR to detect flooding, we
examined double bounce scattering from a concrete wall and
an asphalt ground surface (Figure 1). Instead of water, we
laid a 1-m X 1-m metal sheet on the ground, and examined
the change in reflection power from the double bounce
scattering. The data were collected in the frequency range
of 86 MHz to 5.68 GHz. After applying a bandpass filter of
0.8 to 1.8 GHz, which corresponds to the L-band, we used
inverse Fourier transformation to create time domain data
[8]. We used a migration method of diffraction stacking
to reconstruct the image [9, 10]. The raw backscattering
coefficient (0°), which consist of products of the backscat-
tering coefficient (0°) from the target, antenna gain, and
effective area are summarized in Table 2. Bright reflections
were observed in the like polarization, as expected, but
some cross-polarization reflection also appeared, owing to
dihedral reflection at some incident azimuth angles caused
by the wide antenna pattern of ~60°.
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By using simple double bounce reflection model and
Fresnel reflection, we estimate the difference of ¢° acquired
from asphalt-wall and metal-wall reflection. Dielectric con-
stant of the wall is assumed to be 10, and reflectivity of the
metal sheet is 1. The estimated differences are 8.8 dB and
11.4dB in HH and VV polarization and are about 6 dB larger
than those acquired by GB-SAR. These may be due to a
contamination of other scattering component for the GB-
SAR experiment, such as edge reflection of the metal sheet.
On the other hand, the o°yy became lower than the o°yy
in both cases. This is explained by a lower reflectivity of VV
polarization by an effect of the Brewster angle. We conclude
that our GB-SAR system is capable of detecting flooding
by a way of double scattering from ground and walls. We
expect some difference in ¢° values between flooding and
nonflooding situations in urban areas.

3. Observations

We built a simple house in a field of Nihon University, Chiba,
Japan. The house measured 5 m X 5m X 5 m and was covered
with thin wooden board 3 mm thick. The roof was made of
thin zinc plate. Water was poured around the house to mimic
a flood. Several PiSAR observations were performed over 3
days before and after the flooding with L-band SAR in full
polarimetry mode.

The first PISAR observations were done on 2007 Novem-
ber 27, when the soil moisture content around the house
was ~20%. The next observations were done on November
29, when the area surrounding the house was covered with
water (moisture content 100%). The third observations were
done on November 30, after the water was drained but the
soil remained wet (47.4% =+ 4.0%). Several observations were
collected in different flight directions at off-nadir angles of
30° and 45°. We used data with the same flight direction at
an off-nadir angle of 45°. All three PiSAR images show bright
reflections from the house and two of them are shown in
Figure 2, which are not geometrically corrected. Geometric
differences between the November 27 image and the other
two images may be due to a slightly different azimuth angle,
so we used only the data taken on November 29 and 30. We
also collected simultaneous GB-SAR data on November 29
and 30 to see detailed radar reflections from the house. The
GB-SAR antenna was pointed at the base of the house at an
off-nadir angle of 80°, since we could not deploy the GB-SAR
in the water (Figure 3). The acquired frequency domain data
were processed as described above, and radar images were
reconstructed from the original data.

4. Results and Discussion

Full polarimetry images derived from GB-SAR are shown
in Figure 4. The horizontal axis is a range distance ranging
from 9 m to 16 m, and the vertical axis is an azimuth distance
ranging from 1.5 m to 7.5 m. Since the wooden board is thin,
we can see the reflection from the metal bars behind it. The
horizontal bars are well detected in the HH image, and the
vertical bars are partially detected in the VV image.
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FiGure 1: Configuration and photo of the preliminary experiment to test double bounce scattering with GB-SAR.
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FIGURE 2: PiSAR L-band images on 2007 November 27 (left), 29 (middle), and 30 (right). Red: HH; green: HV; blue: VV.

Values of ¢°, entropy (H), «, and anisotropy (A) derived
from the PiSAR data are summarized in Table 3. Since PiSAR
does not have enough spatial resolution to separate the
house structure, we used all signal from the house in the
analysis. The ¢° values of the HH and VV polarizations
on November 29 are 0.9, and 1.5dB higher than those on
November 30. That of the HV polarization was 3.4 dB higher
on November 29. These changes are simply explained by the
higher reflectivity of the water surface on November 29.

When we plot « and H taken with PiSAR in an «-H
plane, which is proposed by Cloude and Pottier [11], the
H and the « values taken in both flooding and nonflooding
conditions, are categorized in z9 zone, which include GO and
PO surface scattering, Bragg surface scattering, and specular
scattering. This classification and observation configuration
indicate that dominant scattering process comes from a
single scattering from the roof of the simple house, while
single scattering from the metal bars and double scattering

from the metal bar and the surface are included in some
degree. The H shows almost same value, and the o show 5
degree lower on November 30th. I will discuss these with the
GB-SAR results later.

Parameters derived from GB-SAR are also summarized
in Table 3. We calculated ¢°, H, &, and A in two regions
in the GB-SAR image (Figure4). Reg. 2 is located at the
range distance of 10 m and comes from the double bounce
scattering (Figure 5). The o°yy shows a 9.3-dB difference
between flooding and nonflooding conditions. This increase
can be explained by specular reflection on the water surface
during the flood. Reg. 1 signal is located at the range distance
of 9.8 m and comes from the single bounce scattering from
the nearest metal bar (Figure 5). We found no difference
in the o°yy taken before and after the flooding because
the flooding does not affect this scattering process. Since
the metal bar of Reg. 1 is horizontal, few o°yy values were
recorded. A 1.4-dB difference in cross-polarization at Reg. 1
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FIGURE 3: (a) Configuration of the field experiment. (b) Photo of the simple house and GB-SAR, which was deployed outside the water.
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might be due to the different incident azimuth angle between
November 29 and 30, or reflection from the horizontal wire
with some width.

We again use the double scattering model and examine
the difference of the ¢°py for the flooding/nonflooding
condition. The dielectric constant of the soil is estimated as
32 from soil moisture value [12] and that of the water is 80.

The GB-SAR Case. The o°yy difference for the model is
0.4 dB, while that acquired with GB-SAR measurement is
9.0 dB. One of the possible explanations for this discrepancy
is a roughness of the soil, which reduce the reflectivity of the
soil surface.
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FIGURE 4: Reflections from simple house taken by GB SAR in HH, HV, and VV polarization.

PiSAR Case. The o°yp difference is 1.6dB, while that
acquired with PiSAR measurement is 0.9 dB, and is smaller
than the model value in this case. This discrepancy can be
explained that the double scattering component is a part
of the component for the PiSAR case, and other scattering
process, such as single scattering, is a dominant scattering
process.

The GB-SAR radar signals in Reg. 3 derive from various
kinds of scattering processes in the house. Because the
structure of the metal bars in the house is complex, we could
not identify the scattering source. But the average ¢° values
increased after the flooding.
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TABLE 3: Parameters derived from GB-SAR and PiSAR.
GB-SAR PiSAR
November 29 November 30 Diff. November 29 November 30 Diff.
o1 (dB) Reg. 1 —77.4 -77.6 0.2 304 295 00
Reg. 2 -76.0 -85.3 9.3
o*1v (dB) Reg. 1 -91.7 -93.1 1.4 186 151 3.4
Reg. 2 -96.2 -96.7 0.5
o°vy (dB) Reg. 1 —88.3 —88.1 -0.2 316 30.1 15
Reg. 2 —86.2 -86.3 0.1
Entropy (H) Reg. 1 0.29 0.36 —0.07 0.38 0.37 0.01
Reg. 2 0.41 0.66 -0.25
2 (o) Reg. 1 40.1 52.5 —12.4 - - 50
Reg. 2 51.3 47.3 4.0
Anisotropy (A) Reg. 1 0.56 0.72 ~0.16 0.71 0.74 0.03
Reg. 2 0.45 0.61 -0.15
z(m) Double bounce On the other hand, the change of the « between the
A S Ing 4 . . .. .
: scattering (Reg. 2) Wooden flooding and nonflooding conditions shows complicated
Cger T wall behavior. The « value for the flooding condition is 4-5°
s Single bounce higher than that for the nonflooding condition in the PiSAR
E scattering (Reg. 1)-.. data and in the Reg. 2 of the GB-SAR data. On the other
= hand, Reg. 1 shows 12.4° which is a lower value. These may
: be due to a slight difference in the repeat-pass observation
.. | Metal bar geometry.
Q) .
< 9‘8 ......................... >

x (m)

FIGure 5: Single and double bounce scattering from the ground
surface and metal bars.

The « values derived from Reg. 1 and Reg. 2 are 40.1°
and 52.5°, and these are well explained by the characteristics
of the 45°« parameter, which includes the reflection from the
isolated dipole.

The reflection process of Reg. 2 is changing from z7 for
the flooding to z5 for the nonflooding in the a-H plane.
Significant change is seen for H, which is changing from 0.41
to 0.66. Because the nonflooding double bounce reflection
includes the reflection of the soil surface, it might increase
the H value. The reflection process of Reg. 1 is changing
from z9 to z7. But the H does not show large change
between flooding (0.29) and nonflooding (0.36) conditions
and shows approximately same value with the one derived
from the PiSAR data. These results also support the idea
that Reg. 1 and dominant component of the PiSAR data are
the single scattering from the house. But we have to note
that many of the house’s roof is not made of metal like in
this experiment. If there is no strong reflection from the
roof, entropy change derived with SAR data may be useful
parameters to detect the flooding, as shown in the GB-SAR
case. And a-H classification scheme is a good indicator of the
reflection process so that we can judge whether the entropy
can be applied or not for flood detection.

5. Conclusion

We performed a simultaneous GB-SAR/PiSAR experiment
over a flood test site with a simple house. Several PiSAR
observations were done over 3 days with different soil
moisture conditions. Additional GB-SAR observations were
done on 2 of the 3 days at high spatial resolution. The
PiSAR ¢° under flood condition was 0.9 to 3.4 dB higher
than that under nonflood condition. The higher-resolution
GB-SAR data revealed a single scattering component from
metal bars in the walls and a double bounce component
from the ground surface and the metal bars. The GB-SAR
data showed that the ¢° difference arose from the double
bounce scattering from the surface and metal bars. The a-
H classification suggests that dominant scattering process of
the PiSAR data is the roof of the house. On the other hand,
H and « values acquired with GB-SAR are well described by
the single bounce from the dipole or the double scattering
from the dipole and soil/water surface. Our analysis results
show that the entropy is a sensitive parameter for the flood
detection, if the scattering process is dominated by the
double bounce scattering. And a-H classification scheme is
a well indicator of a reflection source, and whether we can
use the entropy or not.

We conclude that ¢° and entropy taken before and after
a flood are useful for detecting flooded areas, not only in
agricultural and forest regions, but also in urban areas. We
also conclude that GB-SAR is a powerful tool to supplement
satellite and airborne observations, which have relatively low
spatial resolution.
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