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Conventional image interpolation methods such as the bilinear and bicubic algorithms determine the weights of the reference
pixels based on the special distance between the supplementary pixel and the reference pixels. They suffer from some problems
such as blurring and jagging around the edges since the edge structure is not considered in interpolation. In this paper, a coordinate
rotation and kernel stretch strategy combined with the bilinear or bicubic algorithm is proposed to tackle these problems. For the
edge regions, the spatial coordinate axes are rotated to the edge direction and the edge normal to calculate the distances between
the supplementary pixel and the original reference pixels. The kernel function is also stretched along the estimated edge direction
so that the weights of the reference pixels along the edge direction would be higher than the others to smooth the edge and prevent
the jagging artifacts. An edge enhancement method is also proposed to further reduce the interpolation error and sharpen the
edge. The experiment results demonstrate that conventional bilinear and bicubic image interpolation methods combined with the
proposed strategy can greatly improve the quantitative and qualitative performance for image enlargement.

1. Introduction

Image interpolation is a technology for image resolution con-
version that generates a high-resolution image from its given
low-resolution image version. It has been widely applied to
various image/video capture/display devices such as digital
still cameras, digital video cameras, printers, and multiple-
function peripherals. Bilinear and bicubic interpolations
are two conventional and widely used methods. However,
applying a fixed kernel across the whole image without
considering local structural characteristics will suffer from
some problems such as blurring and jagging around the
edges. Therefore, several methods have been proposed to
tackle these problems by analyzing the image first to achieve
better interpolation quality.

The adaptive interpolation schemes spatially adapt the
interpolators to better match the local structure around
the edges [1–6]. The isophote-oriented approach solves
the ensuing partial differential equations (PDEs) to mini-
mize the curvature of interpolated isophotes to reduce the

zigzagging artifacts [7]. Based on the assumption that the
image to be enhanced is the lowpass filtered subband of
a wavelet-transformed high-resolution image, wavelet-based
approaches have also been proposed for image interpolation
[8–10].

Since human eyes are more sensitive to the edge areas
than the smooth areas within an image [11], many algo-
rithms have been proposed to improve the subjectively visual
quality of edge regions in the images that need interpo-
lation applied to them [12–14]. In [12], the edge-directed
method (NEDI) uses the covariance of the original image to
estimate the covariance information of the high-resolution
image. In [13, 14], the bilinear method was modified by
considering the direction information of edges to preserve
better smoothing edges than traditional version. In order to
improve the quality of interpolated images, neural-network-
based schemes [15, 16], the minimum mean square-error
estimation [17], and the autoregressive modeling [18]
have also been proposed for adaptive filter design. Several
techniques that improve original NEDI [12] by reducing
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computation cost for video applications [19], considering the
effects of the curvature continuity by an iterative refinement
approach [20] or applying multiple training windows to
mitigate the covariance mismatch problem [21], were also
developed. Since local adaptive interpolation method with
small window still suffers from the blurring problem [22],
adaptive learning approaches by applying multiple bicubic
processing [23] or the cellular neural networks [24] have also
been proposed.

These approaches demonstrate improved visual quality
in reducing the zigzagging artifacts compared with conven-
tional methods, but they may have relatively high computa-
tional cost or create some extra artifacts such as the unwanted
over fittings at texture regions. In this paper, an adaptive
image enlargement scheme that combines image analysis,
coordinate rotation, and kernel stretching is proposed to
balance the computational cost and visual quality. An input
image is first classified into edge and nonnedge regions
by the Sobel edge detection method. The interpolation
kernel (the bilinear and bicubic algorithms were used in
this paper) is applied to the nonedge regions, directly.
For the edge regions, the spatial coordinates are rotated
according to the estimated edge direction before calculating
the spatial distances between the supplementary pixels and
their neighbor reference pixels for the interpolation kernel.
The kernel function will also be stretched along the estimated
edge direction to adjust the weights of the reference pixels
to smooth the edge and prevent the jagging artifacts. In
addition, an edge enhancement method is also proposed
to further reduce the interpolation error and sharpen
the edge.

This paper is organized as follows. The system archi-
tecture is introduced in Section 2. The details of the
proposed approach including image analysis, coordinate
rotation, and kernel stretching methods are presented in
Section 3. Section 4 introduces the proposed edge enhance-
ment method. Experiment results are presented in Sections 5
and 6 for demonstration. Section 7 concludes this paper.

2. System Architecture

The schematic block diagram of the proposed image
enlargement system is shown in Figure 1. It consists of a
region classification module, an angle evaluation module, a
coordination rotation module, an interpolation module, and
an enhancement module. When an original image enters the
proposed system, it is firstly divided into 4× 4 sliding blocks
that are processed pixel by pixel. The original block is shown
in Figure 2(a) as an illustration, where O(1, 1) is defined as
the reference pixel and O(i, j)|i /= 1, j /= 1 is the neighborhood of
O(1, 1). According to Figure 2(b), the three adjacent image
pixels P(1, 0), P(0,−1), and P(1,−1) are the interpolated
supplementary pixels relative to reference image pixel O(1, 1)
positioned at offset coordinate points (1, 0), (0,−1), and
(1,−1) in a Cartesian coordinate reference system for the two
times interpolation [16].

We firstly classify the sliding block into an edge or
nonedge class by Sobel edge detection. For the nonedge

blocks, the conventional interpolation kernel such as the
bilinear or bicubic is utilized directly. For a classified edge
region, the angle evaluation module will compute the
dominant orientation of the sliding block and the original
coordinates are rotated to the new coordinates according to
the estimated edge orientation. The distances between the
supplementary pixel and the surrounding reference pixels in
the block are calculated according to the new coordinate.
Then the interpolation kernel determines the value of the
supplementary pixel according to the modified distances
between the supplementary pixel and the surrounding pixels
as well as the values of the surrounding pixels. Based on
the proposed coordinate rotation strategy, the weights of the
reference pixels along the edge direction would be higher
than the others to preserve the smoothness of the edge and
the interpolation kernel for the edge and nonedge regions
can be identical to reduce the computational complexity.

In addition, for some supplementary pixels that do
not have reference pixels along the edge direction, an
enhancement method is also proposed to reduce the error
and sharpen the edge. The reference pixels along the normal
of the edge are analyzed to estimate if the edge on the
supplementary pixel is a roof edge or a ramp edge. For the
roof edge, the value of the supplementary pixel is calculated
by averaging the extrapolations of the both sides of the roof.
For the ramp edge, the value of the supplementary pixel is
determined as the extrapolation of the step side to sharpen
the edge. The detail discussion is given in Section 4.

3. Image Interpolation Based on
Coordinate Rotation

3.1. Edge Detection and Edge Angle Evaluation. As shown
in Figure 1, when an original image enters the proposed
system, it is firstly divided into 4 × 4 sliding blocks and
each sliding block is classified into an edge or nonedge class
by Sobel edge detection, since Sobel is simple and easy to
be implemented. When an original pixel O(i, j) at a sliding
block is computed, the values of the original pixels nearby
O(i, j) are used to calculate the gradients in the horizontal
and vertical directions as (1):
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If the Gx or Gy is large than the threshold, we classify the
pixel as a portion of an edge. Otherwise the pixel would be
regarded as a nonedge pixel. The threshold value is set as 15
in this paper. The orientation angle of an edge pixel O(i, j)
denoted as A(i, j) can be determined by

A
(
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(
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(
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)
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)

. (2)
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Figure 1: Schematic block diagram of the proposed image enlargement system.

The obtained orientation angle of each original pixel is
quantized into the closest eight quantized angles such as
θ = 22.5 × k, 0 ≤ k ≤ 7. In the sliding block that the edge
pixel O(i, j) belongs to, the quantized orientation angles of
the 16 original pixels are calculated. If the most frequently
occurring quantized orientation θ has the supports of 6 or
more original pixels, it is regarded as the edge angle of the
sliding block for coordinate rotation.

3.2. Image Interpolation Kernels. Before proposing the coor-
dinate rotation and kernel stretching strategy for image
interpolation, two conventional interpolation kernels, the
bilinear and bicubic methods, utilized in this paper for
demonstration, are brief introduced. The concept of one
dimensional interpolation is obtaining the signal at the
positionx, denoted as f (x), from the function values of its
surrounding points f (xi), where f represents the estimated
function of the signal. The linear interpolation method

considers two surrounding points and their distances from
the target as the input of the kernel function:

Klinear(x) =
⎧
⎨

⎩

1− |x|, 0 ≤ |x| < 1,

0, otherwise,
(3)

where x is the interval between the supplementary point
and its surrounding point. It means that the weight of the
referenced pixel is inversely proportional to the distance
between the supplementary point and its referenced point.

The kernel function of nonlinear cubic interpolation [25]
is defined as

Kcubic(x) =
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Figure 2: (a) A 4× 4 sliding block window in the original image. (b) The block after two times interpolation.

It utilizes four surrounding points to interpolate the target;
so the cubic interpolation needs more referenced points and
more computational cost than the linear method to get better
precision. Figure 3 shows these two one-dimensional inter-
polation kernels. They can be extended to two-dimensional
interpolation (image interpolation) and called the bilinear
and bicubic interpolations, respectively.

The bilinear method uses (3) in the horizontal and
vertical directions, respectively, to obtain the value of a
supplementary pixel; that is, it is the linear combination of
the four surrounding pixels. Similarly, the bicubic method
also needs to operate (4) in both horizontal and vertical
directions. Since one-dimension cubic interpolation refers to
four reference points, 4 × 4 block is required for the bicubic
interpolation.

In summary, if we want to use the two-dimensional
interpolation kernel to interpolate a supplementary pixel at
coordinate (xp, yp) in the image I , it can be calculated by

I
(
xp, yp

)
=
∑

x

∑

y

I
(
x, y

)
K
(
xp − x

)
K
(
yp − y

)
, (5)

where K is the 1D interpolation kernel ((3) and (4))
and I(x, y) represents the pixel value of the surrounding
referenced pixel at position (x, y). As shown in Figure 1, we
use (5) for the interpolation of nonedge pixels directly.

3.3. Coordinate Rotation and Kernel Stretching for Interpo-
lation of the Edges. The conventional image interpolation
kernels as shown in (5) only consider the spatial distance
between the reference pixel and the supplementary pixel to
determine the weight of the reference pixel based on the

assumption that the supplementary pixel is more similar to
the nearer reference pixels due to limited spatial support.
However, the supplementary pixel in the edge region should
be more similar to the nearer reference pixels along the
edge direction. Our previous study that utilized a neural
network to obtain weights of reference pixels for image
interpolation by automatic training also shows that the
resultant weights follow the directional characteristics of the
edges [16]. Therefore, in order to adjust the weights of the
reference pixels to smooth the edge and prevent the jagging
artifacts, in this paper, after determining the dominant edge
orientation of the sliding block, the original coordinates of
the sliding block are rotated to the new coordinates. Finally,
the kernel will operate based on the distances between the
supplementary pixel and the surrounding pixels in the new
coordinates for interpolation.

Assuming that the original coordinate of a pixel in
a sliding block is (x, y) as shown in Figure 4(a) and the
estimated edge angle is θ, the coordinate system of the block
will be rotated by θ as shown in Figure 4(b) and the resultant
coordinates of the pixel denoted as (x′, y′) can be calculated
by

⎡

⎣
x′

y′

⎤

⎦ =
⎡

⎣
cos θ sin θ

− sin θ cos θ

⎤

⎦

⎡

⎣
x

y

⎤

⎦. (6)

It is noted that after coordinate rotation, the x′axis is parallel
to the edge and the y′ axis is normal to the edge. In order
to enhance the property of the edge, the distance between
the supplementary pixel and the surrounding pixel in the x′

axis should be shrunk and the distance in the y′ axis should
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Figure 3: Two conventional 1D interpolation kernels. (a) The linear
interpolation. (b) The cubic interpolation.

be stretched for the kernel function so that the weights of the
reference pixels along the edge direction will be increased and
the weights of the reference pixels normal to the edge will be
weakened. Therefore, (5) is modified as

I
(
xp, yp

)

=
∑

x

∑

y

I
(
x, y

)
K
(
ga ·

(
x′p − x′

))
K
(
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(
y′p − y′

))
,

(7)

where ga and gb in (7) are the distance adjustment
parameters in x′ and y′ axes to adjust the contributions of
the neighbor pixels to interpolate the supplementary pixel.
We set gb = 1/ga and the parameters are fixed for the whole

(x, y)

y

x

(a)

(x’, y’)

y’
x’

θ

(b)

Figure 4: (a) (x, y), the original coordinates of a pixel. (b) (x′, y′),
the rotated coordinates of the pixel by the estimated edge angle θ.

image in this paper. They can also be adaptive block by block
according to the strength of the edge.

In order to determine the distance adjustment parame-
ters, we analyze the average energy of edge blocks of “Lena”
by the principle component analysis (PCA) [26]. For each
block, the gradient values of each pixel in horizontal and
vertical calculated by (1) are grouped into an 16 × 2 matrix
G as

G =
[
Gx,Gy

]
. (8)

Through PCA, the gradient matrix G can be decomposed
into two eigenvectors. The eigenvector with the larger
eigenvalue represents the edge axis and the other eigenvector
is normal to the edge. Larger difference between these two
eigenvalues means that the edge is sharper. The sharpness of
the edge block can be calculated by [26]

R = s1 − s2

s1 + s2
, (9)

where s1 and s2 are the eigenvalues of the two decomposed
principle components and s1 is the larger eigenvalue. Figure 5
shows an example to illustrate the correlation between the
R value and the sharpness of the edge. Figures 5(a) and
5(b) show two blocks with different edge strength in “Lena”.
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Figure 5: An example to illustrate the correlation between the R value and the strength of the edge. Image blocks with (a) R = 0.9 and (b) R
= 0.4 in “Lena”. (c) The distribution of the 16 pixels in block (a) on the two principle components. (d) The distribution of the 16 pixels in
block (b) on the two principle components.

Figures 5(c) and 5(d) show the distributions of the block
pixels of Figures 5(a) and 5(b) on their corresponding
principle components. The R values of Figures 5(a) and 5(b)
are 0.9 and 0.4, respectively. It can be observed that the block
with larger R value has a stronger edge.

The analysis results of edge blocks in “Lena” are shown
in Table 1. The angles of the edge blocks are classified to
8 degrees. The number of blocks for each quantized angle
and the corresponding averaged R are presented. The total
average of the R value is 0.65. Therefore, we set ga = 0.65 and
gb = 1/ga = 1.54. Applying these two distance adjustment
parameters to (7) and utilizing the bicubic method as the
kernel, the resultant weights corresponding to the eight
different edge orientations for the three supplementary pixels
in Figure 2(b) are shown in Table 2 as an example. It could
be found that the weights of the reference pixels along the
edge direction are larger than the weights of the reference
pixels normal to the edge so that the conventional kernels
such as the bicubic or bilinear methods integrated with the
proposed coordinate rotation and kernel stretching method
can keep the directional characteristics of the edges well. By
combining (5) for nonedge regions and (7) for edge regions,
the proposed method can improve image interpolation
results without greatly increase computational cost since the
same kernel is utilized for edge and nonedge regions.

4. Image Quality Enhancement

For some supplementary pixels that do not have reference
pixels along the edge direction, we propose an image quality
enhancement method for the interpolated image to reduce
the error and sharpen the edge. The reference pixels along
the normal of the edge are analyzed to estimate if the edge
on the supplementary pixel is a roof edge or a ramp edge.
The enhancement is only applied to the roof and ramp edges
since the effects are more observable. For the roof edge, the
value of the supplementary pixel is calculated by averaging
the extrapolations of the both sides of the roof. For the ramp
edge, the value of the supplementary pixel is determined as
the extrapolation of the step side to sharpen the edge. Since
the enhancement is proved to make the proposed method
more complete in the processing procedure, it is simple and
only 0, 90, 45, and 135 degrees are considered.

4.1. Enhancement for 0 Degree or 90 Degree Edges. According
to Figure 6(a), for the 0-degree edge, P(0,−1) and P(1,−1)
have no original pixels along the edge direction for reference.
Similarly, P(1, 0) and P(1,−1) have no original pixels along
the edge direction for the 90-degree edge as shown in
Figure 6(b). In order to reduce the error and increase the
edge contrast of the interpolation results, we detect the roof
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Figure 6: The supplementary pixels without reference pixels along the edge direction for (a) the 0 degree edge and (b) the 90 degree edge.
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Figure 7: Two edge types for enhancement: (a) the roof edge, and
(b) the ramp edge.

and ramp edges [27] based on the intensity profile along the
normal direction of the edge.

The interpolation of the supplementary pixel P(1, 0) in
Figure 6(b) is used as an example for illustration and the

edge is 90 degree. As shown in Figure 7, we take four pixels,
(O(1, 0), O(1, 1)) and (O(1, 2), O(1, 3)) that are along the
normal (0 degree) of the edge direction at the two sides
of the supplementary pixel to classify the edge type and to
determine the value of P(1, 0). Assume SL = O(1, 1)−O(1, 0)
and SR = O(1, 3)−O(1, 2), if

SL · SR < 0, |SL| > 35, |SR| > 35, (10)

the slopes at the two sides of the edge have opposite slope
signs, and it is classified as a roof edge for 8-bit images.
The value of P(1, 0) is calculated by averaging the linear
extrapolations of the both sides of the roof as shown in
Figure 7(a). If

Max(|SL|, |SR|) > 60, Min(|SL|, |SR|) < 15, (11)

the edge has a plain slope and a sharp slope at the two sides
and is classified as a ramp edge. The thresholds used in (10)
and (11) are obtained based on the heuristic analysis of the
“Lena” image. It does not guarantee to be the optimal values
for all cases. The value of P(1, 0) is determined as the linear
extrapolation of the step side to sharpen the edge as shown in
Figure 7(b). After P(1, 0) is enhanced, the value of P(1,−1)
in Figure 6(b) is determined by

P(1,−1) = 1
2

(P(1, 0) + P(1,−2)), (12)

where P(1,−2) is the interpolated supplementary pixel in the
next lower block.

Similarly, the above mentioned procedure can be utilized
for the 0 degree edge shown in Figure 6(a). We first enhance
P(0,−1) based on O(0, 1), O(1, 1), O(2, 1), and O(3, 1)) that
are along the normal of the edge direction at the two sides
of the P(0,−1). Then we interpolate P(1,−1) by averaging
P(0,−1) and P(2,−1) for enhancement.
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Figure 8: Interpolation for (a) P(1, 0) and (b) P(0,−1) in a 45-degree edge block and interpolation for (c) P(1, 0) and (d) P(0,−1) in a
135-degree edge block.

4.2. Enhancement for 45-Degree or 135-Degree Edges. Accord-
ing to Figures 2(b) and 8, we can find that for the 45-
or 135-degree edge, P(1, 0) and P(0,−1) have no original
pixels along the edge direction for reference. We can also
use the procedure proposed in the above subsection to
enhance these two supplementary pixels. The difference
is that instead of the original reference pixels, the four
supplementary pixels interpolated by the method proposed
in Section 3 are utilized as the reference pixels for edge
classification and enhancement. For the 45-degree edge, the
interpolated supplementary pixels along the edge normal
(135-degree orientation) represented as the black rigid circles
in Figures 8(a) and 8(b) are utilized for reference. Similarly,
the interpolated supplementary pixels along the edge normal

(45-degree orientation) in Figures 8(c) and 8(d) are utilized
for reference to enhance P(1, 0) and P(0,−1) for the 135-
degree edge.

5. Experimental Results and Discussions

Six natural photographic images, Parrot, Bike, Aerial, Lena,
Airplane, and House as shown in Figure 9, are used as our
benchmark images for testing to demonstrate the generaliza-
tion ability of the proposed approaches. In our experiments,
two conventional interpolation kernels, bilinear and bicubic
methods combined with the proposed coordinate rotation
and image enhancement approach, are compared with the
original bilinear and bicubic methods and five modern
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(d) (e) (f)

Figure 9: Six natural images in the test set. (a) Parrot; (b) Bike; (c) Aerial; (d) Lena; (e) Airplane; (f) House.

interpolation methods, the edge-directed interpolation [12]
and its improvement called ICBI [20], the linear minimum
mean square-error estimation- (LMMSE-) based interpo-
lation [17], the soft-decision adaptive interpolation (SAI)
[18], and the neural-network-based interpolation [16]. The
test images are downsampled by a factor of two with the
decimation approach. The interpolated images are compared
with the original high resolution images for quantitative and
qualitative evaluation.

5.1. Quantitative Comparisons. For quantitative perfor-
mance evaluation, the peak signal-to-noise ratio (PSNR)
defined as

PSNR = 10 log10

⎛

⎝ 2552
(∑N

n=1

(
I′n − In

)2
)
/N

⎞

⎠ (13)

is used as quantitative performance indication, where In and
I′n are the gray levels of the original and the interpolated
pixels, respectively, and N is the total number of pixels in an
image. The PSNR numbers indicate the overall image quality
with errors between the original and interpolated results
pixel-by-pixel. The figure of merit (FOM) [28] and structural
similarity (SSIM) index [11] are also calculated to compare
edge preservation and structural similarity performances
of different image interpolation methods, respectively. The
FOM ranges between 0 and 1 and is defined by

FOM = 1

max
{
N̂ ,Nideal

}
N̂∑

i=1

1
1 + d2

i α
, (14)

where N̂ and Nideal are the number of edge pixels in the
interpolated image and the original image, respectively, di
is the Euclidean distance between the ith edge pixel in the
interpolated image and the nearest edge pixel in the original
image, and α is a constant typically set to 1/9. FOM value
is unity for ideal case and the edges pixels are detected
by the Canny edge detector. The Mean SSIM (MSSIM) to
evaluate the overall image quality between the original (X)
and interpolated image (Y) is calculated by

MSSIM(X ,Y) = 1
M

M∑

j=1

SSIM
(
xj , yj

)
, (15)

where M is the number of local windows in the image, and
xj and yj are the image contents at the jth local window. In
this paper, 8×8 window is used to calculate SSIM. The SSIM
between windows x and y is calculated by

SSIM
(
x, y

) =
(

2μxμy + c1

)(
2 covxy +c2

)

(
μx2 + μy2 + c1

)(
σx2 + σy2 + c2

) , (16)

where μx is the average of x, μy is the average of y, σx2 is the
variance of x, σ2

y is the variance of y, and covxy the covariance
of x and y. c1 and c2 are two small values included to stabilize
the division with weak denominator [11].

Table 3 shows the quantitative comparison of differ-
ent image interpolation technologies. The best results are
denoted in bold. The proposed coordinate rotation and ker-
nel stretching method (Section 3) combined with the bilinear
or bicubic interpolation kernel can consistently achieve
superior quantitative performance compared with the other
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 10: Portions of resolution enhanced “Bike” image by (a) bilinear; (b) bicubic; (c) edge-directed method (M = 8) [12]; (d) ICBI [20];
(e) LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed method utilized (h)
bilinear kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge enhancement.

approaches. In addition, the edge enhancement method
proposed in Section 4 has a little average improvement in
PSNR, SSIM, and FOM. The bicubic kernel combined with
coordinate rotation and edge enhancement can achieve the
best average performance.

6. Visual Quality Comparisons

Figures 10 and 11 show the two-time resolution enhanced
portions of images “Bike” and “Lena” by using different
interpolation methods, respectively. It can be found that
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 11: Portions of resolution enhanced “Lena” image by (a) bilinear; (b) bicubic; (c) edge-directed method (M = 8) [12]; (d) ICBI [20];
(e) LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed method utilized (h)
bilinear kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge enhancement.

the bilinear interpolation made some jaggedness along the
edges and blurred the image. The bicubic method made
less blurring than the bilinear method, but it made more
observable jagged edges. All of the modern interpolation
methods can achieve better visual quality than the bilinear
and bicubic methods. The LMMSE-based interpolation [17]

makes some jaggedness along the edges. The edge-directed
interpolation [12] and the neural-network-based method
[16] can preserve the edge well but the edge-directed
approach sometimes produces the speckle noises and the
neural-network-based approach makes a little burring. The
SAI approach [18] can preserve the local details well but
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 12: Portions of resolution enhanced “Gray cat” image by (a) bilinear; (b) bicubic; (c) edge-directed method (M = 8) [12]; (d) ICBI
[20]; (e) LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed method utilized (h)
bilinear kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge enhancement.

sometimes produces the slight jaggedness if the parameter λ
is fixed. It can also be found that the edge-directed method
and the SAI method produce some distortions or over
fittings at the texture regions. The ICBI [20] can reduce the
speckle noises and over fittings compared with the original
edge-directed interpolation [12]. But similar to the LMMSE
[17], it also makes some jaggedness. The results of the
proposed methods can keep the smoothness of the edges

without speckle artifacts and it makes less blurring without
jaggedness when the bicubic kernel is utilized. In addition,
the proposed enhancement method can further sharpen the
edge by analyzing the edge types to reduce the interpolation
error.

We also applied different interpolation methods to
perform two-time resolution enhancement of two clip arts,
Gray Cat [29] and Geometric Motif [30], and the computer
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 13: Portions of resolution enhanced “geometric motif 3 outline” image by (a) bilinear; (b) bicubic; (c) edge-directed method (M =
8) [12]; (d) ICBI [20]; (e) LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed
method utilized (h) bilinear kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge
enhancement.

generated 36-point English letters “NK” for comparison. The
results are shown in Figures 12–14. In Figure 12, the edge-
directed [12] and LMMSE [17] make the jaggedness. SAI
[18] produces some noise along the whiskers and the ICBI

[20] makes some speckle noise on the edge. The neural-
network-based method [16] and the proposed methods can
perform better visual quality. In Figure 13, the edge-directed
[12] and the SAI [18] cause heavy speckle noise on the edge.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 14: Resolution enhanced English letters “NK” by (a) bilinear; (b) bicubic; (c) edge-directed method (M = 8) [12]; (d) ICBI [20]; (e)
LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed method utilized (h) bilinear
kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge enhancement.

The LMMSE [17] produces slight jaggedness. The neural-
network-based method [16], the ICBI [20], and the proposed
methods can perform better visual quality. In addition, it can
also be found that the proposed method with enhancement
(Figures 13(j) and 13(k)) performs sharper results than the
proposed method without enhancement (Figures 13(h) and
13(i)) on the two black bars. For the English letters shown
in Figure 14, the LMMSE-based interpolation [17], the ICBI
[20], and the proposed methods can perform better visual
quality and do not generate obvious artifacts compared
with the other methods. The above experimental results
demonstrate that the proposed methods perform stable
and superior visual quality on the clip arts and computer
generated letters.

In addition to interpolation methods, it is noted that the
downsampling strategy also affects the interpolation results.
Figure 15 and Table 4 show the results and comparison
of different algorithms applied to “Lena” downsampled by
averaging. Comparing with Figure 11 and Table 3, it can be
found that the results of applying the interpolation methods
to the image downsampled by averaging are obviously more
blurring than the results of the image downsampled by
decimation. It is consistent with the FOM performance
since the FOMs in Table 4 are much less than the FOMs in
Table 3. The jaggedness caused by the bilinear and bicubic
methods can be reduced if the image for interpolation is

Table 1: The R values of the edge blocks in “Lena”. The angles of
the edge blocks are classified to 8 degrees.

Degree of the
edge

0 22.5 45 67.5 90 112.5 135 157.5

Number of
blocks

45 888 2162 3312 7318 1916 705 580

R (average
edge energy)

0.71 0.57 0.62 0.65 0.68 0.63 0.62 0.60

downsampled by averaging. SSIM in Tables 3 and 4 can
present this difference since SSIM considers the structural
similarity of two images. Although the bicubic and bilinear
methods have better performance in PSNR and SSIM than
all of the modern interpolation methods in Table 4, they
still make more observable jagged edges than the modern
interpolation methods.

Since the modern interpolation methods interpolate the
supplementary pixels based on the analysis results of the
image structure characteristics, if the downsmpling method
such as averaging modifies values of the reference pixels and
their correlations, the interpolation results will be worse than
that by decimation. Therefore, in order to perform better
interpolation results for evaluation, all of these modern
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Table 2: The weighting matrices for image interpolation obtained by applying the proposed coordinate rotation and kernel stretching
method to the bicubic kernel.

(a) P(1, 0).

0◦ 22.5◦ 45◦ 67.5◦

90◦ 112.5◦ 135◦ 167.5◦

(b) P(0,−1).

0◦ 22.5◦ 45◦ 67.5◦

90◦ 112.5◦ 135◦ 167.5◦

(c) P(1,−1).

0◦ 22.5◦ 45◦ 67.5◦

90◦ 112.5◦ 135◦ 167.5◦
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 15: Portions of resolution enhanced “Lena” image (downsampled by averaging) by (a) bilinear; (b) bicubic; (c) edge-directed method
(M = 8) [12]; (d) ICBI [20]; (e) LMMSE-based method (ζ = 1, ξ = 1.5) [17]; (f) SAI (λ = 0.5) [18]; (g) NN-based method [16]; the proposed
method utilized (h) bilinear kernel and (i) bicubic kernel without edge enhancement; (j) bilinear kernel and (k) bicubic kernel with edge
enhancement.

methods including this paper use decimation to generate the
low-resolution images in the experiments.

In addition to better quantitative and visual perfor-
mance, low computation cost is another advantage of the
proposed approaches. Most of these modern interpolation

methods need complex computations such as training neural
network through multiple images [15, 16] or reducing the
cost functions by solving the block-based inverse matrices
or the iterative process [12, 17, 18, 20] to reach high visual
quality. The computation of the proposed method requires
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Table 3: Comparative results in PSNR, SSIM, and FOM of different algorithms applied to various kinds of resolution enhancement images.
The best results are denoted in bold.

Bilinear Bicubic Li’s
[12]

ICBI
[20]

LMMSE
[17]

SAI
[18]

NN-base
[16]

Coordinate
Rotation

(Bilinear/Bicubic)

Coordinate
Rotation with
Enhancement

(Bilinear/Bicubic)

Parrot
PSNR 32.67 32.74 35.56 35.41 35.48 35.54 34.84 35.44/35.84 35.45/35.85

SSIM 0.9207 0.9222 0.9461 0.9422 0.9319 0.9028 0.9449 0.9456/0.9453 0.9456/0.9455

FOM 0.62 0.79 0.66 0.72 0.65 0.69 0.77 0.74/0.75 0.79/0.82

Bike
PSNR 23.15 23.11 25.48 25.14 25.74 25.92 25.71 25.81/26.01 25.82/26.03

SSIM 0.7712 0.7902 0.8531 0.8661 0.8631 0.8413 0.8754 0.8762/0.877 0.8766/0.8777

FOM 0.8 0.88 0.91 0.93 0.92 0.92 0.92 0.93/0.93 0.93/0.93

Aerial
PSNR 24.79 24.73 27.22 27.45 27.38 27.41 27.28 27.51/27.80 27.52/27.79

SSIM 0.7928 0.8083 0.8676 0.8865 0.8706 0.8401 0.8868 0.8879/0.8885 0.8883/0.8888

FOM 0.78 0.85 0.91 0.89 0.86 0.88 0.92 0.91/0.88 0.91/0.89

Lena
PSNR 29.97 29.89 33.76 33.9 33.79 33.81 33.8 33.70/33.98 33.75/34.00

SSIM 0.8731 0.8731 0.9128 0.9118 0.9011 0.8719 0.914 0.9154/0.9152 0.9154/0.9153

FOM 0.7 0.77 0.76 0.84 0.75 0.77 0.79 0.83/0.84 0.83/0.84

Airplane
PSNR 29.1 29.15 32.15 33.15 32.74 32.55 31.92 32.62/33.15 32.67/33.21

SSIM 0.905 0.9087 0.9334 0.9432 0.9241 0.8898 0.9436 0.9439/0.9438 0.9443/0.9442

FOM 0.72 0.79 0.84 0.87 0.82 0.84 0.81 0.87/0.86 0.87/0.86

House
PSNR 31.36 31.3 33.82 33.05 34.16 34.21 33.74 34.19/34.32 34.20/34.32

SSIM 0.8782 0.8815 0.907 0.9107 0.7855 0.8758 0.9167 0.9168/0.9168 0.917/0.917

FOM 0.72 0.78 0.85 0.9 0.81 0.78 0.82 0.89/0.89 0.89/0.89

Average
PSNR 28.51 28.49 31.33 31.35 31.55 31.57 31.22 31.545/31.85 31.568/31.866

SSIM 0.8568 0.8640 0.9033 0.9101 0.8794 0.8703 0.9136 0.9143/0.9144 0.9145/0.9148

FOM 0.72 0.81 0.82 0.86 0.80 0.81 0.84 0.86/0.86 0.87/0.87

Table 4: Comparative results in PSNR, SSIM, and FOM of different algorithms applied to “Lena” downsampled by averaging for
interpolation. The best results are denoted in bold.

Bilinear Bicubic Li’s
[12]

ICBI
[20]

LMMSE
[17]

SAI
[18]

NN-base
[16]

Coordinate
Rotation

(Bilinear/Bicubic)

Coordinate
Rotation with
Enhancement

(Bilinear/Bicubic)

Lena
PSNR 32.5128 34.082 30.1348 30.37 30.2383 30.1956 30.3087 30.302/30.3297 30.2835/30.2995

SSIM 0.9044 0.9228 0.8796 0.889 0.8709 0.8386 0.8865 0.8855/0.8861 0.8859/0.8863

FOM 0.60 0.65 0.69 0.62 0.59 0.60 0.65 0.64/0.72 0.60/0.61

about 300 multiplications per pixel only; so the proposed
methods can balance the tradeoff between speed and quality.

7. Conclusions

In this paper, a coordinate rotation and kernel stretch
strategy was proposed to tackle the problems caused by
the conventional bilinear and bicubic algorithms for image
interpolation. The spatial coordinate axes of edges detected
by the Sobel method were rotated to the edge direction and
the edge normal. The kernel function was also stretched
along the estimated edge direction to enhance the weights
of the reference pixels along the edge direction to smooth
the edge and prevent the jagging artifacts. The basic image

kernel such as the bilinear or the bicubic methods combined
with the proposed method can achieve high quantitative and
visual qualitative performance on interpolation of nature
and letter images. It can balance the tradeoff between
computational cost and interpolation quality since solving
the block-based inverse matrices or the iterative process
that the other modern interpolation methods utilized is not
required for the proposed methods.
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